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Abstract. Students often have difficulty understanding the concepts of entropy and
irreversibility, and to a lesser extent, temperature. This is partially due to the statistical nature
of these concepts and the abstract connection between probability and energy. The example of a
large collection of coins is used to elucidate the basic concepts of probability (in particular, the law
of large numbers), and uses them in the same setting to disentangle the more difficult notions of
temperature, entropy, and irreversibility.

1. A review of the statistics of coins

The probabilityP, (m) of m ‘heads’ (H) turning up in a throw of coins, for very large: and
m with m very close to:/2, is given (see appendix A.1) by

_ 2 _ 2
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HereP, (m) is a typical Gaussian bell-shaped curve with a maximugi@fnz atm = n/2 (see
figure 1). Therelative width(see below for a definition) of this curve determines how quickly
the probability drops to ‘negligible’ values aamoves away from /2. For us, negligible means
small compared with thenost probable So, let us consider the ratio= P,(m)/P,(n/2),

and agree that if is less than some small number2dwe call the corresponding probability
negligible. The value we assign todepends on how demanding we wish to be. We can thus
definem . by the following relation:

—2my)? !
r=exp(—%>=10‘2’“ = mi=gj:\/nxln10. (2)

We expect the probability to be concentrated between the two values aind m..
if we take x in (2) sufficiently large. In appendix A.1 we calculate this probability and
denote it byP.(x). If we takex to be 3, so that:.. is a millionth of the maximum, then
P.(3) = 0.999 999 86. In terms of coins, this means that for largeay a million coins, for
whichm = 500 000+ 2628, the probability of getting a number of heads larger than 502 628
or smaller than 497 372 is only 1.4 parts in 10 million! For larger valuestbie probability
is considerably smaller.

Note that although the absolute width — m _ of the curve increases aé:, therelative
width (m.+ —m_)/n shrinks as 1,/n. Since we are comparing outcomes with the maximum
atn/2, it is the relative width that is the true measure of the sharpness of the peak. This is
reflected in figure 1.
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Figure 1. The ratior for 1000 (the outermost curve), 10000, 100 000, and a million (the innermost
curve) coins. The number of heads (horizontal axis) has been normalized to one. It can clearly be
seen that theelative peak becomes narrower and narrower as the number of coins increases.

1.1. The law of large numbers

To appreciate the counter-intuitive character of probability theory, let us describe a thought
experiment in which we toss a large number of coins, say a trillion, and ‘count’ the number of
‘heads’ that turn up in each toss. A detailed enumeration of the coins is out of the question. A
slightly more convenient alternative is to paint the ‘tail’ of each coin white and the ‘head’ black,
load them on cargo planes, drop the coins over a flat desert, and check for ‘grayness’. Assume
we are so far above the ground that the area covered with black and white coins appears as one
square foot. Then if exactly half of the coins were head and half tail, we would see a shade of
gray which we calperfect

We now ask the important question: what are the odds of seeing anythirsgperfect
gray? Animperfect gray would have a shade of black or white indicating an imbalance between
the number of heads and the number of tails. Let us concentrate on the shade of black, and
ask the question: how many more black sides (than white sides) should turn up before the eye
can distinguish the shade of black? The following analogy helps clarify this question.

The resolution of the eye in distinguishing various shades of gray varies from person
to person. Assume that we can find somebody whose eyes are sharp enough to distinguish
between perfect gray and the shade obtained when one drop of black paint is added to a gallon
of perfect gray. What is the ratio of black to white? There is half a gallon plus one drop of
black and exactly half a gallon of white. There are approximately 100 000 drops in a gallon.
Out of these, 50 000 are black and 50 000 are white when the paint is perfect gray. Adding
one black drop changes the ratio to 50 081 000= 1.000 02.

Going back to the coins, we conclude that, for this pair of ‘super’ eyes to be able to
distinguish the shade of black, the ratio of the number of black coins to white coins must be
at least 1000 02. Since the total number of coins is one trillion, the actual number of black
heads must be 500 005 000 000 leaving 499 995 000 000 white tails.

