Physics 139B Solutions to Homework Set 1 Fall 2009

1. Liboff, problem 11.27 on page 498.
(a) Let A be an hermitian operator. We first demonstrate that
(eid)t = ¢4
To prove this, we use the series expansion that defines the exponential,
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The sum converges for any operator A. Then,
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where we have used the fact that (iA)T = —iAT = —iA, since A is hermitian. In
the above derivation, we have also used the fact that (A + B)' = A" + B, which
also holds for the sum of an infinite number of terms, assuming that the sum
converges. R o

A unitary operator U is defined as an operator that satisfies UU F=UU=1,
where I is the identity operator. Defining U = ¢4, we see that:

[7[71 _ eiA(eiA)T — AT 62'(A—A) — =T, (1)
In this derivation, I used the fact that for any two operators A and B}
efef = ePet =P ifand only if AB = BA. (2)

This result applies in eq. (1) since 1A and —iA clearly commute. Finally, we use
the fact that e® = I, where 0 is the zero operator, which is again a consequence
of the definition of the exponential of an operator via its series expansion.

Setting A = —Ht/h, we note that if H is hermitian, then so is A. It then
follows that U = exp(—iHt/h) is unitary.

(b) Given |1(t)) = U [1(0)), it follows that (4(t)] = (¢(0)| UT. Hence, using
the results of part (a),

(W(t) [¥(t) = (WO UTU [(0)) = (¥ (0)] T0) = (:(0) [ (0)) .

That is, the normalization of v is independent of the time t.

For a proof of eq. (2), see, e.g., Jacob T. Schwartz, Introduction to Matrices and Vec-
tors (Dover Publications, Inc., Mineola, NY, 2001) pp. 157-159, which can be viewed at
http://books.google. com.



2. Liboff, problem 11.39 on page 512.

(a) We are given a wave function of a rigid rotator,

Y(t) = — | 2 | e BV, E=n/I.
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are eigenstates of Em, with eigenvalues, 0, —h and +h, respectively. Note that the
m . =2 . .
fg(c ) are all eigenstates of L™ with eigenvalue 2h%. Thus,

1 1 1

t)=|-——F=&0+—=(WV2-1)& + —

¥(t) v7§ ¢7( )€ 7

since the energy F is independent of the value of m. The probability that a

measurement L, finds a value —h is simply the absolute square of the coefficient
of &(E_l), namely

(\/§+ l)gg(ﬂl) o—iBt/h
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(b) After the measurement finds the value of L, = —h, the state of the system

—iEt/h

is given simply by &E_l). Including the time-dependent factor, e , the column

vector representation of the state is:
1
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up to an overall unobservable phase factor.



3. Prove the following identities involving the Pauli spin matrices.

3
(a) O'Z'O'j = 5Z]I+Z E Eijkak>
k=1

This identity is verified by explicitly multiplying the 2 x 2 matrices, 0;0;, in
the nine possible cases for 7,7 = 1,2,3. Using

0 1 0 —1 1 0
01 = 1 0 ) 09 = i 0 ) 03 = 0 —1 )

it is easy to obtain:

0109 = —0901 = iUg, 0903 — —0309 = 'iUl, 0301 =— —0103 = 'iO'Q,

(01)? = (02)* = (03)> =1,

where [ is the 2 x 2 identity matrix. These nine equations are identical to iden-
tity (a) above.

-, =, -,

(b) (&-8)(&+b) = (@-b)] + i&-(@ x b),

Multiply identity (a) above by a;b; and sum over 7 and j, where each index
can take on three values, 1, 2, and 3. Note the following results:
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Moreover, using

it follows that:
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and we immediately obtain identity (b). That is, identity (b) is really identity (a)
in disguise!
(c) exp (—%6w-&) = I cos(6/2) — iw-& sin(0/2),

where [ is the 2 x 2 identity matrix, @ and b are ordinary vectors, and w is a unit
vector.

Using the series expansion for the matrix exponential,

exp (-%m&) _ i% (‘Tﬂ (105" (3)

n=0



Using identity (b) above, it follows that
(-5 = (1-5)(0-5) = I,

where we have used the fact that @ is a unit vector to obtain @ - @ = 1 (and of
course, w X W = 0). Hence, for any integer n,

(w-6)*" =1, (w-6)" = w-&.

Inserting these results back into the series [eq. (3) we obtain:
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= I cos(0/2) — iw-asin(6/2),

after summing up the well known series for the sine and cosine, and noting that

(=i = (-1)"

4. Consider the spinor o = |4, 5), lef. eq.(11.72) of Liboff]. I explicitly exhibit
the subscript 2 to emphasize that % , %>z is an eigenstate of S, with eigenvalue
ip
5.

