Physics 139B Midterm Exam Solutions Fall 2009

1. Consider a spin—% particle with magnetic moment @ = 7§- At time t = 0,
we measure S, and find a value of —l—%h for its eigenvalue. Immediately after this
measurement, we apply a uniform time-dependent magnetic field parallel to the z-
axis. The B-field is chosen such that the Hamiltonian is:

where
0, fort <0,
wo(t) = wot, for0<t<T,
T
0, fort >1T.

(a) Write down the time-dependent Schrodinger equation that governs the time
evolution of the spin—% particle of this problem.

The time-dependent Schrodinger equation is
. d
H [y(t)) = ih— [¥(t)) -

If we represent |¢(t)) by a two-component spinor,

and take
H = w,(t)S. = Lhwoy(t) (é _(1)) ,

after noting that S, = %haz, then the time-dependent Schrodinger equation can be
written as:

) ()9 () - ()

The above matrix differential equation can be written more explicitly as:

d 1

Z%a+(t) = wo(t)a(t),
d !

z%a_(t) = —5Wo(t)a_(1)



(b) Show that at time ¢, the particle wave function is:
1
V2

where o and [ are eigenfunctions of S, with eigenvalues i—%h, respectively, and 6(t)
is a real function of time that you should determine explicitly.

[ew(t)a I Z-e_w(t)m 7

¥ (1)) =

The two differential equations obtained in part (a) are uncoupled, and hence can
be solved easily. Writing both equations simultaneously,

d 1
i (t) = £hw,(Hax(t)

where the upper [lower| signs yields the first [second] differential equation. Integrat-

ing, one obtains
dai
= T4 wo ’

In (Zi((éi) - :I:% Otwo(t’)dt’.

Inserting the explicit form for w,(f) given at the beginning of this problem, one
obtains:

which yields

W t
—°/ tdt’, for0<t<T,
t T 0
/ oy (#)dt =
0 Wo T

T/ tdt’, fort > 1T.

Evaluating the integrals yields,

wyt?

t Y
/ wo(t)dt' = ¢ 2T
0

wol', fort >1T.

for 0<t<T,

N =

Hence, we conclude that:

. Ot2
a+(0) exp (ZFZZT ) , for0<t<T,
ax(t) =
a+(0) exp (Fiw,T) , fort >1T.

The problem states that at time ¢ = 0, we measure S, and find a value of +h
for its eigenvalue. This means that |¢/(0)) is an eigenstate of S, with eigenvalue +h.

Since
0 —1
Sy = %h (z 0) ’



then the normalized initial state is represented by

o) =5 (1)

or equivalently,

Inserting these results into our expressions for a.(t) above then yields,

( 1 <e—iwot2/(4T)

,L’eiwot2 /(4T)

), for0<t<T,

[¥(t)) =

1 e—iw0/4
- > T
NAUE A fort > 1T
If we write:

l(t)) = 1 [eiG(t)a —l—ie‘w(t)g} _ 1 ci0(t)
vz V2 \ie—®@® |’

then we can identify:

2
—%, for0<t<T,
0(t) = 4T
—ion, fort>1T.

(c) At a time ¢t > T, we measure S,. What are the possible results of this
measurement and with what probabilities?

The possible results of this measurement are :t%h. To determine the corresponding
probabilities, we expand [¢(t)) in terms of the eigenstates of S

o () mene (0,

where S, ‘%, :I:%>y = :I:%h ‘%, :t%>y Here, we have used the notation |s, ms), to

Y

[N
N[

represent a spin s state that is an eigenstate of S - A with eigenvalue hmg. Thus, one

can write:
W) =cilz,3)5+c=]5. —3), -

The probability of measuring S, and obtaining 15 is |cx|>. To determine the c,
we multiply on the left by <% , :i:%‘ That is,

Ct+ = <%7 i%‘w(t»-

3



] e—ZUJO/4 ) )

which can be rewritten as

e = cos(3w,T), c_ = —isin(iw,T).
Thus, the relevant probabilities corresponding to S, measurements of ﬂ:%h are:
ip: cos? (ion) ,

—1p: sin? (ion) ,

(d) Find a relation between wy and T such that the measurement of S, yields a
unique result. Interpret the physical significance of this result.