What are the odds that in a random throw of a trillion coins, the number of heads is larger
than 500 005 000 000 or smaller than 499 995 000 000? W/ith= 500 005 000 000, we
getx = 10.857 and a value of. which is extremely close to 1. In fact the probability
P =1- P.(10.857) of obtaining a number of heads which is fewer thhanand larger than
m. is approximately 5 x 10723,

This is an astonishingly small number. To get a better understanding of how small this
number is, suppose that we construct microscopic black and white pennies so that each trial
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consists of shaking them in a can and throwing them on a flat table-top, and suppose that we
have a machine that can do this a hundred thousand times per second. To see an occurrence of
non-perfect gray, we need (on average) to throw the coif’tites, or wait 168 s, i.e. over

30 billion years, or almost twice the age of the Universe!

The upshot of the above discussion is that as the number of coins (events) increases, the
probability of getting anything but the average (expected, mean) value becomes smaller and
smaller. For extremely large numbers of events, such &ihGthe above experiment or
107% for the number of atoms or molecules in a typical sample of matter, the probability of any
measurable deviation from the mean is hopelessly small. Thislawhaf large numbersThis
law is responsible for the predictive power of both the second law of thermodynamics and the
entire quantum theory. Both of these disciplines are utterly useless when pretfidiirigual
microscopic events, but become indispensable when dealing with a macroscopic collection of
these events. Fortunately, we rarely deal with a single microscopic phenomenon, so both the
second law of thermodynamics and quantum theory are as predictive as the deterministic laws
of classical mechanics.

2. The statistical origin of temperature

In our preceding analysis of coins, we placed no constraint on ‘energy’. there was an unlimited
supply of energy that could be added to the system. This energy was simply the effort of the
tosser of the coins. How would the analysis change if energy conservation were taken into
account? Let us assign the values of energyto-the head and-¢ to the tail of a coin.
Conservation of energy then does not allow any configuration whose total energy does not add
up to the given fixed numerical value of energy. Thus, if we have 10 coins, and the total energy
is +6¢, any combination of the 10 coins resulting in 8 heads (H) and 2 tails (T)daly®8 H

and 2 T) is allowed. The allowed configurations, i.e. those that respect the energy conservation
law are calledaccessible states

Isolated systems are not interesting, because they neither affect nor are affected by the
outside world; in particular, one cannot observe them, as observation requires interaction and
contact. So, we let our system come in contact with another system. By contact we mean to
imply the possibility ofenergy exchangbetween the two systems. Of course, conservation
of energy does not allow the total energy of the two systems to change. However, because of
the exchange of energy, the system of interest has more freedom of movement. In particular,
many more accessible states are available to it.

As a concrete numerical example, imagine that the system above (call it system A) interacts
with system B with 20 coins. Let us assume again that the total energy of the combined system
is +6¢. Because of its interaction with system B, system A has many more possibilities open
to it. For instance, while in the discussion above the coins of our system could not have been
all +e or all —e¢, this possibility now exists because the 10 coins can borrow energy from the
other system and all flip to head or to tail. In fact the only constraint is that the total number
of positive coins outnumber the total number of negative coins by 6. This means that out of
30 coins, we must have 18 positive coins and 12 negative coins. How these positive or negative
coins distribute themselves in the two systems is irrelevant.

In what states are we most likely find our system when we allow it to interact with another
system? Suppose that the first systemdasins,m of which are positive, the second systaim
coins,M of which are positive, and the total energy of the two systerds s appendix A.2
we show that the result can be expressed as

€max Emax &

_———— 3
n N N+n 3)

whereemax is the energy of the first system that maximizes the probabilityFand = £ — emax
is the corresponding energy for the other system. Notingdha/ n is the most probable
averageenergy per coin of the system (with corresponding interpretation for the other ratios),
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equation (3) states:

The most probable configuration of one system in contact with another is that for
which theaverage energyer coin of both systems are equal, and both have the
common value of the average energy of the two systems combined.

This statement connects statistical mechanics with thermodynamics. Two systems in
contact will eventually attain the same firiaimperature On the other hand, any macroscopic
system in equilibrium is always in the most probable state (recall the example of perfect gray
and how improbable it was to get anything but perfect gray). It follows that the balance of
temperature is attained at the same time that the balance of average energies are achieved. It
is, therefore, natural to conclude thamperature is proportional to the average energy of the
coins

eavg = kT = m 4)
When two systems are in the most probable (combined) configuration, we say they are in
thermal equilibrium Regardless of their initial states, the final (most probable) configuration
is marked by the equality of their temperatures, or average energy per molecule.

