
Physics 139B Solutions to Homework Set 4 Fall 2009

1. Liboff, problem 12.16 on page 594–595.

Consider an atom whose electrons are L–S coupled so that the good quantum
numbers are j ℓ smj and eigenstates of the Hamiltonian H0 may be written as

|j ℓ smj〉. In the presence of a uniform magnetic field ~B, the Hamiltonian becomes

H = H0 +H ′ , where H ′ = −~µ· ~B =
e

2mc
( ~J + ~S)· ~B ,

where ~J ≡ ~L + ~S is the total angular momentum, ~L and ~S are the orbital and
spin angular momenta, respectively, and e > 0. Before the magnetic field is
turned on, ~L and ~S precess about ~J as depicted in Fig. 12.1 on p. 580 of Liboff.
Consequently,

~µ =
µB

~
(~L + 2~S) (1)

also precesses about ~J , where µB ≡ e~/(2mc) is the Bohr magneton.
After the magnetic field is turned on, if it is sufficiently weak compared to the

coupling between ~L and ~S, the ensuing precession of ~J about ~B is slow compared
to that of ~µ about ~J , as depicted in Fig. 12.8a on p. 595 of Liboff.

(a) To determine the time average of ~µ· ~B, we can make the following approx-

imation. Since ~µ precesses about ~J and ~J precesses about ~B, where the latter
precession is much slower than the former, then it is a good approximation to first
project the vector ~µ along the direction of ~J and then precess the resulting vector
about ~B. The projection of ~µ along ~J is illustrated geometrically below:

~J

~µ

~µprojected

Algebraically, the projection of ~µ along ~J is given by:

~µprojected = (~µ·Ĵ)Ĵ =

(

~µ· ~J

~J · ~J

)

~J ,
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where the unit vector Ĵ ≡ ~J/| ~J |. We then precess this projected vector slowly

about ~B. That is, the time average of ~µ· ~B should approximately be given by the
time average of ~µprojected · ~B. Thus, we conclude that for a weak magnetic field,

〈~µ· ~B〉 ≃
〈

(~µ· ~J)( ~J · ~B)

~J 2

〉

. (2)

In this argument, we have implicitly assumed that the the projection of ~µ per-
pendicular to ~J (given by ~µ−~µprojected) time-averages to zero, since the precession

of ~µ about ~J is so much faster than the precession of ~J about ~B. In order to
justify this assertion, one can follow Liboff’s suggestion by defining:

cosα ≡ Ĵ ·B̂ , cosβ ≡ µ̂·B̂ , and cos γ ≡ µ̂·Ĵ . (3)

That is, α is the angle between ~J and ~B, β is the angle between ~µ and ~B, and
γ is the angle between ~µ and ~J . Liboff then observes that in the precession of ~µ

about ~B, β varies in the range α − γ ≤ β ≤ α + γ. In particular, Liboff argues
that the variation of cosβ between its extremum values is very nearly harmonic
because the angular precession of ~µ about ~J is so much faster than the angular
precession of ~J about ~B. In the approximation that the variation of cosβ is
exactly harmonic,

cosβ = cosα cos γ + sinα sin γ sinωt , (4)

where ω is the angular frequency of the harmonic variation of cosβ. Indeed, since
| sinωt| ≤ 1, it follows that eq. (4) yields α − γ ≤ β ≤ α + γ, after employing
the identity, cos(α ± γ) = cosα cos γ ∓ sinα sin γ. If we take the time-average of
eq. (4), and note that the precession angles α and γ are fixed in time whereas
sinωt averages out to zero over a complete cycle, we conclude that

〈cosβ〉 = 〈cos γ cosα〉 ,

which is equivalent to eq. (2) by virtue of eq. (3).

ADDED NOTE: Although the derivation of eq. (2) has been obtained using a
classical analogy, this result turns out to be an exact relation in quantum mechan-
ics when 〈· · · 〉 is reinterpreted as an expectation value with respects to eigenstates

of ~J 2 and Jz. One can prove a rigorous theorem that states that for any vector
operator1 ~V ,

〈j , mj | ~V |j , mj〉 =
〈j , mj | ~V · ~J |j , mj〉 〈j , mj | ~J |j , mj〉

j(j + 1)
.

