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Abstract

The magnitude of the angular momentum (J?) in quantum mechanics is larger than expected
from a classical model. We explain this deviation in terms of quantum fluctuations. A standard
quantum mechanical calculation gives the correct interpretation of the components of the angular
momentum in the vector model in terms of projections and fluctuations. We show that the addition
of angular momentum in quantum mechanics gives results consistent with the classical intuition in
this vector model.

La magnitud del momento angular (J?) en mecénica cudntica es mas grande que lo esperado
en un modelo clasico. Explicamos esta diferencia en términos de las fluctuaciones cuanticas. Un
calculo estandar de mecanica cuantica da la interpretacion correcta a las componentes del momento
angular en el modelo vectorial en términos de proyecciones y fluctuaciones. Mostramos que la suma
de momento angular en mecanica cudntica da resultados consistentes con la intuicién clasica en

este modelo vectorial.
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I. INTRODUCTION

The operator of angular momentum in quantum mechanics is always a confusing topic
for new students. The quantum description of angular momentum involves differential op-
erators or new algebra rules that seem to be disconnected from the classical intuition. For
small values of angular momentum one needs a quantum description because the quantum
fluctuations are as big as the angular momentum itself. In this regime, the simple classical
models generally do not give the right result. In this paper I describe the use of fluctua-
tions in the angular momentum components to produce a vector model compatible with the
quantum mechanical result. I show that the addition of angular momenta from a standard
quantum mechanical calculation is consistent with the classical intuition using the vector
model. The paper is organized as follows: Section [[Il shows the problems encountered with
the vector model, section [[TIl works out the details for a spin 1/2 particle, section [V] explains
the addition of angular momenta for two spin 1/2 particles, section [V] describes the general

case of addition of angular momenta and I give some conclusions at the end.

II. VECTOR MODEL OF ANGULAR MOMENTUM

The presentation of angular momentum in quantum mechanics textbooks demonstrates

the following relations

(J*) =j(j + )R (1a)
(J.) = mh, (1b)

with —j < m < j. It is usually said that the angular momentum comes in units of i. This
is consistent with Eq. [ID since m is an integer, but not with Eq. [al For example, if we
have one unit of angular momentum (j = 1), then (J?) = 2%, that is, the magnitude of
the angular momentum is v/2 rather than 1 (from now on we express angular momentum
in units of i). Only the z projection of the angular momentum comes in units of & and
not the magnitude. How can we reconcile both expressions? There is a nice derivation that
explains the expression for J? by averaging the value of J2.234 There are also ways to give
an heuristic derivation of the properties of angular momentum.? We would like to gain some

intuition as to where the extra 1 in Eq. [Ial comes from.



The vector model is often introduced to give a classical analogy to the quantum angular
momentum.® To describe the angular momentum classically by a vector, we must specify
its three components J,, J, and J,.. The magnitude of the vector is obtained from the
components. The problem with that scheme in quantum mechanics is that it is impossible
to measure with absolute precision the three components of the angular momentum. If one
measures J, and J, exactly then the uncertainty in J, grows, that is, there is an uncertainty
relation for the components of the angular momentum analogous to the uncertainty relation
between position and momentum.

The natural choice for the components of angular momentum in the vector model
would be J = ((J.),(Jy),(J:)). We will show that this choice (choice A) gives the in-
correct value for J2. A better choice (choice B) for the angular momentum vector is
J = ((J2)z, (Jj)%, (J2)2). With this choice the magnitude square of the angular momentum
vector gives the correct value J? = (J2) 4 (J7) + (JZ). In the next section we give a classical
interpretation of the components of the angular momentum vector in terms of fluctiations

and we use this interpretation to explain the origin of the extra 1 in Eq. [Lal

III. SPIN 1/2 CASE

The key point to explain Eq. [Ia] lies in the fluctuations. Take the case of a state with
spin 1/2 (j = s = 1/2) and my, = 1/2. The values of (S,), (S,) and (S,) are 0, 0 and 1/2
respectively. Choice A for the vector model gives § = (0,0,1/2) and the magnitude square
of this vector is 8* = 1/4, which differs from the result (S?) = 3/4 obtained from Eq. [Tal
Choice B gives right value for S? since it was constructed that way. What is the meaning
of each component? S, = ($2)z = ((S,)2)2 = (S,) and this component reduces to the z
projection of the operator S. For S, we cannot use the same trick since we are not using an

eigenstate of S,. Still we can relate that component to the fluctuations. The fluctuations of

an operator A in quantum mechanics are given byl
AA? = (A?) — (A)2 (2)
For the present state and the operator S, the result is

