
Physics 139B Solutions to Homework Set 1 Fall 2009

1. Liboff, problem 11.27 on page 498.

(a) Let A be an hermitian operator. We first demonstrate that

(eiA)† = e−iA .

To prove this, we use the series expansion that defines the exponential,

eiA =

∞∑

n=0

(iA)n

n!
.

The sum converges for any operator A. Then,

e−iA =

∞∑

n=0

(−iA)n
n!

=

∞∑

n=0

[(iA)†]n

n!
=

[
∞∑

n=0

(iA)n

n!

]†
= (eiA)† ,

where we have used the fact that (iA)† = −iA† = −iA, since A is hermitian. In
the above derivation, we have also used the fact that (A+B)† = A† +B†, which
also holds for the sum of an infinite number of terms, assuming that the sum
converges.

A unitary operator Û is defined as an operator that satisfies ÛÛ † = Û †Û = I,
where I is the identity operator. Defining Û ≡ eiA, we see that:

ÛÛ † = eiA(eiA)† = eiAe−iA = ei(A−A) = e0 = I . (1)

In this derivation, I used the fact that for any two operators A and B,1

eAeB = eBeA = eA+B , if and only if AB = BA . (2)

This result applies in eq. (1) since iA and −iA clearly commute. Finally, we use
the fact that e0 = I, where 0 is the zero operator, which is again a consequence
of the definition of the exponential of an operator via its series expansion.

Setting A = −Ĥt/~, we note that if Ĥ is hermitian, then so is A. It then

follows that Û = exp(−iĤt/~) is unitary.

(b) Given |ψ(t)〉 = Û |ψ(0)〉, it follows that 〈ψ(t)| = 〈ψ(0)| Û †. Hence, using
the results of part (a),

〈ψ(t) |ψ(t)〉 = 〈ψ(0)|U †U |ψ(0)〉 = 〈ψ(0)| I |ψ0〉 = 〈ψ(0) |ψ(0)〉 .

That is, the normalization of ψ is independent of the time t.

1For a proof of eq. (2), see, e.g., Jacob T. Schwartz, Introduction to Matrices and Vec-

tors (Dover Publications, Inc., Mineola, NY, 2001) pp. 157–159, which can be viewed at
http://books.google.com.
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2. Liboff, problem 11.39 on page 512.

(a) We are given a wave function of a rigid rotator,

ψ(t) =
1√
14



1
2
3


 e−iEt/~ , E ≡ ~

2/I .

Using the results of Liboff, problem 11.38, we can write at time t = 0:

1√
14



1
2
3


 = − 1√

7
ξ(0)x +

1√
7
(
√
2− 1) ξ(−1)

x +
1√
7
(
√
2 + 1) ξ(1)x ,

where,

ξ(0)x ≡ 1√
2




1
0

−1


 , ξ(−1)

x ≡ 1

2




1

−
√
2
1


 , ξ(1)x ≡ 1

2




1√
2
1


 ,

are eigenstates of L̂x, with eigenvalues, 0, −~ and +~, respectively. Note that the

ξ
(m)
x are all eigenstates of ~L

2
with eigenvalue 2~2. Thus,

ψ(t) =

[
− 1√

7
ξ(0)x +

1√
7
(
√
2− 1) ξ(−1)

x +
1√
7
(
√
2 + 1) ξ(1)x

]
e−iEt/~

since the energy E is independent of the value of m. The probability that a
measurement Lx finds a value −~ is simply the absolute square of the coefficient
of ξ

(−1)
x , namely

1

7
(
√
2− 1)2 =

3− 2
√
2

7
.

(b) After the measurement finds the value of Lx = −~, the state of the system

is given simply by ξ
(−1)
x . Including the time-dependent factor, e−iEt/~, the column

vector representation of the state is:

1

2




1

−
√
2
1


 e−iEt/~ ,

up to an overall unobservable phase factor.
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3. Prove the following identities involving the Pauli spin matrices.