1A vector operator is defined as a quantum mechanical operator that rotates like a vec-
tor quantity when acted on by the rotation operator, exp(−iθn̂· ~J/~). For more details, see
J.J. Sakurai, Modern Quantum Mechanics, 2nd edition (Addison-Wesley Publishing Company,
Reading, MA, 1994), pp. 232–233.
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This is known as the projection theorem.2 Setting ~V = ~µ and taking the dot
product with ~B (which is a constant vector field, independent of j and mj), one
obtains eq. (2) as an exact result.

(b) We assume that the eigenstates |j ℓ smj〉 are still appropriate to the per-
turbed Hamiltonian H0 + H ′. Then, using first-order perturbation theory, the
shift in the energy levels due to the perturbation are given by:

E(1) = 〈j ℓ smj|H ′ |j ℓ smj〉

= −〈j ℓ smj| ~µ· ~B |j ℓ smj〉

= −
〈

j ℓ smj

∣

∣

∣

∣

(~µ· ~J)( ~J · ~B)

~J 2

∣

∣

∣

∣

j ℓ smj

〉

,

where we have used the results of part (a), and have reinterpreted the time-
average in eq. (2) as a quantum mechanical expectation value with respect to the
eigenstate |j ℓ smj〉 (cf. the added note following part (a) above). Using eq. (1),
the above result can be written as:

E(1) =
µB

~3j(j + 1)
〈j ℓ smj| [(~L + 2~S)· ~J ]( ~J · ~B) |j ℓ smj〉 ,

where we have used the fact that ~J 2 |j ℓ smj〉 = ~
2j(j + 1) |j ℓ smj〉. Without

loss of generality, one can choose the uniform magnetic field ~B = Bẑ to lie along
the z-axis, in which case ~J · ~B = BJz. Using Jz |j ℓ smj〉 = ~mj |j ℓ smj〉, where
mj = −j , −j + 1 , . . . , j − 1 , j, one obtains:

E(1) ≃ µBBmj

~2j(j + 1)
〈j ℓ smj| (~L + 2~S)· ~J |j ℓ smj〉 . (5)

Finally, in order to evaluate the remaining matrix element above, first recall that

~L·~S = 1
2
[(~L + ~S)2 − ~L 2 − ~S 2] = 1

2
( ~J 2 − ~L 2 − ~S 2) ,

from which one can obtain the identities:

~L· ~J = ~L·(~L + ~S) = ~L 2 + 1
2

(

~J 2 − ~L 2 − ~S 2
)

,

~S · ~J = ~S ·(~L + ~S) = ~S 2 + 1
2

(

~J 2 − ~L 2 − ~S 2
)

.

Hence,

(~L + 2~S)· ~J = 1
2

(

3 ~J 2 − ~L 2 + ~S 2
)

.

2A statement of this theorem and proof can be found in J.J. Sakurai, Modern Quantum

Mechanics, op. cit., p 241.
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It follows that

〈j ℓ smj| (~L + 2~S)· ~J |j ℓ smj〉
~2j(j + 1)

=
〈j ℓ smj| (3 ~J 2 − ~L 2 + ~S 2) |j ℓ smj〉

2~2j(j + 1)

=
3j(j + 1) − ℓ(ℓ+ 1) + s(s+ 1)

2j(j + 1)
,

= 1 +
j(j + 1) − ℓ(ℓ+ 1) + s(s+ 1)

2j(j + 1)
,

where we have used the fact that ~S 2 |j ℓ smj〉 = ~
2s(s + 1) |j ℓ smj〉 for a spin-s

state.
It is convenient to introduce the Larmour frequency, Ω ≡ eB/(mc), in which

case µBB = 1
2
~ Ω. We now define the Landé g-factor,

g(j ℓ s) ≡ 1 +
j(j + 1) − ℓ(ℓ+ 1) + s(s+ 1)

2j(j + 1)
.

Then, the first-order energy shift given by eq. (5) can be rewritten as:

E(1) = 1
2
~ Ω g(j ℓ s)mj , mj = −j , −j + 1 , . . . , j − 1 , j .

That is, the (2j + 1)–fold degenerate unperturbed energy level has been split by
the perturbation into 2j + 1 equally spaced levels.

2. The hydrogen atom is placed in a weak uniform electric field of strength E
pointing in the z-direction. The Hamiltonian describing the system is given by:

H =
−~

2

2m
~∇2 − e2

r
− eEz .

