

Various kinds of Fourier series

1. Fourier series on the interval $-\ell \leq x \leq \ell$

Consider the expansion of the function $f(x)$ in a Fourier series, which is defined on the interval $-\ell \leq x \leq \ell$. Using the results of Chapter 7, section 8 of Boas on pp. 360–362, the Fourier series of $f(x)$ is given by¹

$$f(x) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{\ell}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right), \quad \text{for } -\ell \leq x \leq \ell \quad (1)$$

The coefficients a_n and b_n are determined by the following formulae [cf. eq. (8.3) on p. 362 of Boas, but note the slightly different convention that is mentioned in footnote 1]:

$$a_n = \frac{1}{\ell(1 + \delta_{n0})} \int_{-\ell}^{\ell} f(x) \cos\left(\frac{n\pi x}{\ell}\right) dx, \quad \text{for } n = 0, 1, 2, 3, \dots \quad (2)$$

$$b_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx, \quad \text{for } n = 1, 2, 3, 4, \dots \quad (3)$$

where the factor of δ_{n0} is a Kronecker delta that is defined as

$$\delta_{n0} = \begin{cases} 1, & \text{if } n = 0, \\ 0, & \text{if } n = 1, 2, 3, \dots. \end{cases}$$

Eqs. (2) and (3) are a consequence of the orthogonality and completeness of the set of functions $\{\cos(n\pi x/\ell), \sin(n\pi x/\ell)\}$ for $n = 0, 1, 2, 3, \dots$, on the interval $-\ell \leq x \leq \ell$. Note that $n = 0$ is omitted for the sine function, since the zero function is not relevant for specifying a complete set of functions. The corresponding orthogonality relations are:

$$\int_{-\ell}^{\ell} \cos\left(\frac{m\pi x}{\ell}\right) \cos\left(\frac{n\pi x}{\ell}\right) dx = \ell(1 + \delta_{n0}) \delta_{mn}, \quad \text{for } m, n = 0, 1, 2, 3, \dots, \quad (4)$$

$$\int_{-\ell}^{\ell} \sin\left(\frac{m\pi x}{\ell}\right) \sin\left(\frac{n\pi x}{\ell}\right) dx = \ell \delta_{mn}, \quad \text{for } m, n = 1, 2, 3, \dots, \quad (5)$$

$$\int_{-\ell}^{\ell} \sin\left(\frac{m\pi x}{\ell}\right) \cos\left(\frac{n\pi x}{\ell}\right) dx = 0, \quad \text{for } m = 1, 2, 3, \dots \text{ and } n = 0, 1, 2, 3, \dots \quad (6)$$

¹Warning: the coefficient a_0 in eq. (1) is denoted by $\frac{1}{2}a_0$ in eq. (8.2) on p. 361 of Boas.

Eqs. (4)–(6) are easily derived by making use of the trigonometric identities,

$$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)] ,$$

$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] ,$$

$$\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)] .$$

It follows that if $n \neq m$, then

$$\begin{aligned} \int_{-\ell}^{\ell} \cos\left(\frac{m\pi x}{\ell}\right) \cos\left(\frac{n\pi x}{\ell}\right) dx &= \frac{1}{2} \int_{-\ell}^{\ell} \left\{ \cos\left(\frac{(m-n)\pi x}{\ell}\right) + \cos\left(\frac{(m+n)\pi x}{\ell}\right) \right\} dx \\ &= \frac{\ell}{2(m-n)\pi} \sin\left(\frac{(m-n)\pi x}{\ell}\right) \Big|_{-\ell}^{\ell} + \frac{\ell}{2(m+n)\pi} \sin\left(\frac{(m+n)\pi x}{\ell}\right) \Big|_{-\ell}^{\ell} = 0 , \end{aligned}$$

$$\begin{aligned} \int_{-\ell}^{\ell} \sin\left(\frac{m\pi x}{\ell}\right) \sin\left(\frac{n\pi x}{\ell}\right) dx &= \frac{1}{2} \int_{-\ell}^{\ell} \left\{ \cos\left(\frac{(m-n)\pi x}{\ell}\right) - \cos\left(\frac{(m+n)\pi x}{\ell}\right) \right\} dx \\ &= \frac{\ell}{2(m-n)\pi} \sin\left(\frac{(m-n)\pi x}{\ell}\right) \Big|_{-\ell}^{\ell} - \frac{\ell}{2(m+n)\pi} \sin\left(\frac{(m+n)\pi x}{\ell}\right) \Big|_{-\ell}^{\ell} = 0 , \end{aligned}$$

$$\int_{-\ell}^{\ell} \sin\left(\frac{m\pi x}{\ell}\right) \cos\left(\frac{n\pi x}{\ell}\right) dx = \frac{1}{2} \int_{-\ell}^{\ell} \left\{ \sin\left(\frac{(m-n)\pi x}{\ell}\right) + \sin\left(\frac{(m+n)\pi x}{\ell}\right) \right\} dx = 0 .$$

