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Abstract

The magnitude of the angular momentum (J2) in quantum mechanics is larger than expected

from a classical model. We explain this deviation in terms of quantum fluctuations. A standard

quantum mechanical calculation gives the correct interpretation of the components of the angular

momentum in the vector model in terms of projections and fluctuations. We show that the addition

of angular momentum in quantum mechanics gives results consistent with the classical intuition in

this vector model.

La magnitud del momento angular (J2) en mecánica cuántica es mas grande que lo esperado

en un modelo clásico. Explicamos esta diferencia en términos de las fluctuaciones cuánticas. Un

cálculo estándar de mecánica cuántica da la interpretación correcta a las componentes del momento

angular en el modelo vectorial en términos de proyecciones y fluctuaciones. Mostramos que la suma

de momento angular en mecánica cuántica da resultados consistentes con la intuición clásica en

este modelo vectorial.

PACS numbers: 03.65.Sq, 03.65.-w, 01.40.gb
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I. INTRODUCTION

The operator of angular momentum in quantum mechanics is always a confusing topic

for new students. The quantum description of angular momentum involves differential op-

erators or new algebra rules that seem to be disconnected from the classical intuition. For

small values of angular momentum one needs a quantum description because the quantum

fluctuations are as big as the angular momentum itself. In this regime, the simple classical

models generally do not give the right result. In this paper I describe the use of fluctua-

tions in the angular momentum components to produce a vector model compatible with the

quantum mechanical result. I show that the addition of angular momenta from a standard

quantum mechanical calculation is consistent with the classical intuition using the vector

model. The paper is organized as follows: Section II shows the problems encountered with

the vector model, section III works out the details for a spin 1/2 particle, section IV explains

the addition of angular momenta for two spin 1/2 particles, section V describes the general

case of addition of angular momenta and I give some conclusions at the end.

II. VECTOR MODEL OF ANGULAR MOMENTUM

The presentation of angular momentum in quantum mechanics textbooks demonstrates

the following relations1

〈J2〉 = j(j + 1)h̄2 (1a)

〈Jz〉 = mh̄, (1b)

with −j ≤ m ≤ j. It is usually said that the angular momentum comes in units of h̄. This

is consistent with Eq. 1b since m is an integer, but not with Eq. 1a. For example, if we

have one unit of angular momentum (j = 1), then 〈J2〉 = 2h̄2, that is, the magnitude of

the angular momentum is
√

2 rather than 1 (from now on we express angular momentum

in units of h̄). Only the z projection of the angular momentum comes in units of h̄ and

not the magnitude. How can we reconcile both expressions? There is a nice derivation that

explains the expression for J2 by averaging the value of J2
z .2,3,4 There are also ways to give

an heuristic derivation of the properties of angular momentum.5 We would like to gain some

intuition as to where the extra 1 in Eq. 1a comes from.
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The vector model is often introduced to give a classical analogy to the quantum angular

momentum.6 To describe the angular momentum classically by a vector, we must specify

its three components Jx, Jy and Jz. The magnitude of the vector is obtained from the

components. The problem with that scheme in quantum mechanics is that it is impossible

to measure with absolute precision the three components of the angular momentum. If one

measures Jz and Jy exactly then the uncertainty in Jx grows, that is, there is an uncertainty

relation for the components of the angular momentum analogous to the uncertainty relation

between position and momentum.

The natural choice for the components of angular momentum in the vector model

would be J = (〈Jx〉, 〈Jy〉, 〈Jz〉). We will show that this choice (choice A) gives the in-

correct value for J 2. A better choice (choice B) for the angular momentum vector is

J = (〈J2
x〉

1

2 , 〈J2
y 〉

1

2 , 〈J2
z 〉

1

2 ). With this choice the magnitude square of the angular momentum

vector gives the correct value J 2 = 〈J2
x〉+ 〈J2

y 〉+ 〈J2
z 〉. In the next section we give a classical

interpretation of the components of the angular momentum vector in terms of fluctiations

and we use this interpretation to explain the origin of the extra 1 in Eq. 1a.

III. SPIN 1/2 CASE

The key point to explain Eq. 1a lies in the fluctuations. Take the case of a state with

spin 1/2 (j = s = 1/2) and ms = 1/2. The values of 〈Sx〉, 〈Sy〉 and 〈Sz〉 are 0, 0 and 1/2

respectively. Choice A for the vector model gives S = (0, 0, 1/2) and the magnitude square

of this vector is S2 = 1/4, which differs from the result 〈S2〉 = 3/4 obtained from Eq. 1a.