AS; = (S). (3)



Then S, = (52)2 = (AS2)2 = AS, and this component is equal to the fluctuations in the z
axis of the operator S. The y component gives the same result. The meaning of the vector
components in choice B is that S, and S, are fluctuations and S, is the projection in the

corresponding axis. The quantum mechanical calculation of the fluctuations gives

AS2 = (3] 8215 = 1 (@
then AS, = 1/2, and similarly AS, = 1/2. The vector is S = (1/2,1/2,1/2) and the
magnitude square of the vector is §? = 3/4 which is the correct value. The value of S?
in choice A is s* = 1/4. Instead in choice B, S, and S, contribute to §? through the

fluctuations giving the value of s(s+ 1) = 3/4.

IV. ADDITION OF ANGULAR MOMENTA

We construct any value of angular momentum by adding several spin 1/2 particles. We
show how the vector model works for two spin 1/2 particles. The sum of two spin 1/2
particles gives a total angular momentum of j = 1 or j = 0. Take first the case of the state
with j = 1 and m = 1. The state is represented in quantum mechanics by \%, %) where the
numbers represent the z projection of the spin of particles 1 and 2 respectively. The objective
is to calculate the value of (J?), with J = S} + Sy, the sum of the spin contributions. The
quantum mechanical result from Eq. [Talis (J?) = 2, and we want to explain this in terms of

the vector model.

The expression for J? is
JP= T2+ T+ T2 = (Sa1 4 Sa2)? + (Sy1 4 Sy2)? + (S + S22)?, (5)

where the index 1 and 2 refer to particles 1 and 2 respectively. There is no question as to
how to calculate the expectation values in quantum mechanics, but if we think in terms
of the vector model we are in trouble since we have to add two vectors that are a mixture
of projections and fluctuations. We show the correct recipe for adding this vectors from a
quantum mechanical calculation and show that it is consistent with the classical intuition.

Take J, first. The sum is again simplified since we use an eigenstate of the operator.
We have J, = (((S.1 4 S.2)2))2 = (S.1) + (S.»), that is, J. is just the direct sum of the

individual projections. The x component gives
To = ({((Su1 + S22)2))? = ((S%) + 2(Sp1Su0) + (S,))% = (AS% + ASZ)zE. (6)
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The two contributions add up in quadrature. This is expected since the x component for
each spin in the vector model corresponds to fluctuations (or noise), and the proper way to
add uncorrelated noise is in quadrature. For a classical variable w = u + v, where u and v

are fluctuating variables, the noise in w is given by~

o2 =02+ 024202, (7)

The quantum mechanical expression for the fluctuations of J, = S,1 + S, for the present

state is

AJ? = (S2)) + (S2,) 4+ 2(S;15:2), (8)

where the similarity between the last two expressions is evident. The state we are considering
has the two spins aligned. Since the two spins are independent, we expect their noise to be

uncorrelated. The calculation of the correlation term (last term in Eq. R) gives

11 11
<§a §| Sx15x2 |§a §> - Oa (9)

and the sum for 7, reduces to Eq.

We can understand the addition of angular momentum in the vector model: the compo-
nents that are projections add up directly whereas the components that are fluctuations add
up as noise. The noise can have different degrees of correlation as calculated by the last term
in Eq. B The noise for the present state happens to be uncorrelated (Eq.[@). The vectors for
the individual spins are S; = Sy = (1/2,1/2,1/2) and their sum gives J = (1/v/2,1/1/2,1)
where we have added the x and y components in quadrature and the z components directly.
The magnitude square of the vector gives J? = 2 in accordance with Eq. Tal The result
should be contrasted with a naive addition of the vectors &; + S = (1,1,1), that gives a
magnitude square of 3. The case for the state with 7 = 1 and m = —1 works the same way.