The last result follows from the fact that $\sin(cx)$ is an odd function of x for any non-zero value of c . In the case of $n = m$, we make use of the trigonometric identities,

$$\cos^2 A = \frac{1}{2}(1 + \cos 2A) , \quad \sin^2 A = \frac{1}{2}(1 - \cos 2A) , \quad \cos A \sin A = \frac{1}{2} \sin 2A .$$

It follows that

$$\int_{-\ell}^{\ell} \cos^2\left(\frac{n\pi x}{\ell}\right) dx = \frac{1}{2} \int_{-\ell}^{\ell} \left\{ 1 + \cos\left(\frac{2n\pi x}{\ell}\right) \right\} dx = \ell(1 + \delta_{m0}) , \quad \text{for } n = 0, 1, 2, 3, \dots ,$$

$$\int_{-\ell}^{\ell} \sin^2\left(\frac{n\pi x}{\ell}\right) dx = \frac{1}{2} \int_{-\ell}^{\ell} \left\{ 1 - \cos\left(\frac{2n\pi x}{\ell}\right) \right\} dx = \ell , \quad \text{for } n = 1, 2, 3, \dots ,$$

$$\int_{-\ell}^{\ell} \sin\left(\frac{n\pi x}{\ell}\right) \cos\left(\frac{n\pi x}{\ell}\right) dx = \frac{1}{2} \int_{-\ell}^{\ell} \sin\left(\frac{2n\pi x}{\ell}\right) dx = 0 , \quad \text{for } n = 1, 2, 3, \dots ,$$

and eqs. (4)–(6) are thus established.

Using the orthogonality relations of eqs. (4)–(6), one can easily derive eqs. (2) and (3) for the coefficients a_n and b_n of the Fourier series. First, we multiply both sides of eq. (1) by $\cos(m\pi x/\ell)$ and then integrate both sides of the resulting equation from $-\ell$ to ℓ . Using eqs. (4) and (6), we obtain

$$\int_{-\ell}^{\ell} f(x) \cos\left(\frac{m\pi x}{\ell}\right) dx = \sum_{n=0}^{\infty} a_n \ell (1 + \delta_{n0}) \delta_{mn} = a_m \ell (1 + \delta_{m0}) .$$

Hence,

$$a_m = \frac{1}{\ell(1 + \delta_{m0})} \int_{-\ell}^{\ell} f(x) \cos\left(\frac{m\pi x}{\ell}\right) dx,$$

which confirms eq. (2). Likewise, we multiply both sides of eq. (1) by $\sin(m\pi x/\ell)$ and then integrate both sides of the resulting equation from $-\ell$ to ℓ . Using eqs. (5) and (6), we obtain

$$\int_{-\ell}^{\ell} f(x) \sin\left(\frac{m\pi x}{\ell}\right) dx = \sum_{n=0}^{\infty} b_n \ell \delta_{mn} = b_m \ell.$$

Hence,

$$b_m = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin\left(\frac{m\pi x}{\ell}\right) dx,$$

which confirms eq. (3).

2. Fourier sine series on the interval $0 \leq x \leq \ell$

In solving second-order linear partial differential equations subject to boundary conditions, one often encounters a Fourier series, defined on the interval $0 \leq x \leq \ell$, that is composed only of sine functions,

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right), \quad \text{for } 0 \leq x \leq \ell$$

(7)

This arises in Dirichlet problems, where the solutions to the partial differential equation are required to vanish at $x = 0$. Then, it follows that

$$b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx, \quad \text{for } n = 1, 2, 3, \dots$$

(8)