(a) Show (either geometrically or algebraically) that if the z-axis is rotated by
an angle 6 about a fixed axis @ = (—sin¢, cos¢, 0) [where the right-hand rule
defines the direction of the unit vector @ perpendicular to the rotation plane],
then the z-axis will end up pointing along the direction given by

7t = (sinfcos ¢, sinfsin g, cosb).

Consider the active rotation of a unit vector, £, that ends up pointing along
the 1 direction, where 71 is a vector that points in a direction with polar angle 8
(with respect to the z-axis) and azimuthal angle ¢ (defined in the usual way by
projecting 7 in the x—y plane and measuring the angle with respect to the z-axis).
Note that in performing this rotation, we have rotated £ by an angle # about a
fixed axis, w, which lies in the x—y plane perpendicular to the plane containing 2
and 7. The direction of w is determined by the right hand rule. I claim that:

ZXn

W=——:,
|2 X 7

where |2 X 7| is the length of the vector £ X 7. This vector clearly satisfies the
property that 2 X 7 is perpendicular to the plane containing 2 and 7 as required.
Moreover, £ X 11 points in a direction that is determined by the right-hand rule.

4



To complete the proof, simply compute 2 X 7.

T U Z
2 X n = det 0 0 1
sinfcos¢ sinfsing cosf
= —&sinfsin¢g + ysinfcoso.
The length of the vector 2 X 7 is

|2 x f| = [sin® 0 sin® ¢ + sin® § cos® ¢] Y2 — sing ,
Hence, we conclude that

ZXn

w = = —&sing+ gcosp = (—sing, cosg, 0).

EEX

(b) Define |, 3). to be an eigenstate of S-f with eigenvalue sh. Express
11 i i |1 1y _ |1 1y _ (0
}2 , 2>ﬁ with respect to the basis o = }2 , 2>2 = (0) and 8 = ‘2 , 2>2 = (1)
Using S = %h&’, we can work out the dot product, S
= h < cos sin@e‘id’)

S-h = 2 \ sin fe'® —cosf

In class, we worked out the eigenvectors of S-f. The eigenvector corresponding
to eigenvalue %h is given by
cos(6/2)e~/2

30308 =€ ( sin(0/2)ei/? ) ) (4)

is an arbitrary phase factor. This means that we can write:

1, 4), =€ [or cos(0/2)e 7"/ + 3 sin(0/2)e*/?] .

N[

where ¢

(c) Define Ry(0) to be the rotation operator that corresponds to a rotation of
state vectors by an angle 6 about the W axis [defined in part (a)]. For a spin-3
particle, I claim that

First, note that since @ = (—sin ¢, cos ¢, 0), it follows that:

P 0 —sing —icosg _ . [ 0 e~
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Using the result of problem 3(c),
Ry (0) = exp (—%9'&)-6”) = [ cos(6/2) — iw-&'sin(6/2)
cos(0/2) —e *sin(6/2)
~ \€“sin(6/2) cos(0/2) '

Using the fact that the state ‘% , %>z is represented by (3 ), it follows that:

Lo cos(f/2) —e “sin(0/2)\ (1
N 9) ‘5’ §>2 - (62'(1) sin(9/2) 008(9/2) ) (0)

cos(0/2) 02 cos(6/2)e~"*/2
g i = € X .
e sin(6/2) sin(6/2)e'/?
Indeed, Ry ‘% %> is an eigenstate of S - A with eigenvalue %h. Thus, choosing

d=¢/2in eq (4), we conclude that:
R () ‘%> %>2 - }
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5. Consider a spin—% particle of magnetic moment 75" Where v =e/me. At
time t = 0, the state of the system is given by a = ‘% , %> i.e., spin-up).

(a) If the observable S, is measured at time ¢ = 0, what results can be found
and with what probabilities?

To see what the possible results of a measurement of S, consider the initial

‘5, —%>m that can result from a measurement of S,. These two states are the
normalized eigenstates of S, = %hax, namely,

= 5() B 5()- ®

Using the above results, it is easy to determine that:

R TIEE TIE N

The possible measurements of S, yield either %h or ——h with equal probabilities
of % in the two cases (corresponding to the absolute square of the coefficients of
j:%>a3 above).

Y )
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(b) Instead of performing the measurement specified in part (a), we let the
system evolve under the influence of a uniform magnetic field B parallel to the
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y-axis (i.e., B = By with B > 0). Calculate the state of the system at time ¢
with respect to the {«, §} basis.

The Hamiltonian of the system is
H = —7§' B = —vBS, = —%hvBay.
Thus, |¢(t)) = U(t) |¥(0)), where
U(t) = e /" = exp (YivBoyt) .
Let us define wy = —yB. Then,
U(t) = exp (—3iwotoy) = I cos(wot/2) — ioy, sin(wot/2)

_ (cos(wot/Q) —sin(wot/2)> |

sin(wet/2)  cos(wot/2)

Here we have used the results of problem 3(c), and have identified @ = (0, 1, 0).
Note that it is critical that w is a wnit vector. This requirement allows us to
unambiguously identify 6 = wyt.