(a) σiσj = δijI + i

3∑

k=1

ǫijkσk,

This identity is verified by explicitly multiplying the 2 × 2 matrices, σiσj , in
the nine possible cases for i, j = 1, 2, 3. Using

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

it is easy to obtain:

σ1σ2 = −σ2σ1 = iσ3 , σ2σ3 = −σ3σ2 = iσ1 , σ3σ1 = −σ1σ3 = iσ2 ,

(σ1)
2 = (σ2)

2 = (σ3)
2 = I ,

where I is the 2 × 2 identity matrix. These nine equations are identical to iden-
tity (a) above.

(b) (~σ ·~a)(~σ ·~b) = (~a·~b)I + i~σ ·(~a ×~b),

Multiply identity (a) above by aibj and sum over i and j, where each index
can take on three values, 1, 2, and 3. Note the following results:

3∑

i=1

σiai = ~σ·~a ,

3∑

j=1

σjbj = ~σ ·~b ,

3∑

i=1

3∑

j=1

δijaibj = ~a·~b .

Moreover, using
3∑

i=1

3∑

j=1

ǫijkaibj = (~a ×~b)k ,

it follows that:
3∑

i=1

3∑

j=1

3∑

k=1

ǫijkaibjσk = ~σ ·(~a ×~b) ,

and we immediately obtain identity (b). That is, identity (b) is really identity (a)
in disguise!

(c) exp
(
− i

2
θŵ·~σ

)
= I cos(θ/2)− iŵ·~σ sin(θ/2),

where I is the 2×2 identity matrix, ~a and ~b are ordinary vectors, and ŵ is a unit
vector.

Using the series expansion for the matrix exponential,

exp

(
− i

2
θŵ·~σ

)
=

∞∑

n=0

1

n!

(−iθ
2

)n

(ŵ·~σ)n . (3)
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Using identity (b) above, it follows that

(ŵ·~σ)2 = (ŵ·~σ)(ŵ·~σ) = I ,

where we have used the fact that ŵ is a unit vector to obtain ŵ · ŵ = 1 (and of
course, ŵ × ŵ = 0). Hence, for any integer n,

(ŵ·~σ)2n = I , (ŵ·~σ)2n+1 = ŵ·~σ .

Inserting these results back into the series [eq. (3) we obtain:

exp

(
− i

2
θŵ·~σ

)
= I

∞∑

n=0

1

(2n)!

(−iθ
2

)2n

+ ŵ·~σ

∞∑

n=0

1

(2n+ 1)!

(−iθ
2

)2n+1

= I
∞∑

n=0

(−1)n

(2n)!

(
θ

2

)2n

− iŵ·~σ

∞∑

n=0

(−1)n

(2n+ 1)!

(
θ

2

)2n+1

= I cos(θ/2)− iŵ·~σ sin(θ/2) ,

after summing up the well known series for the sine and cosine, and noting that
(−i)2n = (−1)n.

4. Consider the spinor α ≡
∣∣1
2
, 1

2

〉
ẑ
[cf. eq.(11.72) of Liboff]. I explicitly exhibit

the subscript ẑ to emphasize that
∣∣1
2
, 1

2

〉
ẑ
is an eigenstate of Sz with eigenvalue

1
2
~.

(a) Show (either geometrically or algebraically) that if the z-axis is rotated by
an angle θ about a fixed axis ŵ = (− sin φ , cosφ , 0) [where the right-hand rule
defines the direction of the unit vector ŵ perpendicular to the rotation plane],
then the z-axis will end up pointing along the direction given by

n̂ = (sin θ cosφ , sin θ sinφ , cos θ) .

Consider the active rotation of a unit vector, ẑ, that ends up pointing along
the n̂ direction, where n̂ is a vector that points in a direction with polar angle θ
(with respect to the z-axis) and azimuthal angle φ (defined in the usual way by
projecting n̂ in the x–y plane and measuring the angle with respect to the x-axis).
Note that in performing this rotation, we have rotated ẑ by an angle θ about a
fixed axis, ŵ, which lies in the x–y plane perpendicular to the plane containing ẑ

and n̂. The direction of ŵ is determined by the right hand rule. I claim that:

ŵ =
ẑ × n̂

|ẑ × n̂| ,

where |ẑ × n̂| is the length of the vector ẑ × n̂. This vector clearly satisfies the
property that ẑ × n̂ is perpendicular to the plane containing ẑ and n̂ as required.
Moreover, ẑ × n̂ points in a direction that is determined by the right-hand rule.
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To complete the proof, simply compute ẑ × n̂.