To prove eq. (8), we employ the following trick. We pretend that $f(x)$ is an odd function of x , i.e. $f(-x) = -f(x)$, that is defined on the larger interval $-\ell \leq x \leq \ell$. One can now make use of the results of section 1. In particular, the extended function $f(x)$ can now be represented by the Fourier series given in eq. (1). Then it immediately follows that

$$a_n = \frac{1}{\ell(1 + \delta_{n0})} \int_{-\ell}^{\ell} f(x) \cos\left(\frac{n\pi x}{\ell}\right) dx = 0,$$

since the integrand above, $f(x) \cos(n\pi x/\ell)$, is an odd function of x that vanishes when integrated symmetrically about the origin. Hence, $f(x)$ can be represented by a Fourier sine series. Moreover, using eq. (3),

$$b_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx = \frac{2}{\ell} \int_0^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx, \quad \text{for } n = 1, 2, 3, \dots,$$

since $f(x) \sin(n\pi x/\ell)$ is an even function of x . Thus, we have confirmed eq. (8). Since these results have been established on the interval $-\ell \leq x \leq \ell$, they clearly apply for $0 \leq x \leq \ell$.

Indeed, the set of functions $\{\sin(n\pi x/\ell)\}$, for $n = 1, 2, 3, \dots$ is orthogonal and complete on the interval $0 \leq x \leq \ell$. This is proven using the methods of section 1. In particular, for $m \neq n$,

$$\begin{aligned} \int_0^\ell \sin\left(\frac{m\pi x}{\ell}\right) \sin\left(\frac{n\pi x}{\ell}\right) dx &= \frac{1}{2} \int_0^\ell \left\{ \cos\left(\frac{(m-n)\pi x}{\ell}\right) - \cos\left(\frac{(m+n)\pi x}{\ell}\right) \right\} dx \\ &= \frac{\ell}{2(m-n)\pi} \sin\left(\frac{(m-n)\pi x}{\ell}\right) \Big|_0^\ell - \frac{\ell}{2(m+n)\pi} \sin\left(\frac{(m+n)\pi x}{\ell}\right) \Big|_0^\ell = 0, \end{aligned}$$

and for $m = n$,

$$\int_0^\ell \sin^2\left(\frac{n\pi x}{\ell}\right) dx = \frac{1}{2} \int_0^\ell \left\{ 1 - \cos\left(\frac{2n\pi x}{\ell}\right) \right\} dx = \frac{1}{2}\ell, \quad \text{for } n = 1, 2, 3, \dots$$

Thus, the orthogonality relations are given by

$$\int_0^\ell \sin\left(\frac{m\pi x}{\ell}\right) \sin\left(\frac{n\pi x}{\ell}\right) dx = \frac{1}{2}\ell \delta_{mn}, \quad \text{for } m, n = 1, 2, 3, \dots$$

(9)

We can use eq. (9) to establish eq. (8) by multiplying both sides of eq. (7) by $\sin(m\pi x/\ell)$ and integrating the resulting equation from 0 to ℓ .

3. Fourier cosine series on the interval $0 \leq x \leq \ell$

In solving second-order linear partial differential equations subject to boundary conditions, one often encounters a Fourier series, defined on the interval $0 \leq x \leq \ell$, that is composed only of cosine functions,

$$f(x) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{\ell}\right), \quad \text{for } 0 \leq x \leq \ell$$

(10)

This arises in Neumann problems, where the derivative of the solutions to the partial differential equation are required to vanish at $x = 0$. Then, it follows that

$$a_n = \frac{2}{\ell(1 + \delta_{n0})} \int_0^\ell f(x) \cos\left(\frac{n\pi x}{\ell}\right) dx, \quad \text{for } n = 0, 1, 2, 3, \dots$$

(11)

To prove eq. (11), we can employ the following trick. We pretend that $f(x)$ is an even function of x , i.e. $f(-x) = f(x)$, that is defined on the interval $-\ell \leq x \leq x$. One can now make use of the results of section 1. In particular, the extended function $f(x)$ can now be represented by the Fourier series given in eq. (1). Then it immediately follows that

$$b_n = \frac{1}{\ell} \int_{-\ell}^\ell f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx = 0,$$

since the integrand above, $f(x) \sin(n\pi x/\ell)$, is an odd function of x that vanishes when integrated symmetrically about the origin. Hence, $f(x)$ can be represented by a Fourier cosine series. Moreover, using eq. (2),

$$a_n = \frac{1}{\ell(1 + \delta_{n0})} \int_{-\ell}^{\ell} f(x) \cos\left(\frac{n\pi x}{\ell}\right) dx = \frac{2}{\ell(1 + \delta_{n0})} \int_0^{\ell} f(x) \cos\left(\frac{n\pi x}{\ell}\right) dx, \quad \text{for } n = 0, 1, 2, 3, \dots,$$

since $f(x) \cos(n\pi x/\ell)$ is an even function of x . Thus, we have confirmed eq. (11). Since these results have been established on the interval $-\ell \leq x \leq \ell$, they clearly apply for $0 \leq x \leq \ell$.