Compute the ground state energy of the system using the variational technique.
Use the trial wave function

ψ(~r) = N(1 + qEz)ψ100(~r) ,

where ψ100(~r) is the ground state wave function of the hydrogen atom (in the
absence of an external electric field), q is the variational parameter, and N is
chosen such that the trial wave function is properly normalized. Ignore all spin
effects (i.e., ignore fine and hyperfine splittings). Since the external electric field
is assumed to be weak, simplify your computations by expanding in E and keeping
only the leading term. In particular, show that the first correction to the ground
state energy of hydrogen is proportional to E2. Compare the coefficient of this term
with the one obtained in class by the second-order perturbation theory calculation
of the Stark effect.
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First, we need to determine the normalization constant N . In spherical coor-
dinates, z = r cos θ. Hence,

1 =

∫

d3r|ψ(~r)|2 =
|N |2
πa3

0

∫

r2drd cos θdφ(1 + qEr cos θ)2e−2r/a0

=
|N |2
πa3

0

2π

∫

∞

0

r2e−2r/a0 dr

∫ 1

−1

d cos θ(1 + qEr cos θ)2

=
2|N |2
a3

0

∫

∞

0

r2e−2r/a0 dr
[

2 + 2
3
q2E2r2

]

.

To calculate the above integral, we make use of
∫

∞

0

xne−ax dx =
n!

an+1
, (6)

where n is any non-negative integer, and a > 0. Thus,

1 =
4|N |2
a3

0

[

2
(

1
2
a0

)2
+ 1

3
q2E2 ·24

(

1
2
a0

)5
]

= |N |2
[

1 + q2E2a2
0

]

.

Without loss of generality, one can take N to be real and positive. Thus,

N =
[

1 + q2E2a2
0

]

−1/2
.

We now evaluate E(q) ≡ 〈ψ|H |ψ〉, where q is taken to be the variational
parameter. Then,

E(q) =

∫

d3r ψ∗(~r)

[−~
2

2m
~∇2 − e2

r
− eEr cos θ

]

ψ(~r)

=

(

1

1 + q2E2a2
0

)

1

πa3
0

∫

d3r (1 + qEr cos θ)e−r/a0

×
[−~

2

2m
~∇2 − e2

r
− eEr cos θ

]

(1 + qEr cos θ)e−r/a0 . (7)

For a weak electric field E , one can expand

1

1 + q2E2a2
0

≃ 1 − q2E2a2
0 . (8)

Moreover, using a0 ≡ ~
2/(me2), we note that:

1

πa3
0

∫

d3r e−r/a0

[−~
2

2m
~∇2 − e2

r

]

e−r/a0 = −me
4

2~2
= − e2

2a0

= −1 Ry , (9)

since the integral above is just the expectation value of the hydrogen atom Hamil-
tonian with respect to the hydrogen ground state wave function. Thus, the value
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of the integral of eq. (9) is the ground state energy of hydrogen as indicated
above. Using eqs. (8) and (9) to evaluate eq. (7), and keeping only terms that are
quadratic in the electric field E , one obtains

E(q) ≃ (1 − q2E2a2
0)

[

− e2

2a0

− 2eqE2

πa3
0

∫

d3r r2 cos2 θ e−2r/a0

+
a2E2

πa2
0

∫

d3r r cos θ e−r/a0

[−~
2

2m
~∇2 − e2

r

]

r cos θe−r/a0

]

+ O(E4) ,

(10)

where we have noted that the O(E) term vanishes exactly due to,

∫ 1

−1

cos θ d cos θ = 0 .

The integrals in eq. (10) are easy to evaluate. First,

∫

d3r r2 cos2 θ e−2r/a0 = 2π

∫

∞

0

r4 e−2r/a0 dr

∫ 1

−1

cos2 θ d cos θ = 2π (24)
(

1
2
a0

)5 (2
3

)

= πa5
0 ,

after making use of eq. (6). Second, for any function of r and θ that is independent
of φ,

~∇2f(r, θ) =
1

r2

∂

∂r

(

∂f

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

=
1

r2

∂

∂r

(

∂f

∂r

)

+
1

r2

∂

∂ cos θ

[

(1 − cos2 θ)
∂f

∂ cos θ

]

=
∂2f

∂r
+

2

r

∂f

∂r
+

1

r2

∂2f

∂(cos θ)2
− 2 cos θ

r2

∂f

∂ cos θ
, (11)

where we have used d cos θ = − sin θdθ and sin2 θ = 1 − cos2 θ. In the last line
above,

∂2f

∂(cos θ)2
≡ ∂

∂ cos θ

(

∂f

∂ cos θ

)

.

