
Physics 139B Solutions to Homework Set 2 Fall 2009

1. Liboff, problem 9.32 on page 395.

(a) The key equation is given in Table 9.4 on p. 379 of Liboff:

L± |ℓ ,m〉 = ~ [(ℓ∓m)(ℓ±m+ 1)]1/2 |ℓ ,m± 1〉 . (1)

We will also need to use:

~L2 |ℓ ,m〉 = ~
2ℓ(ℓ+ 1) |ℓ ,m〉 . (2)

When coupling two p states, there are nine possible states in the product basis:
|1 , mℓ1〉1 ⊗ |1 , mℓ2〉2, where mℓ1, mℓ2 = +1 , 0 , −1. Using

~L2 = ~L2
1 + ~L2

2 + 2L1zL2z + L1+L2− + L1−L2+ ,

we can operate with ~L2 on the nine states of the product basis:

~L2 |1 , 1〉1 ⊗ |1 , 1〉2 = 6~
2 |1 , 1〉1 ⊗ |1 , 1〉2 ,

~L2 |1 , 1〉1 ⊗ |1 , 0〉2 = 4~
2 |1 , 1〉1 ⊗ |1 , 0〉2 + 2~

2 |1 , 0〉1 ⊗ |1 , 1〉2 ,
~L2 |1 , 1〉1 ⊗ |1 ,−1〉2 = 2~

2 |1 , 1〉1 ⊗ |1 ,−1〉2 + 2~
2 |1 , 0〉1 ⊗ |1 , 0〉2 ,

~L2 |1 , 0〉1 ⊗ |1 , 1〉2 = 4~
2 |1 , 0〉1 ⊗ |1 , 1〉2 + 2~

2 |1 , 1〉1 ⊗ |1 , 0〉2 ,
~L2 |1 , 0〉1 ⊗ |1 , 0〉2 = 4~

2 |1 , 0〉1 ⊗ |1 , 0〉2 + 2~
2 |1 , 1〉1 ⊗ |1 ,−1〉2 + 2~

2 |1 ,−1〉1 ⊗ |1 , 1〉2 ,
~L2 |1 , 0〉1 ⊗ |1 ,−1〉2 = 4~

2 |1 , 0〉1 ⊗ |1 ,−1〉2 + 2~
2 |1 ,−1〉1 ⊗ |1 , 0〉2 ,

~L2 |1 ,−1〉1 ⊗ |1 , 1〉2 = 2~
2 |1 ,−1〉1 ⊗ |1 , 1〉2 + 2~

2 |1 , 0〉1 ⊗ |1 , 0〉2 ,
~L2 |1 ,−1〉1 ⊗ |1 , 0〉2 = 4~

2 |1 ,−1〉1 ⊗ |1 , 0〉2 + 2~
2 |1 , 0〉1 ⊗ |1 ,−1〉2 ,

~L2 |1 ,−1〉1 ⊗ |1 ,−1〉2 = 6~
2 |1 ,−1〉1 ⊗ |1 ,−1〉2 .

In evaluating the above, I replaced ~L2 with ~L2
1+~L2

2 +2L1zL2z +L1+L2−+L1−L2+,
and then used eqs. (1) and (2) repeatedly.

Likewise, we can operate with ~L2 on the nine states of the total angular mo-
mentum bases, |ℓ ,m ; 1 1〉,

~L2 |2 , m ; 1 1〉 = 6~
2 |2 , m ; 1 1〉 , m = 2 , 1 , 0 , −1 , −2 ,

~L2 |1 , m ; 1 1〉 = 2~
2 |2 , m ; 1 1〉 , m = 1 , 0 , −1 ,

~L2 |0 , 0 ; 1 1〉 = 0 ,

It is now straightforward to verify Table 9.5 on p. 394 of Liboff. First, by
operating with Lz = Lz1 + Lz2, it follows that in the expansion

|ℓm ; ℓ1 ℓ2〉 =
∑

m1,m2

Cm1m2
|ℓ1m1〉1 ⊗ |ℓ2m2〉2 ,
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only terms with m = m1 +m2 appear on the right hand side above. Second, by
operating with ~L2 and using the results above, we can verify the entries of Table
9.5. We give two examples. To check that

|2 , 1 ; 1 , 1〉 =
√

1
2

[

|1 , 1〉1 ⊗ |1 , 0〉2 + |1 , 0〉1 ⊗ |1 , 1〉2
]