Indeed, the set of functions $\{\cos(n\pi x/\ell)\}$, for $n = 0, 1, 2, 3, \dots$ is orthogonal and complete on the interval $0 \leq x \leq \ell$. This is proven using the methods of section 1. In particular, for $m \neq n$,

$$\begin{aligned} \int_0^{\ell} \cos\left(\frac{m\pi x}{\ell}\right) \cos\left(\frac{n\pi x}{\ell}\right) dx &= \frac{1}{2} \int_0^{\ell} \left\{ \cos\left(\frac{(m-n)\pi x}{\ell}\right) + \cos\left(\frac{(m+n)\pi x}{\ell}\right) \right\} dx \\ &= \frac{\ell}{2(m-n)\pi} \sin\left(\frac{(m-n)\pi x}{\ell}\right) \Big|_0^{\ell} + \frac{\ell}{2(m+n)\pi} \sin\left(\frac{(m+n)\pi x}{\ell}\right) \Big|_0^{\ell} = 0, \end{aligned}$$

and for $m = n$,

$$\int_0^{\ell} \cos^2\left(\frac{n\pi x}{\ell}\right) dx = \frac{1}{2} \int_0^{\ell} \left\{ 1 + \cos\left(\frac{2n\pi x}{\ell}\right) \right\} dx = \frac{1}{2}\ell(1 + \delta_{n0}), \quad \text{for } n = 0, 1, 2, 3, \dots$$

Thus, the orthogonality relations are given by

$$\int_0^{\ell} \cos\left(\frac{m\pi x}{\ell}\right) \cos\left(\frac{n\pi x}{\ell}\right) dx = \frac{1}{2}\ell(1 + \delta_{n0}) \delta_{mn}, \quad \text{for } m, n = 0, 1, 2, 3, \dots$$

(12)

We can use eq. (12) to establish eq. (11) by multiplying both sides of eq. (10) by $\cos(m\pi x/\ell)$ and integrating both sides of the resulting equation from 0 to ℓ .

4. Fourier sine series summed over odd integers on the interval $0 \leq x \leq \frac{1}{2}\ell$

In solving second-order linear partial differential equations subject to boundary conditions, one sometimes encounters a Fourier series, defined on the interval $0 \leq x \leq \frac{1}{2}\ell$, that is composed only of sine functions summed over odd integers,²

$$f(x) = \sum_{\substack{n=1 \\ \text{odd } n}}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right) = \sum_{n=0}^{\infty} b_{2n+1} \sin\left(\frac{(2n+1)\pi x}{\ell}\right), \quad \text{for } 0 \leq x \leq \frac{1}{2}\ell$$

(13)

²A Fourier series, defined on the interval $0 \leq x \leq \frac{1}{2}\ell$ and composed only of sine functions summed over even integers, reduces to eq. (7) with ℓ replaced by $\frac{1}{2}\ell$.

This occurs in problems with mixed boundary conditions, e.g. where the solutions to the partial differential equation vanishes at $x = 0$ and its derivative vanishes at $x = \frac{1}{2}\ell$. It follows that

$$b_{2n+1} = \frac{4}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \sin\left(\frac{(2n+1)\pi x}{\ell}\right) dx, \quad \text{for } n = 0, 1, 2, 3, \dots \quad (14)$$

