
Physics 139B Midterm Exam Solutions Fall 2009

1. Consider a spin-1
2

particle with magnetic moment ~µ = γ~S. At time t = 0,
we measure Sy and find a value of +1

2
~ for its eigenvalue. Immediately after this

measurement, we apply a uniform time-dependent magnetic field parallel to the z-
axis. The B-field is chosen such that the Hamiltonian is:

H(t) = ωo(t)Sz ,

where

ωo(t) =























0 , for t < 0 ,

ωot

T
, for 0 ≤ t ≤ T ,

0 , for t > T .

(a) Write down the time-dependent Schrodinger equation that governs the time
evolution of the spin-1

2
particle of this problem.

The time-dependent Schrodinger equation is

H |ψ(t)〉 = i~
d

dt
|ψ(t)〉 .

If we represent |ψ(t)〉 by a two-component spinor,

|ψ(t)〉 =

(

a+(t)
a−(t)

)

,

and take

H = ωo(t)Sz = 1
2
~ωo(t)

(

1 0
0 −1

)

,

after noting that Sz = 1
2
~σz, then the time-dependent Schrodinger equation can be

written as:

i~
d

dt

(

a+(t)
a−(t)

)

= 1
2
~ωo(t)

(

1 0
0 −1

) (

a+(t)
a−(t)

)

= 1
2
~ωo(t)

(

a+(t)
−a−(t)

)

.

The above matrix differential equation can be written more explicitly as:

i
d

dt
a+(t) = 1

2
ωo(t)a+(t) ,

i
d

dt
a−(t) = −1

2
ωo(t)a−(t) .
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(b) Show that at time t, the particle wave function is:

|ψ(t)〉 =
1√
2

[

eiθ(t)α + ie−iθ(t)β
]

,

where α and β are eigenfunctions of Sz with eigenvalues ±1
2
~, respectively, and θ(t)

is a real function of time that you should determine explicitly.

The two differential equations obtained in part (a) are uncoupled, and hence can
be solved easily. Writing both equations simultaneously,

i
d

dt
a±(t) = ±1

2
ωo(t)a±(t) ,

where the upper [lower] signs yields the first [second] differential equation. Integrat-
ing, one obtains

∫

da±(t)

a±(t)
= ± 1

2i

∫

ωo(t
′)dt′ ,

which yields

ln

(

a±(t)

a±(0)

)

= ± 1

2i

∫ t

0

ωo(t
′)dt′ .

Inserting the explicit form for ωo(t) given at the beginning of this problem, one
obtains:

∫ t

0

ωo(t
′)dt′ =



















ωo

T

∫ t

0

t′dt′ , for 0 ≤ t ≤ T ,

ωo

T

∫ T

0

t′dt′ , for t ≥ T .

Evaluating the integrals yields,

∫ t

0

ωo(t
′)dt′ =











ωot
2

2T
, for 0 ≤ t ≤ T ,

1
2
ωoT , for t ≥ T .

Hence, we conclude that:

a±(t) =











a±(0) exp

(

∓iωot
2

4T

)

, for 0 ≤ t ≤ T ,

a±(0) exp
(

∓1
4
ωoT

)

, for t ≥ T .

The problem states that at time t = 0, we measure Sy and find a value of +~

for its eigenvalue. This means that |ψ(0)〉 is an eigenstate of Sy with eigenvalue +~.
Since

Sy = 1
2
~

(

0 −i
i 0

)

,
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then the normalized initial state is represented by

|ψ(0)〉 =
1√
2

(

1
i

)

,

or equivalently,

a+(0) =
1√
2
, a−(0) =

i√
2
.

Inserting these results into our expressions for a±(t) above then yields,

|ψ(t)〉 =



































1√
2

(

e−iω0t2/(4T )

ieiωot2/(4T )

)

, for 0 ≤ t ≤ T ,

1√
2

(

e−iω0/4

ieiωoT/4

)

, for t ≥ T .