,

we note that ~L2 |2 , 2 ; 1 1〉 = 6~
2 |2 , 2 ; 1 1〉, and

~L2
[

|1 , 1〉1 ⊗ |1 , 0〉2 + |1 , 0〉1 ⊗ |1 , 1〉2
]

= 6~
2
[

|1 , 1〉1 ⊗ |1 , 0〉2 + |1 , 0〉1 ⊗ |1 , 1〉2
]

,

as expected. To check that

|0 0 ; 1 1〉 =
√

1
3

[

|1 , 1〉1 ⊗ |1 ,−1〉2 − |1 , 0〉1 ⊗ |1 , 0〉2 + |1 ,−1〉1 ⊗ |1 , 1〉2
]

,

we note that ~L2 |0 0 ; 1 1〉 = 0, and

~L2 [|1 , 1〉1 ⊗ |1 ,−1〉2 − |1 , 0〉1 ⊗ |1 , 0〉2 + |1 ,−1〉1 ⊗ |1 , 1〉2]

= (2 − 2) |1 , 1〉1 ⊗ |1 ,−1〉2 + (2 + 2 − 4) |1 , 0〉1 ⊗ |1 , 0〉2
+(2 − 2) |1 ,−1〉1 ⊗ |1 , 1〉2 = 0 .

The other seven entries of Table 9.5 are easily checked in the same way using the
results obtained above.

(b) The Clebsch-Gordon coefficients involved in the expansion of the state
|0 0 ; 1 1〉 are:

C1,−1 = −C0,0 = C−1,1 =
√

1
3
.

(c) The inner product 〈2 0 ; 1 1| 0 0 ; 1 1〉 = 0 as the total angular momentum
basis states are orthonormal. This can be also be checked by expanding in terms
of the direct product basis, and using the fact that the direct basis product states
are orthonormal.

2. Liboff, problem 9.46 on page 400.

We are asked to evaluate Y m
ℓ (π − θ , φ+ π). Consider the formula,

Y m
ℓ (θ , φ) =

[

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!

]1/2

Pm
ℓ (cos θ)eimφ ,

which follows from eqs. (9.70) and (9.77) of Liboff. First, we note that:

cos(π − θ) = − cos θ .
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The last line of Table 9.2 indicates that Pℓ(− cos θ) = (−1)ℓPℓ(cos θ). The defini-
tion of Pm

ℓ (cos θ) given in terms of Pℓ(cos θ) in Table 9.3 implies that

Pm
ℓ (− cos θ) = (−1)ℓ+mPm

ℓ (cos θ) .

Finally, using the definition of Y m
ℓ (θ , φ) given above, it follows that:

Y m
ℓ (π − θ , φ+ π) = (−1)ℓ+meimπY m

ℓ (θ , φ)

= (−1)ℓ+m(−1)mY m
ℓ (θ , φ)

= (−1)ℓY m
ℓ (θ , φ) ,

after noting that eimπ = (eiπ)m = (−1)m and (−1)2m = +1 for integer m. Thus,
we have proven that the parity of of the state |ℓm〉 (odd or even) is the same as
that of ℓ.

3. Liboff, problem 11.61 on page 541.

The spin-one matrices are given by eq. (11.66) of Liboff:

Sx =
~√
2





0 1 0
1 0 1
0 1 0



 , Sy =
~√
2





0 −i 0
i 0 −i
0 i 0



 , Sz =
~√
2





1 0 0
0 0 0
0 0 −1



 .