Indeed, the set of functions $\{\sin[(2n+1)\pi x/\ell]\}$, for $n = 0, 1, 2, 3, \dots$ is orthogonal and complete on the interval $0 \leq x \leq \frac{1}{2}\ell$. This is proven using the methods of section 1. In particular, for $m \neq n$,

$$\begin{aligned} & \int_0^{\frac{1}{2}\ell} \sin\left(\frac{(2m+1)\pi x}{\ell}\right) \sin\left(\frac{(2n+1)n\pi x}{\ell}\right) dx \\ &= \frac{1}{2} \int_0^{\frac{1}{2}\ell} \left\{ \cos\left(\frac{2(m-n)\pi x}{\ell}\right) - \cos\left(\frac{2(m+n+1)\pi x}{\ell}\right) \right\} dx \\ &= \frac{\ell}{4(m-n)\pi} \sin\left(\frac{2(m-n)\pi x}{\ell}\right) \Big|_0^{\frac{1}{2}\ell} - \frac{\ell}{4(m+n+1)\pi} \sin\left(\frac{2(m+n+1)\pi x}{\ell}\right) \Big|_0^{\frac{1}{2}\ell} = 0, \end{aligned}$$

and for $m = n$,

$$\int_0^{\frac{1}{2}\ell} \sin^2\left(\frac{(2n+1)\pi x}{\ell}\right) dx = \frac{1}{2} \int_0^{\frac{1}{2}\ell} \left\{ 1 - \cos\left(\frac{2(2n+1)\pi x}{\ell}\right) \right\} dx = \frac{1}{4}\ell, \quad \text{for } n = 0, 1, 2, 3, \dots$$

Thus, the orthogonality relations are given by:

$$\int_0^{\frac{1}{2}\ell} \sin\left(\frac{(2m+1)\pi x}{\ell}\right) \sin\left(\frac{(2n+1)\pi x}{\ell}\right) dx = \frac{1}{4}\ell \delta_{mn}, \quad \text{for } m, n = 0, 1, 2, 3, \dots$$

To understand the origin of eq. (13), we note that $\sin[(2n+1)\pi x/\ell]$ is even with respect to $x \rightarrow \ell - x$, since

$$\begin{aligned} \sin\left(\frac{(2n+1)\pi(\ell-x)}{\ell}\right) &= \sin\left((2n+1)\pi - \frac{(2n+1)\pi x}{\ell}\right) \\ &= \sin((2n+1)\pi) \cos\left(\frac{(2n+1)\pi x}{\ell}\right) - \cos((2n+1)\pi) \sin\left(\frac{(2n+1)\pi x}{\ell}\right) \\ &= \sin\left(\frac{(2n+1)\pi x}{\ell}\right). \end{aligned} \quad (15)$$

One can pretend that $f(x)$ is an even function with respect to $x \rightarrow \ell - x$ that is defined on the interval $0 \leq x \leq \ell$. Then, $f(x)$ possesses the Fourier sine series,

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right), \quad \text{for } 0 \leq x \leq \ell, \quad (16)$$

where $f(\ell - x) = f(x)$. Hence, we may use eq. (8) to obtain the coefficients in eq. (16).

First, we compute

$$b_{2n} = \frac{2}{\ell} \int_0^{\ell} f(x) \sin\left(\frac{2n\pi x}{\ell}\right) dx = 0. \quad (17)$$

To verify eq. (17), we note that $\sin(2n\pi x/\ell)$ is odd with respect to $x \rightarrow \ell - x$ as shown below,

$$\begin{aligned}
\sin\left(\frac{2n\pi(\ell-x)}{\ell}\right) &= \sin\left(2n\pi - \frac{n\pi x}{\ell}\right) \\
&= \sin(2n\pi) \cos\left(\frac{2n\pi x}{\ell}\right) - \cos(2n\pi) \sin\left(\frac{2n\pi x}{\ell}\right) \\
&= -\sin\left(\frac{2n\pi x}{\ell}\right).
\end{aligned} \tag{18}$$

Thus, if we define $y \equiv \ell - x$, then

$$\begin{aligned}
b_{2n} &= \frac{2}{\ell} \int_0^\ell f(x) \sin\left(\frac{2n\pi x}{\ell}\right) dx = \frac{2}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \sin\left(\frac{2n\pi x}{\ell}\right) dx + \frac{2}{\ell} \int_{\frac{1}{2}\ell}^\ell f(x) \sin\left(\frac{2n\pi x}{\ell}\right) dx \\
&= \frac{2}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \sin\left(\frac{2n\pi x}{\ell}\right) dx - \frac{2}{\ell} \int_0^{\frac{1}{2}\ell} f(y) \sin\left(\frac{2n\pi y}{\ell}\right) dy = 0,
\end{aligned}$$

where we have used $f(\ell - y) = f(y)$ and eq. (18).