If we write:

|ψ(t)〉 =
1√
2

[

eiθ(t)α + ie−iθ(t)β
]

=
1√
2

(

eiθ(t)

ie−iθ(t)

)

,

then we can identify:

θ(t) =











−ωot
2

4T
, for 0 ≤ t ≤ T ,

−1
4
ωoT , for t ≥ T .

(c) At a time t > T , we measure Sy. What are the possible results of this
measurement and with what probabilities?

The possible results of this measurement are ±1
2
~. To determine the corresponding

probabilities, we expand |ψ(t)〉 in terms of the eigenstates of Sy:

∣

∣

1
2
, 1

2

〉

ŷ
=

1√
2

(

1
i

)

,
∣

∣

1
2
, −1

2

〉

ŷ
=

1√
2

(

1
−i

)

,

where Sy

∣

∣

1
2
, ±1

2

〉

ŷ
= ±1

2
~
∣

∣

1
2
, ±1

2

〉

ŷ
. Here, we have used the notation |s , ms〉n̂ to

represent a spin s state that is an eigenstate of ~S · n̂ with eigenvalue ~ms. Thus, one
can write:

|ψ(t)〉 = c+
∣

∣

1
2
, 1

2

〉

ŷ
+ c−

∣

∣

1
2
, −1

2

〉

ŷ
.

The probability of measuring Sy and obtaining ±1
2
~ is |c±|2. To determine the c±,

we multiply on the left by
〈

1
2
, ±1

2

∣

∣. That is,

c± =
〈

1
2
, ±1

2

∣

∣ψ(t)〉 .
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Since t > T , it follows that1

c± =
1√
2

(1 ∓ i)

(

e−iω0/4

ieiωoT/4

)

= ±1
2

(

eiωoT/4 ± e−iωoT/4
)

,

which can be rewritten as

c+ = cos(1
4
ωoT ) , c− = −i sin(1

4
ωoT ) .

Thus, the relevant probabilities corresponding to Sy measurements of ±1
2
~ are:

1
2
~ : cos2

(

1
4
ωoT

)

,

−1
2
~ : sin2

(

1
4
ωoT

)

,

(d) Find a relation between ω0 and T such that the measurement of Sy yields a
unique result. Interpret the physical significance of this result.

In order that the measurement of Sy yield a unique result, one must either have
cos(1

4
ωoT ) = 0 or sin(1

4
ωoT ) = 0. Either the first or the second of these two conditions

is satisfied if 1
4
ωoT = 1

2
nπ. That is,

ωoT = 2nπ , n = 1 , 2 , 3 , . . .

Note that only positive integers n are allowed, since by assumption T > 0.
The physical interpretation of this result is that in the presence of H(t), the spin-1

2

particle of definite spin pointing along the y-axis begins to precess about the z-axis
(corresponding to the direction of the uniform magnetic field). At time t > T , the
total precession angle is given by

∫ T

o

ωo(t
′)dt′ = 1

2
ωoT .

If the total precession angle is some integer multiple of π, then the spin will end up
still pointing along the (positive or negative) y-axis. This condition is

1
2
ωoT = nπ , n = 1 , 2 , 3 , . . . ,

which reproduces our previous result.

1Note that the adjoint of the ket
∣

∣

1

2
, ± 1

2

〉

ŷ
= 1

√

2

(

1
±i

)

is the bra
ŷ

〈

1

2
, ± 1

2

∣

∣ = 1
√

2
(1 ∓ i),

respectively. That is, in obtaining the bra, one must remember to complex-conjugate the factor of i.
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2. Consider a spin system made up of a spin-1/2 particle (with corresponding spin

operator ~S1) and a spin-1 particle (with corresponding spin operator ~S2).

(a) Suppose that a bound state of the two spins exists in a state of zero rela-
tive orbital angular momentum. What are the possible values of the total angular
momentum (i.e., the total spin) of the bound system?

In class, we learned that given a composite system made up of angular momentum
j1 and angular momentum j2, then the possible values of the total angular momentum
of the composite system are:

j = |j1 − j2| , |j1 − j2| + 1 , . . . , j1 + j2 .