We can compute the expectation values of Sx, Sy and Sz with respect to the state

ξ =





a
b
c



 ,

as follows:

〈Sx〉 = 〈ξ |Sx| ξ〉 = ξ†Sx ξ =
~√
2

(a∗ b∗ c∗)





0 1 0
1 0 1
0 1 0









a
b
c



 =
~√
2

2Re[b∗(a+ c)] ,

〈Sy〉 = 〈ξ |Sy| ξ〉 = ξ†Sy ξ =
~√
2

(a∗ b∗ c∗)





0 −i 0
i 0 −i
0 i 0









a
b
c



 =
−~√

2
2Im[b∗(a− c)] ,

〈Sz〉 = 〈ξ |Sz| ξ〉 = ξ†Sz ξ =
~√
2

(a∗ b∗ c∗)





1 0 0
0 0 0
0 0 −1









a
b
c



 =
~√
2

(|a|2 − |c|2) ,

We shall also impose the normalization condition,

|a|2 + |b|2 + |c|2 = 1 .
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To determine whether a state exists such that 〈Sx〉 = 〈Sy〉 = 〈Sz〉 = 0, we
must solve the simultaneous equations:

Re[b∗(a + c)] = 0 ,

Im[b∗(a− c)] = 0 ,

|a|2 − |c|2 = 0 ,

|a|2 + |b|2 + |c|2 = 1 . (3)

There are numerous solutions. For example, b = 0 and |a| = |c| =
√

1
2

is clearly

a solution. Another possible solution is a = c = 0 and |b| = 1. To understand the
physical meaning of these solutions, note that the vectors

1√
2





1
0

−1



 ,
1√
2





1
0
1



 ,
1√
2





0
1
0



 ,

are eigenstates, respectively of Sx, Sy and Sz with eigenvalue zero in each case.
Clearly, any eigenstate of Sx with eigenvalue zero will have 〈Sx〉 = 0. But it is
easy to see that eigenstates of Sy and Sz with eigenvalue zero will also satisfy
〈Sx〉 = 0. For example, using eq. (11.68) of Liboff, we see that

1√
2





1
0
1



 =
√

1
2

[

ξ(1)
x + ξ(−1)

x

]

,

1√
2





0
1
0



 =
√

1
2

[

ξ(1)
x − ξ(−1)

x

]

,

where the ξ
(±1)
x are eigenstates of Sx with eigenvalues ±~. That is, these states

are superpositions of states of opposite sign Sx values with amplitudes of equal
magnitude. Hence the Sx value averages to zero, i.e., 〈Sx〉 = 0. A similar argument
can be made to show that 〈Sy〉 = 〈Sz〉 = 0.

NOTE ADDED: It is easy to prove the following general result. Let ξ be an
eigenstate of ~S ·n̂ with eigenvalue zero. Then, 〈Sx〉 = 〈Sy〉 = 〈Sz〉 = 0, where the
expectation values are defined by 〈Si〉 ≡ 〈ξ|Si |ξ〉.

To prove this, we exploit the commutation relations satisfied by the Si,

[Si , Sj] = i~

3
∑

k=1

ǫijkSk .

It follows that

[~S ·n̂1 , ~S ·n̂2] =
∑

i,j

n̂1in̂2j [Si , Sj] = i~
∑

ijk

ǫijkn̂1in̂2jSk = i~~S ·(n̂1 × n̂2) .
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Suppose that we choose n̂1 = n̂, where ~S ·n̂ |ξ〉 = 0 . Then

〈[~S ·n̂ , ~S ·n̂2]〉 = i~〈~S ·(n̂ × n̂2)〉 .

