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Various kinds of Fourier series

1. Fourier series on the interval −ℓ ≤ x ≤ ℓ

Consider the expansion of the function f(x) in a Fourier series, which is defined on the
interval −ℓ ≤ x ≤ ℓ. Using the results of Chapter 7, section 8 of Boas on pp. 360–362, the
Fourier series of f(x) is given by1

f(x) =
∞
∑

n=0

an cos
(nπx

ℓ

)

+
∞
∑

n=1

bn sin
(nπx

ℓ

)

, for −ℓ ≤ x ≤ ℓ (1)

The coefficients an and bn are determined by the following formulae [cf. eq. (8.3) on p. 362
of Boas, but note the slightly different convention that is mentioned in footnote 1]:

an =
1

ℓ(1 + δn0)

∫

ℓ

−ℓ

f(x) cos
(nπx

ℓ

)

dx , for n = 0, 1, 2, 3, . . .

bn =
1

ℓ

∫

ℓ

−ℓ

f(x) sin
(nπx

ℓ

)

dx , for n = 1, 2, 3, 4, . . .

(2)

(3)

where the factor of δn0 is a Kronecker delta that is defined as

δn0 =

{

1 , if n = 0 ,

0 , if n = 1, 2, 3, . . . .

Eqs. (2) and (3) are a consequence of the orthogonality and completeness of the set
of functions

{

cos(nπx/ℓ) , sin(nπx/ℓ)
}

for n = 0, 1, 2, 3, . . ., on the interval −ℓ ≤ x ≤ ℓ.
Note that n = 0 is omitted for the sine function, since the zero function is not relevant for
specifying a complete set of functions. The corresponding orthogonality relations are:

∫

ℓ

−ℓ

cos
(mπx

ℓ

)

cos
(nπx

ℓ

)

dx = ℓ(1 + δn0) δmn , for m,n = 0, 1, 2, 3, . . . ,

∫

ℓ

−ℓ

sin
(mπx

ℓ

)

sin
(nπx

ℓ

)

dx = ℓ δmn , for m,n = 1, 2, 3, . . . ,

∫

ℓ

−ℓ

sin
(mπx

ℓ

)

cos
(nπx

ℓ

)

dx = 0 , for m = 1, 2, 3, . . . and n = 0, 1, 2, 3, . . .

(4)

(5)

(6)

1Warning: the coefficient a0 in eq. (1) is denoted by 1

2
a0 in eq. (8.2) on p. 361 of Boas.
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Eqs. (4)–(6) are easily derived by making use of the trigonometric identities,

cosA cosB = 1

2

[

cos(A−B) + cos(A+B)
]

,

sinA sinB = 1

2

[

cos(A−B)− cos(A+B)
]

,

sinA cosB = 1

2

[

sin(A−B) + sin(A +B)
]

.

It follows that if n 6= m, then
∫

ℓ

−ℓ

cos
(mπx

ℓ

)

cos
(nπx

ℓ

)

dx =
1

2

∫

ℓ

−ℓ

{

cos

(

(m− n)πx

ℓ

)

+ cos

(

(m+ n)πx

ℓ

)}

dx

=
ℓ

2(m− n)π
sin

(

(m− n)πx

ℓ

)
∣

∣

∣

∣

ℓ

−ℓ

+
ℓ

2(m+ n)π
sin

(

(m+ n)πx

ℓ

)
∣

∣

∣

∣

ℓ

−ℓ

= 0 ,

∫

ℓ

−ℓ

sin
(mπx

ℓ

)

sin
(nπx

ℓ

)

dx =
1

2

∫

ℓ

−ℓ

{

cos

(

(m− n)πx

ℓ

)

− cos

(

(m+ n)πx

ℓ

)}

dx

=
ℓ

2(m− n)π
sin

(

(m− n)πx

ℓ

)
∣

∣

∣

∣

ℓ

−ℓ

−
ℓ

2(m+ n)π
sin

(

(m+ n)πx

ℓ

)
∣

∣

∣

∣

ℓ

−ℓ

= 0 ,

∫

ℓ

−ℓ

sin
(mπx

ℓ

)

cos
(nπx

ℓ

)

dx =
1

2

∫

ℓ

−ℓ

{

sin

(

(m− n)πx

ℓ

)

+ sin

(

(m+ n)πx

ℓ

)}

dx = 0 .