In this problem, j1 = 1 and j2 = 1
2
, and we conclude that the possible values of the

total spin of the composite system are j = 1
2
, , 3

2
.

(b) Consider the bound state of the two spins described in part (a). Suppose
one determines that this state has total spin equal to 1

2
and the spin points up with

respect to the z-direction. Express this state as a linear combination of the product
basis states of the two spins.

This is a simple exercise in reading the table of Clebsch-Gordon coefficients. A
close examination of the entries in the 1 × 1/2 portion of the table reveals that:

∣

∣

1
2
, 1

2
; 1 , 1

2

〉

=
√

2
3
|1 , 1〉1 ⊗

∣

∣

1
2
, −1

2

〉

2
−
√

1
3
|1 , 0〉1 ⊗

∣

∣

1
2
, 1

2

〉

2
,

using the notation of Table 9.5 on p. 394 of Liboff. Note that Liboff suppresses the
direct product symbol ⊗.

(c) The Hamiltonian of the spin system of part (a) is given by:

H = A+
B ~S1 · ~S2

~2
+
C(S1z + S2z)

~
.

Find the eigenvalues and eigenstates of the system.

First, we note that Sz = S1z + S2z, where ~S = ~S1 + ~S2 is the total spin operator.
The key step is to note that ~S 2 = (~S1 + ~S2)

2 = ~S1

2 + ~S1

2 + 2~S1·~S2. Thus,

~S1 ·~S2 = 1
2

(

~S 2 − ~S1

2 − ~S2

2
)

.

We can therefore rewrite H as:

H = A+
B

2~2

(

~S 2 − ~S1

2 − ~S2

2
)

+
CSz

~
.
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Thus, the eigenstates of H are simultaneous eigenstates of ~S 2, Sz, ~S1

2 and ~S2

2, i.e.,
the total spin basis. Using

~S 2 |s , ms ; s1 , s2〉 = ~
2s(s+ 1) |s , ms ; s1 , s2〉 ,

Sz |s , ms ; s1 , s2〉 = ~ms |s , ms ; s1 , s2〉 ,
~S1

2 |s , ms ; s1 , s2〉 = ~
2s1(s1 + 1) |s , ms ; s1 , s2〉 ,

~S2

2 |s , ms ; s1 , s2〉 = ~
2s2(s2 + 1) |s , ms ; s1 , s2〉 ,

with s1 = 1 and s2 = 1
2
, it follows that

H |s , ms ; s1 , s2〉 =
(

A + 1
2
B
[

s(s+ 1) − 1(1 + 1) − 1
2
(1

2
+ 1)

]

+ Cms

)

|s , ms ; s1 , s2〉

=
(

A + 1
2
B
[

s(s+ 1) − 11
4

]

+ Cms

)

|s , ms ; s1 , s2〉 .

The possible values of s are 1
2
, 3

2
and the correspondingms = −s , −s+1 , . . . , s−1 , s.

Thus the eigenstates and eigenvalues of the system are given in the following table:

s ms eigenvalue of H

3
2

3
2

A+ 1
2
B + 3

2
C

3
2

1
2

A+ 1
2
B + 1

2
C

3
2

−1
2

A+ 1
2
B − 1

2
C

3
2

−3
2

A+ 1
2
B − 3

2
C

1
2

1
2

A−B + 1
2
C

1
2

−1
2

A− B − 1
2
C
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3. Consider a charged particle (with charge q) whose motion is confined to a circle of
radius R in the x–y plane, with its center at the origin. A thin magnetic flux tube of
radius r < R is located with its axis along the z-axis. The magnetic field is confined
within the flux tube, and the total magnetic flux through the x–y plane is denoted by
Φ. In particular, the charged particle moves in a region where there is no magnetic
field. It is convenient to work in cylindrical coordinates (ρ, θ, z), where x = ρ cos θ

and y = ρ sin θ. In the region where there is no magnetic field, ~∇ × ~A = 0, which
implies that

~A(ρ, θ, z) = ~∇χ(ρ, θ, z) . (1)

(a) Noting that Stokes’ theorem relates Φ to the line integral of ~A taken along
the circle of radius R, show that the choice,

χ(ρ, θ, z) =
Φθ

2π
,

satisfies Stokes’ theorem and the Coulomb gauge condition.