But,

〈[~S ·n̂ , ~S ·n̂2]〉 = 〈ξ| [~S ·n̂ , ~S ·n̂2] |ξ〉 = 〈ξ| (~S ·n̂ ~S ·n̂2 − ~S ·n̂2
~S ·n̂ |ξ〉 = 0 .

after applying ~S ·n̂ |ξ〉 = 0 and 〈ξ| ~S ·n̂ = 0. Hence, it follows that:

〈~S ·(n̂ × n̂2)〉 ≡ 〈ξ| ~S ·(n̂ × n̂2) |ξ〉 = 0 . (4)

If n̂ points in some direction other than x̂, ŷ, and ẑ, then it is easy to show
that one can always choose n̂2 such that n̂ × n̂2 points in either the x̂, ŷ, or ẑ

directions. Choosing the appropriate n̂2, it then follows from eq. (4) that

〈Sx〉 = 〈Sy〉 = 〈Sz〉 = 0 . (5)

Next, suppose n̂ = ẑ . Then, 〈Sz〉 = 〈ξ|Sz |ξ〉 = 0, since |ξ〉 is an eigenstate of
Sz with zero eigenvalue. In this case, if n̂2 = x̂, then n̂ × n̂2 = ŷ. Similarly, if
n̂2 = −ŷ, then n̂ × n̂2 = x̂. Consequently, eq. (4) implies that 〈Sx〉 = 〈Sy〉 = 0.
A similar argument can be made if n̂ = x̂ or n̂ = ŷ. In all possible cases, one
arrives at eq. (5). Hence, we conclude that if ξ is an eigenstate of ~S ·n̂ with
eigenvalue zero, then 〈Sx〉 = 〈Sy〉 = 〈Sz〉 = 0.

Applying this general result to problem 3, we conclude that the most general
ξ for which 〈Sx〉 = 〈Sy〉 = 〈Sz〉 = 0 is an eigenstate of ~S ·n̂ with eigenvalue zero,
for any possible n̂. I will now demonstrate that

ξ =





a
b
c



 ,

is an eigenstate of ~S ·n̂ with eigenvalue zero (for some n̂) if and only if a, b and
c satisfy the simultaneous equations given in eq. (3). Using the spin-one matrices
~S given above,

~S · n̂ =





cos θ sin θe−iφ 0
sin θeiφ 0 sin θe−iφ

0 sin θeiφ − cos θ



 ,

where n̂ = (sin θ cosφ , sin θ sinφ , cos θ). Solving the equation,




cos θ sin θe−iφ 0
sin θeiφ 0 sin θe−iφ

0 sin θeiφ − cos θ









a
b
c



 = 0 ,

we find:

a cos θ + b sin θe−iφ = 0 ,

sin θ(eiφa+ e−iφc) = 0 ,

b sin θeiφ − c cos θ = 0 ,
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where a, b and c satisfy the normalization condition |a|2 + |b|2 + |c|2 = 1. I will
now show that these equations are equivalent to eq. (3). For example, if sin θ = 0,
then a = c = 0 and |b| = 1 [which is one of the solutions of eq. (3)]. If sin θ 6= 0,
then c = −e2iφa, which is equivalent to |a| = |c|. Finally, adding and subtracting
the first and third equations above yield:

(a− c) cos θ + 2b sin θ cosφ = 0 ,

(a+ c) cos θ − 2ib sin θ sinφ = 0 .

Multiply these equations by b∗ to obtain:

b∗(a− c) cos θ = −2|b|2 sin θ cos φ ,

b∗(a + c) cos θ = 2i|b|2 sin θ sin φ .

These two equations imply that Re[b∗(a + c)] = Im[b∗(a − c)] = 0, which again

reproduces the results of eq. (3). Thus, if ξ is an eigenstate of ~S ·n̂ with eigenvalue
zero, then the components of ξ satisfy eq. (3), which of course implies that 〈Sx〉 =
〈Sy〉 = 〈Sz〉 = 0. The converse can also be proven. Namely, if the components of

ξ satisfies eq. (3) then ξ is an eigenstate of ~S ·n̂ with eigenvalue zero. Simply use
the above equations to show that θ and φ (which determine n̂) can be determined
from a, b, and c. One finds:

e2iφ = − c

a
, tan θ = −a

b
eiφ .

Note that the case of a = 0 implies that c = 0 and sin θ = 0, in which case φ is
not well defined. There is one overall phase of a, b and c which is arbitrary (since
it is not fixed by the normalization condition).