Second, by employing eq. (15), we find

$$\begin{aligned}
b_{2n+1} &= \frac{2}{\ell} \int_0^\ell f(x) \sin\left(\frac{(2n+1)\pi x}{\ell}\right) dx \\
&= \frac{2}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \sin\left(\frac{(2n+1)\pi x}{\ell}\right) dx + \frac{2}{\ell} \int_{\frac{1}{2}\ell}^\ell f(x) \sin\left(\frac{(2n+1)\pi x}{\ell}\right) dx \\
&= \frac{2}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \sin\left(\frac{(2n+1)\pi x}{\ell}\right) dx + \frac{2}{\ell} \int_0^{\frac{1}{2}\ell} f(y) \sin\left(\frac{(2n+1)\pi y}{\ell}\right) dy \\
&= \frac{4}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \sin\left(\frac{(2n+1)\pi x}{\ell}\right) dx,
\end{aligned} \tag{19}$$

which confirms that the Fourier sine series corresponds to a sum over odd integers, with coefficients given by eq. (14).

5. Fourier cosine series summed over odd integers on the interval $0 \leq x \leq \frac{1}{2}\ell$

In solving second-order linear partial differential equations subject to boundary conditions, one sometimes encounters a Fourier series, defined on the interval $0 \leq x \leq \frac{1}{2}\ell$, that is composed only of cosine functions summed over odd integers,³

$$f(x) = \sum_{\substack{n=1 \\ \text{odd } n}}^{\infty} a_n \cos\left(\frac{n\pi x}{\ell}\right) = \sum_{n=0}^{\infty} a_{2n+1} \cos\left(\frac{(2n+1)\pi x}{\ell}\right), \quad \text{for } 0 \leq x \leq \frac{1}{2}\ell \tag{20}$$

³A Fourier series, defined on the interval $0 \leq x \leq \frac{1}{2}\ell$ and composed only of cosine functions summed over even integers, reduces to eq. (10) with ℓ replaced by $\frac{1}{2}\ell$.

This occurs in problems with mixed boundary conditions, e.g. where the solutions to the partial differential equation vanishes at $x = \frac{1}{2}\ell$ and its derivative vanishes at $x = 0$. It follows that

$$a_{2n+1} = \frac{4}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \cos \left(\frac{(2n+1)\pi x}{\ell} \right) dx, \quad \text{for } n = 0, 1, 2, 3, \dots \quad (21)$$

Indeed, the set of functions $\{\cos[(2n+1)\pi x/\ell]\}$, for $n = 0, 1, 2, 3, \dots$ is orthogonal and complete on the interval $0 \leq x \leq \frac{1}{2}\ell$. This is proven using the methods of section 1. In particular, for $m \neq n$,

$$\begin{aligned} & \int_0^{\frac{1}{2}\ell} \cos \left(\frac{(2m+1)\pi x}{\ell} \right) \cos \left(\frac{(2n+1)n\pi x}{\ell} \right) dx \\ &= \frac{1}{2} \int_0^{\frac{1}{2}\ell} \left\{ \cos \left(\frac{2(m-n)\pi x}{\ell} \right) + \cos \left(\frac{2(m+n+1)\pi x}{\ell} \right) \right\} dx \\ &= \frac{\ell}{4(m-n)\pi} \sin \left(\frac{2(m-n)\pi x}{\ell} \right) \Big|_0^{\frac{1}{2}\ell} + \frac{\ell}{4(m+n+1)\pi} \sin \left(\frac{2(m+n+1)\pi x}{\ell} \right) \Big|_0^{\frac{1}{2}\ell} = 0, \end{aligned}$$

and for $m = n$,

$$\int_0^{\frac{1}{2}\ell} \cos^2 \left(\frac{(2n+1)\pi x}{\ell} \right) dx = \frac{1}{2} \int_0^{\frac{1}{2}\ell} \left\{ 1 + \cos \left(\frac{2(2n+1)\pi x}{\ell} \right) \right\} dx = \frac{1}{4}\ell, \quad \text{for } n = 0, 1, 2, 3, \dots$$

Thus, the orthogonality relations are given by:

$$\int_0^{\frac{1}{2}\ell} \cos \left(\frac{(2m+1)\pi x}{\ell} \right) \cos \left(\frac{(2n+1)\pi x}{\ell} \right) dx = \frac{1}{4}\ell \delta_{mn}, \quad \text{for } m, n = 0, 1, 2, 3, \dots$$