ẑ × n̂ = det




x̂ ŷ ẑ

0 0 1
sin θ cosφ sin θ sinφ cos θ




= −x̂ sin θ sin φ+ ŷ sin θ cosφ .

The length of the vector ẑ × n̂ is

|ẑ × n̂| =
[
sin2 θ sin2 φ+ sin2 θ cos2 φ

]1/2
= sin θ ,

Hence, we conclude that

ŵ =
ẑ × n̂

|ẑ × n̂| = −x̂ sin φ+ ŷ cosφ = (− sinφ , cosφ , 0) .

(b) Define
∣∣1
2
, 1

2

〉
n̂
to be an eigenstate of ~S ·n̂ with eigenvalue 1

2
~. Express∣∣1

2
, 1

2

〉
n̂
with respect to the basis α =

∣∣1
2
, 1

2

〉
ẑ
=
(
1
0

)
and β =

∣∣1
2
, −1

2

〉
ẑ
=
(
0
1

)
.

Using ~S = 1
2
~~σ, we can work out the dot product, ~S ·n̂:

~S ·n̂ =
~

2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

In class, we worked out the eigenvectors of ~S ·n̂. The eigenvector corresponding
to eigenvalue 1

2
~ is given by

∣∣ 1
2
, 1

2

〉
n̂

= eiδ
(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
, (4)

where eiδ is an arbitrary phase factor. This means that we can write:
∣∣1
2
, 1

2

〉
n̂
= eiδ

[
α cos(θ/2)e−iφ/2 + β sin(θ/2)eiφ/2

]
.

(c) Define Rŵ(θ) to be the rotation operator that corresponds to a rotation of
state vectors by an angle θ about the ŵ axis [defined in part (a)]. For a spin-1

2

particle, I claim that

Rŵ(θ) = exp

(
− i

2
θŵ·~σ

)
.

Let us put this operator to the test. Prove that

Rŵ(θ)
∣∣1
2
, 1

2

〉
ẑ
=
∣∣1
2
, 1

2

〉
n̂
.

First, note that since ŵ = (− sinφ , cosφ , 0), it follows that:

ŵ · ~σ =

(
0 − sin φ− i cosφ

−sinφ + i cosφ 0

)
= −i

(
0 e−iφ

−eiφ 0

)
.
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Using the result of problem 3(c),

Rŵ(θ) = exp

(
− i

2
θŵ·~σ

)
= I cos(θ/2)− iŵ·~σ sin(θ/2)

=

(
cos(θ/2) −e−iφ sin(θ/2)

eiφ sin(θ/2) cos(θ/2)

)
.

Using the fact that the state
∣∣1
2
, 1

2

〉
ẑ
is represented by ( 1

0 ), it follows that:

Rŵ(θ)
∣∣1
2
, 1

2

〉
ẑ
=

(
cos(θ/2) −e−iφ sin(θ/2)

eiφ sin(θ/2) cos(θ/2)

)(
1

0

)

=

(
cos(θ/2)

eiφ sin(θ/2)

)
= eiφ/2

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
.

Indeed, Rŵ(θ)
∣∣1
2
, 1

2

〉
ẑ
is an eigenstate of ~S · n̂ with eigenvalue 1

2
~. Thus, choosing

δ = φ/2 in eq. (4), we conclude that:

Rŵ(θ)
∣∣1
2
, 1

2

〉
ẑ
=
∣∣1
2
, 1

2

〉
n̂
.

5. Consider a spin-1
2
particle of magnetic moment ~µ = γ~S, where γ ≡ e/mc. At

time t = 0, the state of the system is given by α ≡
∣∣1
2
, 1

2

〉
ẑ
(i.e., spin-up).