The last result follows from the fact that sin(cx) is an odd function of x for any non-zero
value of c. In the case of n = m, we make use of the trigonometric identities,

cos2A = 1

2
(1 + cos 2A) , sin2A = 1

2
(1− cos 2A) , cosA sinA = 1

2
sin 2A .

It follows that
∫

ℓ

−ℓ

cos2
(nπx

ℓ

)

dx =
1

2

∫

ℓ

−ℓ

{

1 + cos

(

2nπx

ℓ

)}

dx = ℓ(1 + δm0) , for n = 0, 1, 2, 3, . . . ,

∫

ℓ

−ℓ

sin2

(nπx

ℓ

)

dx =
1

2

∫

ℓ

−ℓ

{

1− cos

(

2nπx

ℓ

)}

dx = ℓ , for n = 1, 2, 3, . . . ,

∫

ℓ

−ℓ

sin
(nπx

ℓ

)

cos
(nπx

ℓ

)

dx =
1

2

∫

ℓ

−ℓ

sin

(

2nπx

ℓ

)

dx = 0 , for n = 1, 2, 3, . . . ,

and eqs. (4)–(6) are thus established.
Using the orthogonality relations of eqs. (4)–(6), one can easily derive eqs. (2) and (3)

for the coefficients an and bn of the Fourier series. First, we multiply both sides of eq. (1)
by cos(mπx/ℓ) and then integrate both sides of the resulting equation from −ℓ to ℓ. Using
eqs. (4) and (6), we obtain

∫

ℓ

−ℓ

f(x) cos
(mπx

ℓ

)

dx =
∞
∑

n=0

anℓ(1 + δn0) δmn = amℓ(1 + δm0) .
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Hence,

am =
1

ℓ(1 + δm0)

∫

ℓ

−ℓ

f(x) cos
(mπx

ℓ

)

dx ,

which confirms eq. (2). Likewise, we multiply both sides of eq. (1) by sin(mπx/ℓ) and then
integrate both sides of the resulting equation from −ℓ to ℓ. Using eqs. (5) and (6), we
obtain

∫

ℓ

−ℓ

f(x) sin
(mπx

ℓ

)

dx =

∞
∑

n=0

bnℓ δmn = bmℓ .

Hence,

bm =
1

ℓ

∫

ℓ

−ℓ

f(x) sin
(mπx

ℓ

)

dx ,

which confirms eq. (3).

2. Fourier sine series on the interval 0 ≤ x ≤ ℓ

In solving second-order linear partial differential equations subject to boundary con-
ditions, one often encounters a Fourier series, defined on the interval 0 ≤ x ≤ ℓ, that is
composed only of sine functions,

f(x) =

∞
∑

n=1

bn sin
(nπx

ℓ

)

, for 0 ≤ x ≤ ℓ (7)

This arises in Dirichlet problems, where the solutions to the partial differential equation
are required to vanish at x = 0. Then, it follows that

bn =
2

ℓ

∫

ℓ

0

f(x) sin
(nπx

ℓ

)

dx , for n = 1, 2, 3, . . . (8)

To prove eq. (8), we employ the following trick. We pretend that f(x) is an odd function
of x, i.e. f(−x) = −f(x), that is defined on the larger interval −ℓ ≤ x ≤ ℓ. One can now
make use of the results of section 1. In particular, the extended function f(x) can now be
represented by the Fourier series given in eq. (1). Then it immediately follows that

an =
1

ℓ(1 + δn0)

∫

ℓ

−ℓ

f(x) cos
(nπx

ℓ

)

dx = 0 ,

since the integrand above, f(x) cos(nπx/ℓ), is an odd function of x that vanishes when
integrated symmetrically about the origin. Hence, f(x) can be represented by a Fourier
sine series. Moreover, using eq. (3),

bn =
1

ℓ

∫

ℓ

−ℓ

f(x) sin
(nπx

ℓ

)

dx =
2

ℓ

∫

ℓ

0

f(x) sin
(nπx

ℓ

)

dx , for n = 1, 2, 3, . . . ,

since f(x) sin(nπx/ℓ) is an even function of x. Thus, we have confirmed eq. (8). Since these
results have been established on the interval −ℓ ≤ x ≤ ℓ, they clearly apply for 0 ≤ x ≤ ℓ.
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Indeed, the set of functions {sin(nπx/ℓ)}, for n = 1, 2, 3, . . . is orthogonal and complete
on the interval 0 ≤ x ≤ ℓ. This is proven using the methods of section 1. In particular, for
m 6= n,