In order that the measurement of S, yield a unique result, one must either have

cos(3w,T") = 0 or sin(3w,T") = 0. Either the first or the second of these two conditions

is satisfied if ion = %mr. That is,

|w,T = 2nm, n=1,2,3,...

Note that only positive integers n are allowed, since by assumption 7" > 0.

The physical interpretation of this result is that in the presence of H(t), the spin—%
particle of definite spin pointing along the y-axis begins to precess about the z-axis
(corresponding to the direction of the uniform magnetic field). At time ¢ > T, the
total precession angle is given by

T
/ wo(t)dt' = sw,T .

If the total precession angle is some integer multiple of 7, then the spin will end up
still pointing along the (positive or negative) y-axis. This condition is

1 _ _
SWol' = nm, n=1,2,3,...,

which reproduces our previous result.

'Note that the adjoint of the ket |3, :I:%>!7 = % (:Iiz) is the bra . (3, +3] = % (1 F4),

respectively. That is, in obtaining the bra, one must remember to complex-conjugate the factor of 7.
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2. Consider a spin system made up of a spin-1/2 particle (with correspondlng spin
operator S 1) and a spin-1 particle (with corresponding spin operator Sg)

(a) Suppose that a bound state of the two spins exists in a state of zero rela-
tive orbital angular momentum. What are the possible values of the total angular
momentum (i.e., the total spin) of the bound system?

In class, we learned that given a composite system made up of angular momentum
71 and angular momentum jo, then the possible values of the total angular momentum
of the composite system are:

Jg=ln =gl =g+, ... n+i.
In this problem, j; = 1 and j» = 5, and we conclude that the possible values of the
total spin of the composite system are j = %,, %

(b) Consider the bound state of the two spins described in part (a). Suppose
one determines that this state has total spin equal to % and the spin points up with
respect to the z-direction. Express this state as a linear combination of the product
basis states of the two spins.

This is a simple exercise in reading the table of Clebsch-Gordon coefficients. A
close examination of the entries in the 1 x 1/2 portion of the table reveals that:

EELD=VEIL Dl i e ld b,

using the notation of Table 9.5 on p. 394 of Liboff. Note that Liboff suppresses the
direct product symbol ®.

(c¢) The Hamiltonian of the spin system of part (a) is given by:

BS,-S, L C(51: + 55.)

H=A+ =0 -

Find the eigenvalues and eigenstates of the system.

First, we note that S, = Slz + ng, where S = 51 + Sz is the total spin operator.
The key step is to note that S? (51 + Sz) = 51 + 51 + 251 Sz Thus,

§1'§2 - % (§2 - §12 - §22> .
We can therefore rewrite H as:

B —'2 —*2 —’2 CSZ
- A+ﬁ(s —51—52)+ .




Thus, the eigenstates of H are simultaneous eigenstates of S 25, S2 and §22, ie.,
the total spin basis. Using

(8+1>‘87ms;81782>7
hms|s, mg; s1, S2) ,

R?si(sy+1)|s, mg; 51, 82) ,

K ls, mg; s1, So

Sz|sams;$1> 59

)
) =
5:12‘5 ms; 81, S 2>
)

S7 ls, mg; s1, So R?sy(so 4+ 1) |s, mg; 51, 82)

with s; = 1 and sy = %, it follows that

Hls, mg; s1, S2) ( % [ (s+1)—1(141)— (%+1)}+C’ms)|s,ms;sl,52)
= (A+1iB[s(s+1) = L]+ Cmy) s, my; s1, s2) .
The possible values of s are = 2, 5 3 and the corresponding my, = —s, —s+1, ..., s—1, s.