The state with 7 = 1 and m = 0 is more interesting. The state is the symmetric
combination of the spins, (|3, —1) +|—1,1))/v/2. The vectors for the individual spins are
S =(1/2,1/2,1/2) and S; = (1/2,1/2,—1/2). We take the negative value of the square
root in Sy, since the z component of the two spins point in opposite directions. We choose
S, (Sa.) positive (negative), but the opposite is equally correct. In the direct sum of the z
components S;, and S,, cancel each other giving 0. The correlation term in the x component

for this state gives
1 1 1 11 1 1 11 1 1
= ~) A T Ay aA S:L‘ Sx a) A SIS = = 10
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and the calculation for the fluctuations from Eq. B gives AJ? = AJ? = 1. The sum vector
is J = (1,1,0) that gives the correct result for the magnitude square J2 = 2. The noise
calculation for 7, and J, tells us that we have perfectly correlated noise, so instead of adding
the two contributions in quadrature, we add them directly (each one equal to 1/2 giving a
total of 1). It is not unexpected that the noise behaves in a correlated manner since we use
the symmetric combination of the spins.

Finally the case with j = 0 and m = 0. The state is the anti-symmetric combination
of the spins and we expect the noise to be anti-correlated. The vectors for the indivicual
spins are still §; = (1/2,1/2,1/2) and Sy = (1/2,1/2,—1/2). The correlation term in the x

component for this state is now

o (31— 331) Susa (g -1-3.9) ==—3 v
and the calculation for the fluctuations from Eq. B gives AJ? = AJ? = 0. The sum vector
is J = (0,0,0) with a magnitude square of J? = 0 as expected. The anti-symmetric
combination of the spins results in noise that is perfectly anti-correlated (due to the minus
sign in the wave function). The noise subtracts directly (1 — 3 = 0) and not in quadrature
for the  and y components. It seems that the noise in J,, J, and J, is zero for the state.
From the point of view of the sum, the individual perpendicular fluctuations are actually

not zero, it is because of the correlations that the fluctuations of J become zero.

V. GENERAL CASE

Any other value of angular momentum can be constructed using the same scheme. For
example, to obtain j = 3/2 we add three spin 1/2 particles. Each particle contributes some
amount to the value of 7, and also to the fluctuations in the perpendicular components.
There is some degree of correlation between the spins depending on the m value chosen. The
correlation between spins can be calculated from the crossed term in Eq. 8 The correlation
term between spins ¢ and k in the x component for the state with angular momentum j and
projection m is

It is not trivial to predict the result of this calculation except for the maximum and minimum

projections. All the spins are uncorrelated if m = j or m = —j. For any other projections



there will be some intermediate degree of correlation between spins that can be calculated
from Eq. For the maximum projection, the z (and y) components of all the individual

spins add up in quadrature to give

I, = \/AS§1 +ASZ 4+ ASZ = V/25(1/4) = V)2 (13)

The vector sum is J = (1/7/2,/j/2,j) with a magnitude square J? = j/2 + j/2 + j* =

j(j + 1), where the 1 comes from the perpendicular components.

VI. CONCLUSIONS

We explain the 1 in the expression j(j 4+ 1) in terms of the quantum fluctuations of the
x and y components of the angular momentum. We include the fluctuations to describe
the addition of angular momenta in the vector model. The vector components can be
projections or fluctuations and they have different formulas for addition. The correlations
in the fluctuations cannot be ignored. Formula [Tal tells us that angular momentum does not
come in units of A, but instead it comes in units of \/1 + (1/5)%. This is not even a uniform
unit, but depends on the value of j in a complicated way. This happens because some of
the components of J add up directly and others in quadrature. Only in the limit of big j we
recover the well known % unit of angular momentum. At small j the quantum noise cannot

be ignored.
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