Hence, the state of the system at time ¢ is:

cos(wot/2
(1)) = U(t) ((1)) - (Sm((wo:; 2;) = a cos(wot/2) + B sin(wot/2).  (6)

(c) At a fixed time t = T > 0, we measure one of the observables 5., S, and
S.. For each case, what values can be found and with what probabilities? Is there
any value of B (which may depend on T") such that one of the above measurements
yields a unique result?

We now measure either S;, S, or S,. To address each case separately, we
should expand the spinor obtained in part (b) in terms of a new basis consisting
of the eigenstates of S;, S, or 5., respectively.

First, we expand in terms of eigenstates of S,. But, this has already been done
in part (b):

[1(t)) = cos(web/2) }%, %>z + sin(wof/2) }%, —%>2 .
Thus the possible results obtained by measuring S, are:

+2h, with probability cos*(wot/2) = (1 + coswot)
—1h, with probability sin*(wet/2) = (1 — coswyt),

where the probabilities are identified as the absolute squares of the coefficients of
}% , ﬂ:%>2, respectively.



Second, we expand |¢(t)) in terms of eigenstates of 5,:
00 = 13 B+ [h —Bs
where?
Using eqs. (5) and (6), one can easily evaluate c.,

= i i cos(wot/2) = L cos(w sin(w
cy = <\/§ \/5) (sin(wmf/?)) = \/5[ (wot/2) + sin(wot/2)]

— _i i cos(wof/2) = i — cos(w sin(w
o = < 7% \/§) (Sm(th/Q)> - \/ﬁ[ (wot/2) + sin(wot/2)] .

To get the relevant probabilities, we need to square these results:
ey |” = & [sin®(wot/2) + cos®(wot/2) + 2 sin(wot/2) cos(wot/2)] = 3 [1 + sin(wot)] ,
le_|? = L [sin*(wot/2) + cos?(wot/2) — 2sin(wot/2) cos(wot/2)] = & [1 — sin(wot)] .
Hence, the possible results obtained by measuring S, are:

—l—%h, with probability %(1 + sin wyt) ,

—3h, with probability 3(1 — sinwyt).

Finally, we expand [¢(t)) in terms of eigenstates of S,. Here, we note that the

normalized eigenstates of S, = Sho, are:
1 1
b= ( L)@

5055 (1)

Following the previous computation, we write:
W) =ct |3, 3), e 13: —3)
where
cr = g(5, £ v(t)).
Using egs. (6) and (7), one can easily evaluate cy. Keep in mind that in this com-

putation, the adjoint spinor y<%, i—%} appears, so we have to complex conjugate
the results of eq. (7), which changes the sign of i. Hence,

. :(i __Z) cos(wot/2) :Le—iwotﬂ
* V2 V2 sin(wot/2) V2 ’

c_ = (_L L) COS(WOT,/2) — ieiwot/2 )
V2 V2 sin(wot/2) V2
2Here, we are using the fact that we can expand any state |[)) in terms of a complete basis

{e1, ea} as follows: [¢) = 23:1 le;) {ei| ). In this case, the complete basis is made up of
|3, £3),-
20 F2/s




To get the relevant probabilities, we need to square these results, which yields
les]? = % Hence, the possible results obtained by measuring S, are:

)

—l—%h, with probability

—%h ,  with probability

N N[—=

Thus, the measurement of S, never gives a unique result., This could have
been anticipated, since at ¢ = 0, the initial state ‘%, %>z is equally likely to be
either spin-up or spin-down with respect to the y-axis. But, a B field applied in
the ¢ direction does not modify the y-component of the spin.

However, the measurement of .S, and S, can give unique results at some fixed
time t = T > 0, if B (or equivalently, wy = —yB) takes on particular values.
Noting that for any integer n,

cos(nm) = (—=1)", sin[(n + 3)7] = (—1)",
we see that:
o If wyT = nm, then the measurement of S, yields:
1. pure spin up, if n is even,

2. pure spin down, if n is odd.

o If wyT = (n + 3)m, then the measurement of S, yields:
1. pure spin up, if n is even,

2. pure spin down, if n is odd.

Using wy = —B, it follows that the measurement of S, is unique if
n+1
=2 for n=0,1,2,...,
T

and the measurement of S, is unique if

nmw

=—, for n=1,2,3,....
YT

Note that the integer n is restricted to non-negative values in the first case and
positive values in the second case, since by assumption 7" > 0 (and B > 0).
Finally, as previously noted, the measurement of .S, is never unique.