4. Start with the time-dependent Schrodinger equation for a charged particle in at
external electromagnetic field in the Coulomb gauge. Denote the electromagnetic
scalar and vector potentials by φ and ~A. Then,

i~
∂ψ

∂t
=

−~
2

2m
~∇2ψ +

ie~

mc
~A· ~∇ψ +

e2

2mc2
~A 2ψ + (V + eφ)ψ . (6)

The complex conjugate of this equation is:

−i~∂ψ
∗

∂t
=

−~
2

2m
~∇2ψ∗ − ie~

mc
~A· ~∇ψ∗ +

e2

2mc2
~A 2ψ∗ + (V + eφ)ψ∗ . (7)

Multiply eq. (6) by ψ∗ and eq. (7) by ψ and subtract the two resulting equations.
The end result is:

i~

(

ψ∗∂ψ

∂t
+ ψ

∂ψ∗

∂t

)

=
−~

2

2m

[

ψ∗~∇2ψ − ψ~∇2ψ∗
]

+
ie~

mc

[

ψ∗ ~A· ~∇ψ + ψ ~A· ~∇ψ∗
]

.

(8)
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The above result can be simplified by applying the following three identities:

ψ∗∂ψ

∂t
+ ψ

∂ψ∗

∂t
=

∂

∂t
(ψ∗ψ) , (9)

ψ∗~∇2ψ − ψ~∇2ψ∗ = ~∇·

(

ψ∗~∇ψ − ψ~∇ψ∗
)

, (10)

ψ∗ ~A· ~∇ψ + ψ ~A· ~∇ψ∗ = ~∇·( ~Aψ∗ψ) − ψ∗ψ~∇· ~A . (11)

For example, in deriving eq. (11) above, we used the following properties of ~∇:

~∇·( ~Aψ∗ψ) = ~A· ~∇(ψ∗ψ) + ψ∗ψ~∇· ~A ,

~∇(ψ∗ψ) = ψ∗~∇ψ + ψ~∇ψ∗ .

However, in the Coulomb gauge, ~∇· ~A = 0, in which case eq. (11) implies that:

ψ∗ ~A· ~∇ψ + ψ ~A· ~∇ψ∗ = ~∇·( ~Aψ∗ψ) . (12)

Applying eqs. (9), (10) and (12) to eq. (8), one obtains:

∂

∂t
(eψ∗ψ) = −~∇·

{

e~

2im

[

ψ∗~∇ψ − ψ~∇ψ∗
]

− e2

mc
~Aψ∗ψ

}

. (13)

If we identify

~J ≡ e~

2im

[

ψ∗~∇ψ − ψ~∇ψ∗
]

− e2

mc
~Aψ∗ψ , (14)

ρ ≡ eψ∗ψ , (15)

then eq. (13) can be rewritten as:

~∇· ~J +
∂ρ

∂t
= 0 ,

which is the continuity equation. Note that if we employ the momentum operator
~p = −i~~∇, then we can rewrite ~J as

~J =
e

m
Re

[

ψ∗

(

~p − e ~A

c

)

ψ

]

. (16)

In order to verify the above result, note that Re z ≡ 1
2
(z + z∗). Hence, eq. (16)

yields:

~J =
e

2m

[

ψ∗

(

~

i
~∇ − e ~A

c

)

ψ + ψ

(

~

i
~∇ − e ~A

c

)

ψ∗

]

=
e~

2im

[

ψ∗~∇ψ − ψ~∇ψ∗
]

− e2

mc
~Aψ∗ψ ,
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which is identical to the result of eq. (14).

Finally, we note that it we set ~A = φ = 0, we recover the results of Liboff,
eqs. (7.97) and (7.107) [apart from the overall factor of e, which is conventional].
In particular, the definition of ρ is unmodified by the presence of the external
electromagnetic field.

ADDED NOTE: To verify that the expression obtained above for ~J makes
physical sense, recall that that the canonical momentum ~p is related to the me-
chanical momentum m~v by

m~v = ~p − e

c
~A .