Thus the eigenstates and eigenvalues of the system are given in the following table:

s my | eigenvalue of H

8 3 A+iB+iC

2 2

3 1 1 1
3 1l A+lB+lc
3 1 1 1
8 1l A+lp-1icC

2 2
11 A-B+1iC
b 4| A-B-gc




3. Consider a charged particle (with charge ¢) whose motion is confined to a circle of
radius R in the x—y plane, with its center at the origin. A thin magnetic flux tube of
radius r < R is located with its axis along the z-axis. The magnetic field is confined
within the flux tube, and the total magnetic flux through the z—y plane is denoted by
®. In particular, the charged particle moves in a region where there is no magnetic
field. Tt is convenient to work in cylindrical coordinates (p, 6, z), where x = pcos@
and y = psinf. In the region where there is no magnetic field, VXxA= 0, which
implies that - .

A(p.0,2) = Vx(p,0,2). (1)

(a) Noting that Stokes’ theorem relates ® to the line integral of A taken along
the circle of radius R, show that the choice,

7

0. 2) = —
x(p, 0, 2) 5

satisfies Stokes’ theorem and the Coulomb gauge condition.

As a first step, let us insert the value of x into eq. (1) and evaluate A. Using;:

o Ox  Aloxy  Ox
X g OX | sOX
VX p8p+ p89+zaz’

it follows that: &
A=—0.
2mp
We can now verify that Stokes’ theorem is satisfied. Choose the curve C' to be a circle

of radius R that lies in the z—y plane centered at the origin. Then dl = Rd#O, and

o . P 2
A-dl = ——=R dd = o
%C 2rR /0 ’

which indeed satisfies Stokes’ theorem, since

@z// é-ﬁda://(VxA’).ﬁda:f A.de.
S S C

In addition, the vector potential obtained above satisfies the Coulomb gauge con-
dition, since

- - 10 1 04y O0A,
'A:_— A _ =
v p@p(p p>+p 09+82 0,

after substituting Ag = ®/(2mp) and A, = A, = 0 above.

(b) The wave function for the charged particle is only a function of 6 (since p = R
and z = 0 are fixed due to the confined motion). Write down the time-independent
Schrodinger equation for the charged particle wave function ¢ (6) in the cylindrical
coordinate representation (simplifying your equation as much as possible).
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The time-independent Schrodinger equation for a charged particle (with charge q)
in an external electromagnetic field, in the Coulomb gauge, is given in the class

handout:
—h?

Vi + —A Vi + —A2¢+q¢¢ Ey.
2m

One can write this equation in Cyhndrlcal coordinates, using

2 10 [ W 1 8% 0%
W—;a—p@a—p) 2o ez

Noting that ) = (), since the other coordinates p = R and z = 0 are fixed, the
Schrodinger equation above can be written as:

—h? 0% ' 8w q2 9 )
2mR2 892 + mCRA 89 A9¢ E¢, where Ag = ﬁ . (2)

This equation can be simplified. After inserting Ag = ®/(27R), we note that eq. (2)

can be rewritten as:
1 0
e (T ) b= Ep. 3)

(c) Solve the Schrodinger equation of part (b) for the energy eigenvalues and
eigenfunctions. Show that the allowed energies depend on ® even though the charged
particle on the circle never encounters the magnetic field.

The solution to a second-order linear differential equation with constant coeffi-
cients is well known. Requiring that () is single-valued [that is, (6 4+ 27) = ¢(6)],
we can take:

emnf n=0,+1,+2, ..., (4)

where the coefficient is chosen to normalize the wave function. Inserting the solution
back into eq. (2) and solving for E, one obtains:

1 9 ghn®  ¢*®? 1 q®
= h? — = h—
2mR? [n e i Am2c? omRz "' 2re
Alternatively, one can solve eq. (3) by noting that the energy eigenstates are also

eigenstates of /0. This implies that the solution must have the form shown in
eq. (4). Inserting this solution into eq. (3) immediately yields:

1 q®
:m<nh 27‘(‘0) y nIO,:l:l,Zl:Q,

as before. Indeed, the allowed energies depend on ® even though the charged particle
on the circle never encounters the magnetic field.