Choice B gives right value for S2 since it was constructed that way. What is the meaning

of each component? Sz = 〈S2
z 〉

1

2 = (〈Sz〉2)
1

2 = 〈Sz〉 and this component reduces to the z

projection of the operator S. For Sx we cannot use the same trick since we are not using an

eigenstate of Sx. Still we can relate that component to the fluctuations. The fluctuations of

an operator A in quantum mechanics are given by1

∆A2 = 〈A2〉 − 〈A〉2. (2)

For the present state and the operator Sx the result is

∆S2
x = 〈S2

x〉. (3)
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Then Sx = 〈S2
x〉

1

2 = (∆S2
x)

1

2 = ∆Sx and this component is equal to the fluctuations in the x

axis of the operator S. The y component gives the same result. The meaning of the vector

components in choice B is that Sx and Sy are fluctuations and Sz is the projection in the

corresponding axis. The quantum mechanical calculation of the fluctuations gives

∆S2
x = 〈1

2
| S2

x |1
2
〉 =

1

4
, (4)

then ∆Sx = 1/2, and similarly ∆Sy = 1/2. The vector is S = (1/2, 1/2, 1/2) and the

magnitude square of the vector is S2 = 3/4 which is the correct value. The value of S2

in choice A is s2 = 1/4. Instead in choice B, Sx and Sy contribute to S2 through the

fluctuations giving the value of s(s + 1) = 3/4.

IV. ADDITION OF ANGULAR MOMENTA

We construct any value of angular momentum by adding several spin 1/2 particles. We

show how the vector model works for two spin 1/2 particles. The sum of two spin 1/2

particles gives a total angular momentum of j = 1 or j = 0. Take first the case of the state

with j = 1 and m = 1. The state is represented in quantum mechanics by |1
2
, 1

2
〉 where the

numbers represent the z projection of the spin of particles 1 and 2 respectively. The objective

is to calculate the value of 〈J2〉, with J = S1 + S2, the sum of the spin contributions. The

quantum mechanical result from Eq. 1a is 〈J2〉 = 2, and we want to explain this in terms of

the vector model.

The expression for J2 is

J2 = J2
x + J2

y + J2
z = (Sx1 + Sx2)

2 + (Sy1 + Sy2)
2 + (Sz1 + Sz2)

2, (5)

where the index 1 and 2 refer to particles 1 and 2 respectively. There is no question as to

how to calculate the expectation values in quantum mechanics, but if we think in terms

of the vector model we are in trouble since we have to add two vectors that are a mixture

of projections and fluctuations. We show the correct recipe for adding this vectors from a

quantum mechanical calculation and show that it is consistent with the classical intuition.

Take Jz first. The sum is again simplified since we use an eigenstate of the operator.

We have Jz = (〈(Sz1 + Sz2)
2〉) 1

2 = 〈Sz1〉 + 〈Sz2〉, that is, Jz is just the direct sum of the

individual projections. The x component gives

Jx = (〈(Sx1 + Sx2)
2〉) 1

2 = (〈S2
x1〉 + 2〈Sx1Sx2〉 + 〈S2

x2〉)
1

2 = (∆S2
x1 + ∆S2

x2)
1

2 . (6)
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The two contributions add up in quadrature. This is expected since the x component for

each spin in the vector model corresponds to fluctuations (or noise), and the proper way to

add uncorrelated noise is in quadrature. For a classical variable w = u + v, where u and v

are fluctuating variables, the noise in w is given by7

σ2
w = σ2

u + σ2
v + 2σ2

uv. (7)

The quantum mechanical expression for the fluctuations of Jx = Sx1 + Sx2 for the present

state is

∆J2
x = 〈S2

x1〉 + 〈S2
x2〉 + 2〈Sx1Sx2〉, (8)

where the similarity between the last two expressions is evident. The state we are considering

has the two spins aligned. Since the two spins are independent, we expect their noise to be

uncorrelated. The calculation of the correlation term (last term in Eq. 8) gives

〈1
2
,
1

2
| Sx1Sx2 |1

2
,
1

2
〉 = 0, (9)

and the sum for Jx reduces to Eq. 6.

We can understand the addition of angular momentum in the vector model: the compo-

nents that are projections add up directly whereas the components that are fluctuations add

up as noise. The noise can have different degrees of correlation as calculated by the last term

in Eq. 8. The noise for the present state happens to be uncorrelated (Eq. 9). The vectors for

the individual spins are S1 = S2 = (1/2, 1/2, 1/2) and their sum gives J = (1/
√

2, 1/
√

2, 1)

where we have added the x and y components in quadrature and the z components directly.