∫

ℓ

0

sin
(mπx

ℓ

)

sin
(nπx

ℓ

)

dx =
1

2

∫

ℓ

0

{

cos

(

(m− n)πx

ℓ

)

− cos

(

(m+ n)πx

ℓ

)}

dx

=
ℓ

2(m− n)π
sin

(

(m− n)πx

ℓ

)
∣

∣

∣

∣

ℓ

0

−
ℓ

2(m+ n)π
sin

(

(m+ n)πx

ℓ

)
∣

∣

∣

∣

ℓ

0

= 0 ,

and for m = n,

∫

ℓ

0

sin2

(nπx

ℓ

)

dx =
1

2

∫

ℓ

0

{

1− cos

(

2nπx

ℓ

)}

dx = 1

2
ℓ , for n = 1, 2, 3, . . . .

Thus, the orthogonality relations are given by

∫

ℓ

0

sin
(mπx

ℓ

)

sin
(nπx

ℓ

)

dx = 1

2
ℓ δmn , for m,n = 1, 2, 3, . . . (9)

We can use eq. (9) to establish eq. (8) by multiplying both sides of eq. (7) by sin(mπx/ℓ)
and integrating the resulting equation from 0 to ℓ.

3. Fourier cosine series on the interval 0 ≤ x ≤ ℓ

In solving second-order linear partial differential equations subject to boundary con-
ditions, one often encounters a Fourier series, defined on the interval 0 ≤ x ≤ ℓ, that is
composed only of cosine functions,

f(x) =

∞
∑

n=0

an cos
(nπx

ℓ

)

, for 0 ≤ x ≤ ℓ (10)

This arises in Neumann problems, where the derivative of the solutions to the partial
differential equation are required to vanish at x = 0. Then, it follows that

an =
2

ℓ(1 + δn0)

∫

ℓ

0

f(x) cos
(nπx

ℓ

)

dx , for n = 0, 1, 2, 3, . . . (11)

To prove eq. (11), we can employ the following trick. We pretend that f(x) is an even
function of x, i.e. f(−x) = f(x), that is defined on the interval −ℓ ≤ x ≤ x. One can now
make use of the results of section 1. In particular, the extended function f(x) can now be
represented by the Fourier series given in eq. (1). Then it immediately follows that

bn =
1

ℓ

∫

ℓ

−ℓ

f(x) sin
(nπx

ℓ

)

dx = 0 ,
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since the integrand above, f(x) sin(nπx/ℓ), is an odd function of x that vanishes when
integrated symmetrically about the origin. Hence, f(x) can be represented by a Fourier
cosine series. Moreover, using eq. (2),

an =
1

ℓ(1 + δn0)

∫

ℓ

−ℓ

f(x) cos
(nπx

ℓ

)

dx =
2

ℓ(1 + δn0)

∫

ℓ

0

f(x) cos
(nπx

ℓ

)

dx , for n = 0, 1, 2, 3, . . . ,

since f(x) cos(nπx/ℓ) is an even function of x. Thus, we have confirmed eq. (11). Since
these results have been established on the interval −ℓ ≤ x ≤ ℓ, they clearly apply for
0 ≤ x ≤ ℓ.

Indeed, the set of functions {cos(nπx/ℓ)}, for n = 0, 1, 2, 3, . . . is orthogonal and com-
plete on the interval 0 ≤ x ≤ ℓ. This is proven using the methods of section 1. In particular,
for m 6= n,

∫

ℓ

0

cos
(mπx

ℓ

)

cos
(nπx

ℓ

)

dx =
1

2

∫

ℓ

0

{

cos

(

(m− n)πx

ℓ

)

+ cos

(

(m+ n)πx

ℓ

)}

dx

=
ℓ

2(m− n)π
sin

(

(m− n)πx

ℓ

) ∣

∣

∣

∣

ℓ

0

+
ℓ

2(m+ n)π
sin

(

(m+ n)πx

ℓ

) ∣

∣

∣

∣

ℓ

0

= 0 ,

and for m = n,

∫

ℓ

0

cos2
(nπx

ℓ

)

dx =
1

2

∫

ℓ

0

{

1 + cos

(

2nπx

ℓ

)}

dx = 1

2
ℓ(1+δn0) , for n = 0, 1, 2, 3, . . . .