Using the results of eq. (11), one may compute:

~∇2(r cos θ e−r/a0) = cos θ

[

∂

∂r

(

e−r/a0 − r

a0
e−r/a0

)

+
2

r

(

e−r/a0 − r

a0
e−r/a0

)

− 2

r
e−r/a0

]

= − 4

a0
cos θ e−r/a0 +

r

a2
0

cos θ e−r/a0

=
1

a2
0

cos θ e−r/a0(r − 4a0) . (12)
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Using the results of eq. (12),

∫

d3r r cos θ e−r/a0 ~∇2 (r cos θ e−r/a0) =
2π

a2
0

∫

∞

0

r3(r − 4a0)e
−2r/a0 dr

∫ 1

−1

cos2 θ d cos θ

=
2π

a2
0

[

24
(

1
2
a0

)5 − 4a0 ·6
(

1
2
a0

)4
]

(

2
3

)

= −πa3
0 .

Finally,

∫

d3r r cos2 θ e−2r/a0 = 2π

∫

∞

0

r3 e−2r/a0 dr

∫ 1

−1

cos2 θ d cos θ = (2π)·6
(

1
2
a0

)4 (2
3

)

= 1
2
πa4

0 .

Inserting the integrals computed above into eq. (10), we end up with:

E(q) = (1 − q2E2a2
0)

[

− e2

2a0
− 2eqE2a2

0 +
~

2q2E2

2m
− 1

2
e2q2E2a2

0

]

+ O(E4) . (13)

One can simplify this result by noting that the definition of the Bohr radius,
a0 = ~

2/(me2), implies the relation:

~
2

2m
= 1

2
e2a0 .

Inserting this result into eq. (13), one sees that the last two terms of eq. (13)
cancel and we are left with:

E(q) = (1 − q2E2a2
0)

(

− e2

2a0

− 2eqE2a2
0

)

+ O(E4)

= − e2

2a0
− 1

2
ea0E2q(4a0 − eq) + O(E4) . (14)

We now minimize E(q) by taking the derivative with respect to q and setting the
result to zero.

dE(q)

dq
= 0 =⇒ q =

2a0

e
.

Inserting q = 2a0/e back into eq. (14) yields the variational estimate for the
ground state energy E in the presence of a weak uniform electric field E :

E = − e2

2a0
− 2a3

0E2 = E(0) − 2a3
0E2 ,

where E(0) is the (unperturbed) ground state energy when the external electric
field is absent.

In class, we used stationary state perturbation theory to show that the first-
order energy shift vanishes and the second-order energy shift is given by:

E(2) = −9
4
a3

0E2 . (15)
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The variational computation comes pretty close. As expected, the energy evalu-
ated by the variational principle is larger than the true answer, since −2 > −9

4
.

Keep in mind that in order to derive eq. (15), we needed to find a very clever
method that effectively sums over all the energy eigenstates in the formula for the
second-order energy shift. Without access to this technique, we showed in class
how to bound the second-order energy shift, which resulted in

−
(

8
3

)

E2a2
0 ≤ E(2) ≤ −0.55

(

8
3

)

E2a2
0 .

(See also problem 13.11 of Liboff on pp. 691–692, where the upper bound to the
second-order energy shift is computed.) Note that both the exact second-order
energy shift and the variational energy shift fall within these bounds. Finally, we
note that one additional advantage of the variational approach is that it permits
us to compute the energy shift even if the external electric field E is not weak!

3. Liboff, problem 13.43 on page 735.

A one-dimensional harmonic oscillator in the ground state is acted upon by a
uniform electric field,

E(t) =
E0√
π

exp

[

−
(

t

τ

)2
]

, (16)

switched on at t = −∞. The field is parallel to the axis of the oscillator. To
compute the probability that the oscillator suffers a transition from the ground
state to the first excited state at t = ∞, In Section 13.5 of Liboff, we see that if
the time-dependent Hamiltonian takes the form:

H(~r, t) = H(0)(~r) +H ′(~r, t) , where H ′(~r, t) = H′(~r)f(t) , (17)

then the probability of a transition from state n to state k 6= n is given, to first-
order in time-dependent perturbation theory, by eq. (13.52) of Liboff on p. 711,

Pn→k =
|
〈

n(0)
∣

∣H
′(~r)

∣

∣k(0)
〉

|2
~2

∣

∣

∣

∣

∫

∞

−∞

eiωknt′f(t′)dt′
∣

∣

∣

∣

2

, (18)

where ~ωkn ≡ E
(0)
k − E

(0)
n is the difference between unperturbed energies, and

the superscript 0 refers to the energy eigenstates and energy eigenvalues of the
unperturbed Hamiltonian H(0).