(a) If the observable Sx is measured at time t = 0, what results can be found
and with what probabilities?

To see what the possible results of a measurement of Sx, consider the initial
state,

∣∣1
2
, 1

2

〉
ẑ
. Expand this state in terms of the two possible states,

∣∣1
2
, 1

2

〉
x̂
and∣∣1

2
, −1

2

〉
x̂
that can result from a measurement of Sx. These two states are the

normalized eigenstates of Sx = 1
2
~σx, namely,

∣∣ 1
2
, 1

2

〉
x̂
=

1√
2

(
1
1

)
,

∣∣1
2
, −1

2

〉
x̂
=

1√
2

(
−1
1

)
. (5)

Using the above results, it is easy to determine that:

∣∣1
2
, 1

2

〉
ẑ
=

(
1
0

)
=

1√
2

∣∣1
2
, 1

2

〉
x̂
− 1√

2

∣∣1
2
, −1

2

〉
x̂
.

The possible measurements of Sx yield either 1
2
~ or −1

2
~, with equal probabilities

of 1
2
in the two cases (corresponding to the absolute square of the coefficients of∣∣1

2
, ±1

2

〉
x̂
above).

(b) Instead of performing the measurement specified in part (a), we let the
system evolve under the influence of a uniform magnetic field B parallel to the
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y-axis (i.e., ~B = Bŷ with B > 0). Calculate the state of the system at time t
with respect to the {α , β} basis.

The Hamiltonian of the system is

H = −γ~S · ~B = −γBSy = −1
2
~γBσy .

Thus, |ψ(t)〉 = U(t) |ψ(0)〉, where

U(t) = e−iHt/~ = exp
(
1
2
iγBσyt

)
.

Let us define ω0 ≡ −γB. Then,

U(t) = exp
(
−1

2
iω0tσy

)
= I cos(ω0t/2)− iσy sin(ω0t/2)

=

(
cos(ω0t/2) − sin(ω0t/2)

sin(ω0t/2) cos(ω0t/2)

)
.

Here we have used the results of problem 3(c), and have identified ŵ = (0 , 1 , 0).
Note that it is critical that ŵ is a unit vector. This requirement allows us to
unambiguously identify θ ≡ ω0t.

Hence, the state of the system at time t is:

|ψ(t)〉 = U(t)

(
1
0

)
=

(
cos(ω0t/2)

sin(ω0t/2)

)
= α cos(ω0t/2) + β sin(ω0t/2) . (6)

(c) At a fixed time t = T > 0, we measure one of the observables Sx, Sy and
Sz. For each case, what values can be found and with what probabilities? Is there
any value of B (which may depend on T ) such that one of the above measurements
yields a unique result?

We now measure either Sx, Sy or Sz. To address each case separately, we
should expand the spinor obtained in part (b) in terms of a new basis consisting
of the eigenstates of Sx, Sy or Sz, respectively.

First, we expand in terms of eigenstates of Sz. But, this has already been done
in part (b):

|ψ(t)〉 = cos(ω0θ/2)
∣∣1
2
, 1

2

〉
ẑ
+ sin(ω0θ/2)

∣∣1
2
, −1

2

〉
ẑ
.

Thus the possible results obtained by measuring Sz are:

+1
2
~ , with probability cos2(ω0t/2) =

1
2
(1 + cosω0t) ,

−1
2
~ , with probability sin2(ω0t/2) =

1
2
(1− cosω0t) ,

where the probabilities are identified as the absolute squares of the coefficients of∣∣1
2
, ±1

2

〉
ẑ
, respectively.
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Second, we expand |ψ(t)〉 in terms of eigenstates of Sx:

|ψ(t)〉 = c+
∣∣1
2
, 1

2

〉
x̂
+ c−

∣∣ 1
2
, −1

2

〉
x̂
,

where2

c± = x̂

〈
1
2
,±1

2

∣∣ψ(t)〉 .
Using eqs. (5) and (6), one can easily evaluate c±,

c+ =

(
1√
2

1√
2

)(
cos(ω0t/2)

sin(ω0t/2)

)
=

1√
2
[cos(ω0t/2) + sin(ω0t/2)] ,

c− =

(
− 1√

2

1√
2

)(
cos(ω0t/2)

sin(ω0t/2)

)
=

1√
2
[− cos(ω0t/2) + sin(ω0t/2)] .