Hence, we can write:
~J = eRe(ψ∗~vψ) = Re(ρ~v) .

Classically, the current is related to the velocity field by ~J = ρ~v, so the quantum
mechanical result derived above is sensible.

5. The time-dependent Schrodinger equation for a charged particle in an external
electromagnetic field (before fixing a choice of gauge) is given by:

i~
∂ψ

∂t
=

−~
2

2m
~∇2ψ +

ie~

mc
~A· ~∇ψ +

ie~

mc
ψ(~∇· ~A) +

e2

2mc2
~A 2ψ + eφψ , (17)

where I have set the external potential V = 0, as it plays no roll in this problem.
Note that I have not imposed a particular gauge such as the Coulomb gauge as we
did in problem 4. This is important, since the goal of this problem is to show that
the Schrodinger equation is form invariant under a generalized gauge transforma-
tion, in which the electromagnetic potentials, φ and ~A are gauge-transformed and
the wave function ψ is transformed by an appropriate phase factor.

(a) Consider a new wave function ψ1(~r, t) defined by:

ψ1(~r, t) =

[

exp

(

ieX(~r, t)

~c

)]

ψ(~r, t) . (18)

Substituting ψ = ψ1 exp [−ieX(~r, t)/(~c)] into eq. (17), one needs to compute:

∂ψ

∂t
= e−ieX(~r,t)/(~c)

[

∂ψ1

∂t
− ie

~c

∂X

∂t
ψ1

]

,

~∇ψ = e−ieX(~r,t)/(~c)

[

~∇ψ1 −
ie

~c
ψ1

~∇X

]

,

~∇2ψ = e−ieX(~r,t)/(~c)

[

~∇2ψ1 −
2ie

~c
(~∇ψ1)·(~∇X) − ie

~c
ψ1

~∇2X − e2

~2c2
ψ1(~∇X)·(~∇X)

]

.
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Inserting these results into eq. (17), the common factor of exp [−ieX(~r, t)/(~c)]
cancels, and we end up with:

i~
∂ψ1

∂t
+
e

c

∂X

∂t
ψ1 =

−~
2

2m
~∇2ψ1 +

ie~

mc
~A· ~∇ψ1 +

ie~

2mc
ψ1(~∇· ~A) +

e2

2mc2
~A 2ψ1

+
ie~

mc
(~∇ψ1)·(~∇X) +

ie~

2mc
ψ1

~∇2X +
e2

2mc2
ψ1(~∇X)·(~∇X)

+
e2

mc2
ψ1( ~A· ~∇X) + eφψ1 .

Collecting and rearranging terms, the above equation takes the following form:

i~
∂ψ1

∂t
=

−~
2

2m
~∇2ψ1 +

ie~

mc
( ~A + ~∇X)· ~∇ψ1 +

ie~

2mc
ψ1

~∇·( ~A + ~∇X)

+
e2

2mc2
ψ1( ~A + ~∇X)2 + e

(

φ− 1

c

∂X

∂t

)

ψ1 . (19)

That is, eq. (19) is the time-dependent Schrodinger equation satisfied by ψ1(~r, t).

(b) If we perform a gauge transformation of the electromagnetic scalar and
vector potentials,

~A ′ = ~A + ~∇X , φ′ = φ− 1

c

∂X

∂t
, (20)

then, eq. (19) can be rewritten as:

i~
∂ψ1

∂t
=

−~
2

2m
~∇2ψ1+

ie~

mc
~A ′

· ~∇ψ1+
ie~

2mc
ψ1(~∇· ~A ′)+

e2

2mc2
~A ′ 2ψ1+eφ′ψ1 . (21)

Note that eq. (21) has exactly the same form as eq. (17) if we replace

~A → ~A ′ , φ→ φ′ and ψ → ψ1 .

That is, the Schrodinger equation is invariant with respect to generalized gauge
transformations in which ~A, φ and the wave function ψ are simultaneously trans-
formed, as specified in eqs. (18) and (20).
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