The magnitude square of the vector gives J 2 = 2 in accordance with Eq. 1a. The result

should be contrasted with a naive addition of the vectors S1 + S2 = (1, 1, 1), that gives a

magnitude square of 3. The case for the state with j = 1 and m = −1 works the same way.

The state with j = 1 and m = 0 is more interesting. The state is the symmetric

combination of the spins, (|1
2
,−1

2
〉 + | − 1

2
, 1

2
〉)/

√
2. The vectors for the individual spins are

S1 = (1/2, 1/2, 1/2) and S2 = (1/2, 1/2,−1/2). We take the negative value of the square

root in S2z since the z component of the two spins point in opposite directions. We choose

S1z (S2z) positive (negative), but the opposite is equally correct. In the direct sum of the z

components S1z and S2z cancel each other giving 0. The correlation term in the x component

for this state gives

1√
2

(

〈1
2
,−1

2
| + 〈−1

2
,
1

2
|
)

Sx1Sx2

(

|1
2
,−1

2
〉 + | − 1

2
,
1

2
〉
)

1√
2

=
1

4
, (10)
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and the calculation for the fluctuations from Eq. 8 gives ∆J2
x = ∆J2

y = 1. The sum vector

is J = (1, 1, 0) that gives the correct result for the magnitude square J 2 = 2. The noise

calculation for Jx and Jy tells us that we have perfectly correlated noise, so instead of adding

the two contributions in quadrature, we add them directly (each one equal to 1/2 giving a

total of 1). It is not unexpected that the noise behaves in a correlated manner since we use

the symmetric combination of the spins.

Finally the case with j = 0 and m = 0. The state is the anti-symmetric combination

of the spins and we expect the noise to be anti-correlated. The vectors for the indivicual

spins are still S1 = (1/2, 1/2, 1/2) and S2 = (1/2, 1/2,−1/2). The correlation term in the x

component for this state is now

1√
2

(

〈1
2
,−1

2
| − 〈−1

2
,
1

2
|
)

Sx1Sx2

(

|1
2
,−1

2
〉 − | − 1

2
,
1

2
〉
)

1√
2

= −1

4
, (11)

and the calculation for the fluctuations from Eq. 8 gives ∆J2
x = ∆J2

y = 0. The sum vector

is J = (0, 0, 0) with a magnitude square of J 2 = 0 as expected. The anti-symmetric

combination of the spins results in noise that is perfectly anti-correlated (due to the minus

sign in the wave function). The noise subtracts directly (1
2
− 1

2
= 0) and not in quadrature

for the x and y components. It seems that the noise in Jx, Jy and Jz is zero for the state.

From the point of view of the sum, the individual perpendicular fluctuations are actually

not zero, it is because of the correlations that the fluctuations of J become zero.

V. GENERAL CASE

Any other value of angular momentum can be constructed using the same scheme. For

example, to obtain j = 3/2 we add three spin 1/2 particles. Each particle contributes some

amount to the value of Jz and also to the fluctuations in the perpendicular components.

There is some degree of correlation between the spins depending on the m value chosen. The

correlation between spins can be calculated from the crossed term in Eq. 8. The correlation

term between spins i and k in the x component for the state with angular momentum j and

projection m is

〈j, m| SxiSxk |j, m〉. (12)

It is not trivial to predict the result of this calculation except for the maximum and minimum

projections. All the spins are uncorrelated if m = j or m = −j. For any other projections
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there will be some intermediate degree of correlation between spins that can be calculated

from Eq. 12. For the maximum projection, the x (and y) components of all the individual

spins add up in quadrature to give

Jx =
√

∆S2
x1 + ∆S2

x2 + ... + ∆S2
x(2j) =

√

2j(1/4) =
√

j/2. (13)

The vector sum is J = (
√

j/2,
√

j/2, j) with a magnitude square J 2 = j/2 + j/2 + j2 =

j(j + 1), where the 1 comes from the perpendicular components.

VI. CONCLUSIONS

We explain the 1 in the expression j(j + 1) in terms of the quantum fluctuations of the

x and y components of the angular momentum. We include the fluctuations to describe

the addition of angular momenta in the vector model. The vector components can be

projections or fluctuations and they have different formulas for addition. The correlations

in the fluctuations cannot be ignored. Formula 1a tells us that angular momentum does not

come in units of h̄, but instead it comes in units of
√

1 + (1/j)h̄. This is not even a uniform

unit, but depends on the value of j in a complicated way. This happens because some of

the components of J add up directly and others in quadrature. Only in the limit of big j we

recover the well known h̄ unit of angular momentum. At small j the quantum noise cannot

be ignored.
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