To understand the origin of eq. (20), we note that $\cos[(2n+1)\pi x/\ell]$ is odd with respect to $x \rightarrow \ell - x$, since

$$\begin{aligned} \cos \left(\frac{(2n+1)\pi(\ell-x)}{\ell} \right) &= \cos \left((2n+1)\pi - \frac{(2n+1)\pi x}{\ell} \right) \\ &= \cos((2n+1)\pi) \cos \left(\frac{(2n+1)\pi x}{\ell} \right) + \sin((2n+1)\pi) \sin \left(\frac{(2n+1)\pi x}{\ell} \right) \\ &= -\cos \left(\frac{(2n+1)\pi x}{\ell} \right). \end{aligned} \quad (22)$$

One can pretend that $f(x)$ is an odd function with respect to $x \rightarrow \ell - x$ that is defined on the interval $0 \leq x \leq \ell$. Then, $f(x)$ possesses the Fourier cosine series,

$$f(x) = \sum_{n=0}^{\infty} a_n \cos \left(\frac{n\pi x}{\ell} \right), \quad \text{for } 0 \leq x \leq \ell, \quad (23)$$

where $f(\ell - x) = -f(x)$. Hence, we may use eq. (11) to obtain the coefficients in eq. (23).

First, we compute

$$a_{2n} = \frac{2}{\ell(1 + \delta_{n0})} \int_0^\ell f(x) \cos\left(\frac{2n\pi x}{\ell}\right) dx = 0. \quad (24)$$

To verify eq. (24), we note that $\cos(2n\pi x/\ell)$ is even with respect to $x \rightarrow \ell - x$ as shown below,

$$\begin{aligned} \cos\left(\frac{2n\pi(\ell - x)}{\ell}\right) &= \cos\left(2n\pi - \frac{2n\pi x}{\ell}\right) \\ &= \cos(2n\pi) \cos\left(\frac{2n\pi x}{\ell}\right) + \cos(2n\pi) \sin\left(\frac{2n\pi x}{\ell}\right) \\ &= \cos\left(\frac{2n\pi x}{\ell}\right). \end{aligned} \quad (25)$$

Thus, if we define $y \equiv \ell - x$, then

$$\begin{aligned} a_{2n} &= \frac{2}{\ell(1 + \delta_{n0})} \int_0^\ell f(x) \cos\left(\frac{2n\pi x}{\ell}\right) dx \\ &= \frac{2}{\ell(1 + \delta_{n0})} \int_0^{\frac{1}{2}\ell} f(x) \cos\left(\frac{2n\pi x}{\ell}\right) dx + \frac{2}{\ell(1 + \delta_{n0})} \int_{\frac{1}{2}\ell}^\ell f(x) \cos\left(\frac{2n\pi x}{\ell}\right) dx \\ &= \frac{2}{\ell(1 + \delta_{n0})} \int_0^{\frac{1}{2}\ell} f(x) \cos\left(\frac{2n\pi x}{\ell}\right) dx - \frac{2}{\ell(1 + \delta_{n0})} \int_0^{\frac{1}{2}\ell} f(y) \cos\left(\frac{2n\pi y}{\ell}\right) dy = 0, \end{aligned}$$

where we have used $f(\ell - y) = -f(y)$ and eq. (25).

Second, by employing eq. (22), we find

$$\begin{aligned} a_{2n+1} &= \frac{2}{\ell} \int_0^\ell f(x) \cos\left(\frac{(2n+1)\pi x}{\ell}\right) dx \\ &= \frac{2}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \cos\left(\frac{(2n+1)\pi x}{\ell}\right) dx + \frac{2}{\ell} \int_{\frac{1}{2}\ell}^\ell f(x) \cos\left(\frac{(2n+1)\pi x}{\ell}\right) dx \\ &= \frac{2}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \cos\left(\frac{(2n+1)\pi x}{\ell}\right) dx + \frac{2}{\ell} \int_0^{\frac{1}{2}\ell} f(y) \cos\left(\frac{(2n+1)\pi y}{\ell}\right) dy \\ &= \frac{4}{\ell} \int_0^{\frac{1}{2}\ell} f(x) \cos\left(\frac{(2n+1)\pi x}{\ell}\right) dx, \end{aligned} \quad (26)$$

which confirms that the Fourier cosine series corresponds to a sum over odd integers, with coefficients given by eq. (21).

Reference

Georgi P. Tolstov, *Fourier Series* (Dover Publications, Inc., Mineola, NY, 1976).