Thus, the orthogonality relations are given by

∫

ℓ

0

cos
(mπx

ℓ

)

cos
(nπx

ℓ

)

dx = 1

2
ℓ(1 + δn0) δmn , for m,n = 0, 1, 2, 3, . . . (12)

We can use eq. (12) to establish eq. (11) by multiplying both sides of eq. (10) by cos(mπx/ℓ)
and integrating both sides of the resulting equation from 0 to ℓ.

4. Fourier sine series summed over odd integers on the interval 0 ≤ x ≤ 1

2
ℓ

In solving second-order linear partial differential equations subject to boundary condi-
tions, one sometimes encounters a Fourier series, defined on the interval 0 ≤ x ≤ 1

2
ℓ, that

is composed only of sine functions summed over odd integers,2

f(x) =

∞
∑

n=1

odd n

bn sin
(nπx

ℓ

)

=

∞
∑

n=0

b2n+1 sin

(

(2n + 1)πx

ℓ

)

, for 0 ≤ x ≤ 1

2
ℓ (13)

2A Fourier series, defined on the interval 0 ≤ x ≤ 1

2
ℓ and composed only of sine functions summed over

even integers, reduces to eq. (7) with ℓ replaced by 1

2
ℓ.
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This occurs in problems with mixed boundary conditions, e.g. where the solutions to the
partial differential equation vanishes at x = 0 and its derivative vanishes at x = 1

2
ℓ. It

follows that

b2n+1 =
4

ℓ

∫ 1
2
ℓ

0

f(x) sin

(

(2n+ 1)πx

ℓ

)

dx , for n = 0, 1, 2, 3, . . . (14)

Indeed, the set of functions {sin[(2n + 1)πx/ℓ]}, for n = 0, 1, 2, 3, . . . is orthogonal and
complete on the interval 0 ≤ x ≤ 1

2
ℓ. This is proven using the methods of section 1. In

particular, for m 6= n,
∫ 1

2
ℓ

0

sin

(

(2m+ 1)πx

ℓ

)

sin

(

(2n+ 1)nπx

ℓ

)

dx

=
1

2

∫ 1
2
ℓ

0

{

cos

(

2(m− n)πx

ℓ

)

− cos

(

2(m+ n+ 1)πx

ℓ

)}

dx

=
ℓ

4(m− n)π
sin

(

2(m− n)πx

ℓ

)
∣

∣

∣

∣

1
2
ℓ

0

−
ℓ

4(m+ n+ 1)π
sin

(

2(m+ n + 1)πx

ℓ

)
∣

∣

∣

∣

1
2
ℓ

0

= 0 ,

and for m = n,
∫ 1

2
ℓ

0

sin2

(

(2n+ 1)πx

ℓ

)

dx =
1

2

∫ 1
2
ℓ

0

{

1− cos

(

2(2n+ 1)πx

ℓ

)}

dx = 1

4
ℓ , for n = 0, 1, 2, 3, . . . .

Thus, the orthogonality relations are given by:
∫ 1

2
ℓ

0

sin

(

(2m+ 1)πx

ℓ

)

sin

(

(2n+ 1)πx

ℓ

)

dx = 1

4
ℓ δmn , for m,n = 0, 1, 2, 3, . . .

To understand the origin of eq. (13), we note that sin[(2n+1)πx/ℓ] is even with respect
to x → ℓ− x, since

sin

(

(2n+ 1)π(ℓ− x)

ℓ

)

= sin

(

(2n+ 1)π −
(2n+ 1)πx

ℓ

)

= sin
(

(2n+ 1)π
)

cos

(

(2n+ 1)πx

ℓ

)

− cos
(

(2n+ 1)π
)

sin

(

(2n+ 1)πx

ℓ

)

= sin

(

(2n+ 1)πx

ℓ

)

. (15)

One can pretend that f(x) is an even function with respect to x → ℓ − x that is defined
on the interval 0 ≤ x ≤ ℓ. Then, f(x) possesses the Fourier sine series,

f(x) =

∞
∑

n=1

bn sin
(nπx

ℓ

)