3. Entropy and irreversibility

A paradigm of irreversibility and a situation in which the concept of entropy is usually
introduced is the transfer of heat (energy) from a hot object to a cold object. Consider bringing
two systems A and B, with initial temperaturgs and7g, in contact with one another. First

let us look at what happens to the temperatures of the two systems. The average energy in
the final equilibrium of the combined system, i.e. the final temperdtyrean be obtained by

using equations (3) and (4):

T 19 eamax T €Bmax naTa +npTp
: _ _

= = = (5)

(na *+ng) k(na +np) na +ng
Thus, the final temperature lies somewhere between the initial temperatures of the two systems.
If one of the systems is much larger than the otherpgay> na, thenT; ~ Tg. Consequently,
the temperature of a very large system in contact with a much smaller system does not change.
It is common to call such a large systerreaervoir

Next we ask how likely it is for each system in contact to attain a temperature that is
different fromTz, and therefore (by conservation of energy), different from the other system’s
temperature. Appendix A.3 gives the answer as

P(Tp)
P(T3)

= exp(—(AT/1)?) where t = & 2(i + i)

k na ng
For typical values ok = 1071% k = 10723, andna ~ ng ~ 10°4 we getr ~ 1078,
Thus, for any reasonable finite valueAf’, the ratio is completely negligible. For example,
the odds of the occurrence of as small a temperature difference as a millionth of a degree
is 10"43to 1! Therefore, unlesgy = Tg already, retention of (or subsequent return to)
the initial configuration is extremely unlikely. The process of the exchange of energy (heat)
between systems A and B and their achievement of thermal equilibriimeversible and
this irreversibility is completely statistical.

The above discussion illustrates the connection between the number of accessible states
and the entropy for a ‘gas’ of coins as follows. If two systems that are notin thermal equilibrium
are brought together and allowed to exchange energy, the final equilibrium configuration will
be both the most probable configuratiand a configuration in which the temperatures are
equal. However, the most probable configuration is precisely that configuration which has
the largest number of accessible states as discussed in section 2. Since entropy is simply
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(proportional to the natural logarithm of) the number of accessible states, we conclude that
when two systems, initially not in thermal equilibrium, are brought in contact, their total
entropy will increase This is the law of increasing entropy, the most common version of the
second law of thermodynamics.

4., Conclusion

We have presented a discussion of the abstract thermodynamical concepts using the concrete
statistical system of a large number of coins. In the presentation, we demonstrated the law
of large numbers and the fact that the second law of thermodynamics, whether stated as the
law of increase of entropy or as irreversibility, is completely statistical in nature, and that the
same laws that govern the toss of coins also predict such inherently physical processes as the
transfer of heat or the attainment of equilibrium temperatures.

Appendix

A.1. Probability

The frequency ofn heads (H) turning up in a throw afidentical coins is denoted by, (m)
and is given [1, pp 10-15] by
n!
. = Al
Ju(m) oy —— (A1)
and the probability is simply the ratio of the frequency to the total number of outcom&o2
writing P, (m) for this probability, we have
_ falm) n!
21 ml(n —m)l2n’
A convenient approximation to this equation is obtained whandm are very large and
m is very close tai/2, the average number of H’s. For such a situation, we can ustittiag
approximationfor factorials, i.e. (see [1, pp 441-4] or [2, p 316])

NI ~ /2me N NV*3,

(A2)

This yields
V2re "t
2"/ 2r eXp(—(%n + k)) (%n + k)%”*k*'%@exp(_(%n _ k)) (%n _ k)%n—k+%

where we defined = m — $n < Zn. The equation above simplifies to

Py(m) ~

1 \n
Pam) ~ | 2 il
! 27 (3p)amHs (1 + 2k /m) 23 (L) 27443 (1 — 2k /n) 20k

n 1
=Vor A3
27 (n)(1+ 2k /n)o"**3 (3n)2n 42 (1 — 2k /m) 2" k*3 (A3)

Using In[(1 +x)"] = mIn(1 +x) = m(x — x?/2), we can show that up to ordeyid

2%\ 2"k K2k
1+ — ~exp|tk+—+£-—).
n n n

Substituting this result in the denominator of equation (A3) yields equation (1).
We shall be interested in very large {#pvalues ofn andm, but even for modest
values, the approximation is in very good agreement with the exact formula. For example,
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P1oo(51) = 0.078 2087 using the exact formula, amdyg(51) = 0.078 2085 using the
approximate formula.