To get the relevant probabilities, we need to square these results:

|c+|2 = 1
2

[
sin2(ω0t/2) + cos2(ω0t/2) + 2 sin(ω0t/2) cos(ω0t/2)

]
= 1

2
[1 + sin(ω0t)] ,

|c−|2 = 1
2

[
sin2(ω0t/2) + cos2(ω0t/2)− 2 sin(ω0t/2) cos(ω0t/2)

]
= 1

2
[1− sin(ω0t)] .

Hence, the possible results obtained by measuring Sx are:

+1
2
~ , with probability 1

2
(1 + sinω0t) ,

−1
2
~ , with probability 1

2
(1− sinω0t) .

Finally, we expand |ψ(t)〉 in terms of eigenstates of Sy. Here, we note that the
normalized eigenstates of Sy =

1
2
~σy are:

∣∣1
2
, 1

2

〉
ŷ
=

1√
2

(
1
i

)
,

∣∣1
2
, −1

2

〉
ŷ
=

1√
2

(
1

−i

)
. (7)

Following the previous computation, we write:

|ψ(t)〉 = c+
∣∣1
2
, 1

2

〉
ŷ
+ c−

∣∣ 1
2
, −1

2

〉
ŷ
,

where
c± = ŷ

〈
1
2
,±1

2

∣∣ψ(t)〉 .
Using eqs. (6) and (7), one can easily evaluate c±. Keep in mind that in this com-
putation, the adjoint spinor ŷ

〈
1
2
,±1

2

∣∣ appears, so we have to complex conjugate
the results of eq. (7), which changes the sign of i. Hence,

c+ =

(
1√
2

−i√
2

)(
cos(ω0t/2)

sin(ω0t/2)

)
=

1√
2
e−iω0t/2 ,

c− =

(
− 1√

2

i√
2

)(
cos(ω0t/2)

sin(ω0t/2)

)
=

1√
2
eiω0t/2 .

2Here, we are using the fact that we can expand any state |ψ〉 in terms of a complete basis

{e1 , e2} as follows: |ψ〉 =
∑

2

i=1
|ei〉 〈ei|ψ〉. In this case, the complete basis is made up of∣∣1

2
, ± 1

2

〉
x̂
.
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To get the relevant probabilities, we need to square these results, which yields
|c±|2 = 1

2
. Hence, the possible results obtained by measuring Sy are:

+1
2
~ , with probability 1

2
,

−1
2
~ , with probability 1

2
.

Thus, the measurement of Sy never gives a unique result., This could have
been anticipated, since at t = 0, the initial state

∣∣1
2
, 1

2

〉
ẑ
is equally likely to be

either spin-up or spin-down with respect to the y-axis. But, a B field applied in
the ŷ direction does not modify the y-component of the spin.

However, the measurement of Sx and Sz can give unique results at some fixed
time t = T ≥ 0, if B (or equivalently, ω0 ≡ −γB) takes on particular values.
Noting that for any integer n,

cos(nπ) = (−1)n , sin[(n+ 1
2
)π] = (−1)n ,

we see that:

• If ω0T = nπ, then the measurement of Sz yields:

1. pure spin up, if n is even,

2. pure spin down, if n is odd.

• If ω0T = (n+ 1
2
)π, then the measurement of Sx yields:

1. pure spin up, if n is even,

2. pure spin down, if n is odd.

Using ω0 ≡ −γB, it follows that the measurement of Sx is unique if

B =
n+ 1

2

|γ|T , for n = 0, 1, 2, . . . ,

and the measurement of Sz is unique if

B =
nπ

|γ|T , for n = 1, 2, 3, . . . .

Note that the integer n is restricted to non-negative values in the first case and
positive values in the second case, since by assumption T ≥ 0 (and B > 0).
Finally, as previously noted, the measurement of Sy is never unique.
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