, for 0 ≤ x ≤ ℓ , (16)

where f(ℓ− x) = f(x). Hence, we may use eq. (8) to obtain the coefficients in eq. (16).
First, we compute

b2n =
2

ℓ

∫

ℓ

0

f(x) sin

(

2nπx

ℓ

)

dx = 0 . (17)
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To verify eq. (17), we note that sin(2nπx/ℓ) is odd with respect to x → ℓ − x as shown
below,

sin

(

2nπ(ℓ− x)

ℓ

)

= sin
(

2nπ −
nπx

ℓ

)

= sin
(

2nπ
)

cos

(

2nπx

ℓ

)

− cos
(

2nπ
)

sin

(

2nπx

ℓ

)

= − sin

(

2nπx

ℓ

)

. (18)

Thus, if we define y ≡ ℓ− x, then

b2n =
2

ℓ

∫

ℓ

0

f(x) sin

(

2nπx

ℓ

)

dx =
2

ℓ

∫ 1
2
ℓ

0

f(x) sin

(

2nπx

ℓ

)

dx+
2

ℓ

∫

ℓ

1
2
ℓ

f(x) sin

(

2nπx

ℓ

)

dx

=
2

ℓ

∫ 1
2
ℓ

0

f(x) sin

(

2nπx

ℓ

)

dx−
2

ℓ

∫ 1
2
ℓ

0

f(y) sin

(

2nπy

ℓ

)

dy = 0 ,

where we have used f(ℓ− y) = f(y) and eq. (18).
Second, by employing eq. (15), we find

b2n+1 =
2

ℓ

∫

ℓ

0

f(x) sin

(

(2n + 1)πx

ℓ

)

dx (19)

=
2

ℓ

∫ 1
2
ℓ

0

f(x) sin

(

(2n+ 1)πx

ℓ

)

dx+
2

ℓ

∫

ℓ

1
2
ℓ

f(x) sin

(

(2n+ 1)πx

ℓ

)

dx

=
2

ℓ

∫ 1
2
ℓ

0

f(x) sin

(

(2n+ 1)πx

ℓ

)

dx+
2

ℓ

∫ 1
2
ℓ

0

f(y) sin

(

(2n+ 1)πy

ℓ

)

dy

=
4

ℓ

∫ 1
2
ℓ

0

f(x) sin

(

(2n+ 1)πx

ℓ

)

dx ,

which confirms that the Fourier sine series corresponds to a sum over odd integers, with
coefficients given by eq. (14).

5. Fourier cosine series summed over odd integers on the interval 0 ≤ x ≤ 1

2
ℓ

In solving second-order linear partial differential equations subject to boundary condi-
tions, one sometimes encounters a Fourier series, defined on the interval 0 ≤ x ≤ 1

2
ℓ, that

is composed only of cosine functions summed over odd integers,3

f(x) =
∞
∑

n=1

odd n

an cos
(nπx

ℓ

)

=
∞
∑

n=0

a2n+1 cos

(

(2n+ 1)πx

ℓ

)

, for 0 ≤ x ≤ 1

2
ℓ (20)

3A Fourier series, defined on the interval 0 ≤ x ≤ 1

2
ℓ and composed only of cosine functions summed

over even integers, reduces to eq. (10) with ℓ replaced by 1

2
ℓ.
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This occurs in problems with mixed boundary conditions, e.g. where the solutions to the
partial differential equation vanishes at x = 1

2
ℓ and its derivative vanishes at x = 0. It

follows that

a2n+1 =
4

ℓ

∫ 1
2
ℓ

0

f(x) cos

(

(2n+ 1)πx

ℓ

)

dx , for n = 0, 1, 2, 3, . . . (21)

Indeed, the set of functions {cos[(2n+ 1)πx/ℓ]}, for n = 0, 1, 2, 3, . . . is orthogonal and
complete on the interval 0 ≤ x ≤ 1

2
ℓ. This is proven using the methods of section 1. In

particular, for m 6= n,

∫ 1
2
ℓ

0

cos

(

(2m+ 1)πx

ℓ

)

cos

(

(2n+ 1)nπx

ℓ

)

dx

=
1

2

∫ 1
2
ℓ

0

{

cos

(

2(m− n)πx

ℓ

)

+ cos

(

2(m+ n+ 1)πx

ℓ

)}

dx

=
ℓ

4(m− n)π
sin

(

2(m− n)πx

ℓ

)
∣

∣

∣

∣

1
2
ℓ

0

+
ℓ

4(m+ n + 1)π
sin

(

2(m+ n+ 1)πx

ℓ

)
∣

∣

∣

∣

1
2
ℓ

0

= 0 ,

and for m = n,

∫ 1
2
ℓ

0

cos2
(

(2n+ 1)πx

ℓ

)

dx =
1

2

∫ 1
2
ℓ

0

{

1 + cos

(

2(2n+ 1)πx

ℓ

)}

dx = 1

4
ℓ , for n = 0, 1, 2, 3, . . . .