Now we add the probabilities between the two values andm.. defined in the text.
Instead of summing equation (A2), we integrate equation (1):

ms _ 2 V2xIn10
P(x) =/ ,/%exp(—%) dm = %/0 e’ dr (A4)

where we changed the integration variable franto t = (2m — n)/+/2n.

A.2. Temperature

The total number of configurations available for the two systems igrthgtuct of the numbers
of configurations for the two systenidenoting the total number of possibilities Bym), we
can write

n! N!
F(m) = {m!(n_m)!}{M!(N—M)!}

NZNM\/*\/‘ <[<n—2m>2 (N_zziM)zD' (A5)

The functionF depends only om becausé/ can be calculated in termsaf. To see this, we
note that the energiesand E of the systems witlh and N coins, respectively, can be written
as

e=me— (n—m)e = (2m — n)e and E =(2M — N)e. (A6)
Since the total energy of the combined systeia fixed, we have

E=e+E=[2(M+m)— N —nle (A7)
and

M = 3[(E/€) + N +n] —m. (A8)

The most probable configuration occurs at a value,afenoted by max, Which maximizes
the functionF (m). This maximum can be readily obtained by extremizing (the exponent of)
equation (A5) subject to equation (A8). The result can be expressed as

Mmax Mmax N Mmax + Mmax

n N N +n

with the second equality following from the first. Using equation (A6) in (A9), with.x and
Mmax replacingn andM, gives the condition (3) of maximum probability in terms of energy.

An interesting consequence of equation (A8) is that m is fixed. In particular, one can
replaceMmax + mmax With M +m in equation (A9) and obtain

(A9)

(A10)

Mmax =

We shall use this result shortly.

A.3. Irreversibility
In equation (A5), let

(n — 2m)? L V= 2M)?
2n 2N

+n z2 M2
_N (’"_ + _) (A11)
2 n N

a(m) =
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We are interested in the rati®(m)/ P (mmax), Which is the same as

PO exp(e(mmed — am)
—_— = oa(m —oam
F(mmax) P ma
SinceN +n andM + m are fixed, evaluating equation (Al1)mat,ax and subtracting yields
2 _ 2 M2 _ M2
a(Mmay) — a(m) = pMmax — M 5 Mmax .

ExpressingWmax in terms ofmmax Using equation (A9), andf in terms ofm andmmax USing
equation (A10), and substituting the result in the last equation, after a little algebra we obtain

2 2 2
a(Mmax) —a(m) = —{ — + — | (Mmax — m)*.
n N
It now follows that
P(m) F(m) 2 2 )
= = —=+= — Al2
P (M) F (e exp( (n N)(mmax m) ) ( )
which, using equation (A10), can also be written as

2
—P(m) = exp{—(g + E) <—Mn _ mN> } (A13)
P (mmax) n N n+N

We now want to measure the probability of the two systems attaining two different
temperatures (while still in contact). To do this, we express the exponent of equation (A13) in
terms of temperatures. The specification of the temperature meansithtite most probable
value of the system corresponding to a temperaljyrand M is the most probable value of
the second system corresponding to a temperdirerhen equation (A6) yields

m:%<§+n):%n<l%+l> and :%(@+1)
so that
Mn —mN _ nNk(Ty — T,) _ k/e)(Ty — Ty)
n+N — 2¢(N+n)  2(1/N+1/n)

Thus the ratio of the probability of finding the system away from its equilibrium state (with
temperaturel; given by equation (5)) to the probability of finding it at its final equilibrium
state is

P(T,)  Pm) k(T — T)?/€* _ 2
Pty ~ P~ 2] = ST/ 41
where
T = S 2(1 + })
N n
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