As a first step, let us insert the value of χ into eq. (1) and evaluate ~A. Using:

~∇χ = ρ̂
∂χ

∂ρ
+ θ̂

1

ρ

∂χ

∂θ
+ ẑ

∂χ

∂z
,

it follows that:
~A =

Φ

2πρ
θ̂ .

We can now verify that Stokes’ theorem is satisfied. Choose the curve C to be a circle
of radius R that lies in the x–y plane centered at the origin. Then d~ℓ = Rdθθ̂, and

∮

C

~A·d~ℓ =
Φ

2πR
R

∫ 2π

0

dθ = Φ ,

which indeed satisfies Stokes’ theorem, since

Φ ≡
∫∫

S

~B ·n̂ da =

∫∫

S

(∇ × ~A)·n̂da =

∮

C

~A·d~ℓ .

In addition, the vector potential obtained above satisfies the Coulomb gauge con-
dition, since

~∇· ~A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aθ

∂θ
+
∂Az

∂z
= 0 ,

after substituting Aθ = Φ/(2πρ) and Aρ = Az = 0 above.

(b) The wave function for the charged particle is only a function of θ (since ρ = R
and z = 0 are fixed due to the confined motion). Write down the time-independent
Schrodinger equation for the charged particle wave function ψ(θ) in the cylindrical
coordinate representation (simplifying your equation as much as possible).
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The time-independent Schrodinger equation for a charged particle (with charge q)
in an external electromagnetic field, in the Coulomb gauge, is given in the class
handout:

−~
2

2m
~∇2ψ +

iq~

mc
~A· ~∇ψ +

q2

2mc2
~A 2ψ + qφψ = Eψ .

One can write this equation in cylindrical coordinates, using

~∇
2
ψ =

1

ρ

∂

∂ρ

(

ρ
∂ψ

∂ρ

)

+
1

ρ2

∂2ψ

∂θ2
+
∂2ψ

∂z2
.

Noting that ψ = ψ(θ), since the other coordinates ρ = R and z = 0 are fixed, the
Schrodinger equation above can be written as:

−~
2

2mR2

∂2ψ

∂θ2
+

iq~

mcR
Aθ
∂ψ

∂θ
+

q2

2mc2
A2

θψ = Eψ , where Aθ =
Φ

2πR
. (2)

This equation can be simplified. After inserting Aθ = Φ/(2πR), we note that eq. (2)
can be rewritten as:

1

2mR2

(

i~
∂

∂θ
+
qΦ

2πc

)2

ψ = Eψ . (3)

(c) Solve the Schrodinger equation of part (b) for the energy eigenvalues and
eigenfunctions. Show that the allowed energies depend on Φ even though the charged
particle on the circle never encounters the magnetic field.

The solution to a second-order linear differential equation with constant coeffi-
cients is well known. Requiring that ψ(θ) is single-valued [that is, ψ(θ+ 2π) = ψ(θ)],
we can take:

ψ(θ) =
1√
2π

einθ , n = 0 , ±1 , ±2 , . . . , (4)

where the coefficient is chosen to normalize the wave function. Inserting the solution
back into eq. (2) and solving for E, one obtains:

E =
1

2mR2

[

n2
~

2 − q~nΦ

πc
+
q2Φ2

4π2c2

]

=
1

2mR2

(

n~ − qΦ

2πc

)2

.

Alternatively, one can solve eq. (3) by noting that the energy eigenstates are also
eigenstates of ∂/∂θ. This implies that the solution must have the form shown in
eq. (4). Inserting this solution into eq. (3) immediately yields:

E =
1

2mR2

(

n~ − qΦ

2πc

)2

, n = 0 , ±1 , ±2 , . . .

as before. Indeed, the allowed energies depend on Φ even though the charged particle
on the circle never encounters the magnetic field.
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