Thus, the orthogonality relations are given by:

∫ 1
2
ℓ

0

cos

(

(2m+ 1)πx

ℓ

)

cos

(

(2n+ 1)πx

ℓ

)

dx = 1

4
ℓ δmn , for m,n = 0, 1, 2, 3, . . .

To understand the origin of eq. (20), we note that cos[(2n+1)πx/ℓ] is odd with respect
to x → ℓ− x, since

cos

(

(2n+ 1)π(ℓ− x)

ℓ

)

= cos

(

(2n + 1)π −
(2n+ 1)πx

ℓ

)

= cos
(

(2n+ 1)π
)

cos

(

(2n+ 1)πx

ℓ

)

+ sin
(

(2n+ 1)π
)

sin

(

(2n + 1)πx

ℓ

)

= − cos

(

(2n+ 1)πx

ℓ

)

. (22)

One can pretend that f(x) is an odd function with respect to x → ℓ− x that is defined on
the interval 0 ≤ x ≤ ℓ. Then, f(x) possesses the Fourier cosine series,

f(x) =
∞
∑

n=0

an cos
(nπx

ℓ

)

, for 0 ≤ x ≤ ℓ , (23)

where f(ℓ− x) = −f(x). Hence, we may use eq. (11) to obtain the coefficients in eq. (23).
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First, we compute

a2n =
2

ℓ(1 + δn0)

∫

ℓ

0

f(x) cos

(

2nπx

ℓ

)

dx = 0 . (24)

To verify eq. (24), we note that cos(2nπx/ℓ) is even with respect to x → ℓ − x as shown
below,

cos

(

2nπ(ℓ− x)

ℓ

)

= cos

(

2nπ −
2nπx

ℓ

)

= cos
(

2nπ
)

cos

(

2nπx

ℓ

)

+ cos
(

2nπ
)

sin

(

2nπx

ℓ

)

= cos

(

2nπx

ℓ

)

. (25)

Thus, if we define y ≡ ℓ− x, then

a2n =
2

ℓ(1 + δn0)

∫

ℓ

0

f(x) cos

(

2nπx

ℓ

)

dx

=
2

ℓ(1 + δn0)

∫ 1
2
ℓ

0

f(x) cos

(

2nπx

ℓ

)

dx+
2

ℓ(1 + δn0)

∫

ℓ

1
2
ℓ

f(x) cos

(

2nπx

ℓ

)

dx

=
2

ℓ(1 + δn0)

∫ 1
2
ℓ

0

f(x) cos

(

2nπx

ℓ

)

dx−
2

ℓ(1 + δn0)

∫ 1
2
ℓ

0

f(y) cos

(

2nπy

ℓ

)

dy = 0 ,

where we have used f(ℓ− y) = −f(y) and eq. (25).
Second, by employing eq. (22), we find

a2n+1 =
2

ℓ

∫

ℓ

0

f(x) cos

(

(2n+ 1)πx

ℓ

)

dx (26)

=
2

ℓ

∫ 1
2
ℓ

0

f(x) cos

(

(2n+ 1)πx

ℓ

)

dx+
2

ℓ

∫

ℓ

1
2
ℓ

f(x) cos

(

(2n+ 1)πx

ℓ

)

dx

=
2

ℓ

∫ 1
2
ℓ

0

f(x) cos

(

(2n+ 1)πx

ℓ

)

dx+
2

ℓ

∫ 1
2
ℓ

0

f(y) cos

(

(2n+ 1)πy

ℓ

)

dy

=
4

ℓ

∫ 1
2
ℓ

0

f(x) cos

(

(2n+ 1)πx

ℓ

)

dx ,

which confirms that the Fourier cosine series corresponds to a sum over odd integers, with
coefficients given by eq. (21).
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