In this problem, the perturbation is given by:

H ′(x, t) = −qxE(t) ,

where q is the charge of the harmonic oscillator and E(t) is given by eq. (16) In
the notation of eq. (17), f(t) = exp(−t2/τ 2) and H′(x) = −qxE0/

√
π. Applying

the results of eq. (18), we first compute the integral,
∫

∞

−∞

eiωte−t2/τ2

dt .
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Setting ξ ≡ t/τ , we can rewrite the integral above as

τ

∫

∞

−∞

eiωτξe−ξ2

dξ = τe−τ2ω2/4

∫

∞

−∞

exp
[

−
(

ξ − 1
2
iωτ
)2
]

dξ ,

which is a consequence of the algebraic identity (called “completing the square”):

iωτξ − ξ2 = −
(

ξ − 1
2
iωτ
)2 − 1

4
ω2τ 2 .

We change variables once more by introducing ξ′ ≡ ξ − 1
2
iωτ . The limits of

integration change to a straight-line contour in the complex plane that starts at
−∞− 1

2
iωτ and ends at ∞− 1

2
iωτ . However, from the theory of complex analysis,

we know that it is permissible to deform the contour as long as the contour does not
cross any singularities of the integrand. Since exp(−ξ′,2) is an analytic function,
we can move the contour back to the real axis without changing the value of the
integral. Hence,

∫

∞

−∞

eiωte−t2/τ2

dt = τe−τ2ω2/4

∫

∞

−∞

exp
[

−
(

ξ − 1
2
iωτ
)2
]

dξ

= τe−τ2ω2/4

∫

∞

−∞

e−ξ′ 2 dξ′

=
√
πτe−τ2ω2/4 .

Next, we need to evaluate the matrix element of H′(x) between the n = 0 and
n = 1 energy eigenstates of the simple one-dimensional harmonic oscillator:

〈0|H′ |1〉 = −qE0√
π
〈0|x |1〉 .

In class, we derived:

〈n| x |k〉 =

(

~

2mω0

)1/2
[√

k δn,k−1 +
√
k + 1 δn,k+1

]

, (19)

where ω0 is the unperturbed angular frequency of the oscillator. Taking n = 0
and k = 1,

〈0|x |1〉 =

(

~

2mω0

)1/2

.

Thus,

〈0|H′ |1〉 = −qE0√
π

(

~

2mω0

)1/2

.

Using the results obtained above, and noting that the energy difference be-
tween the n = 1 and n = 0 states of the harmonic oscillator is ~ω10 = ~ω0, we
find:

P0→1 =
| 〈0|H′(x) |1〉 |2

~2

∣

∣

∣

∣

∫

∞

−∞

eiω
10

t′e−t′ 2/τ2

dt′
∣

∣

∣

∣

2

=
q2E2

0 τ
2

2m~ω0

e−ω2

0
τ2/2 . (20)
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We now consider two limiting cases.

(a) ω0τ ≫ 1.

In this limit, the transition probability, P0→1 is exponentially suppressed, and
the harmonic oscillator remains in its ground state. This is an example of adiabatic
perturbation, in which the time-scale over which the perturbation changes is very
long.

(b) ω0τ ≈ 1.

In this limit, the perturbation is not adiabatic, as the time-scale over which
the perturbation changes is of order the natural time scale of the system. The
probability of a transition from the ground state to the first excited state is non-
negligible. However, keep in mind that if P0→1 must still be small as compared to
1 if the perturbation theory result is to be reliable.

In case (b), there are no first-order transitions from the ground state to excited
states of the oscillator with quantum number k ≥ 2. This is a consequence of
eq. (19), which indicates that 〈0|x |k〉 = 0 for k ≥ 2. However, when higher orders
of perturbation theory are taken into account, one does find that transitions from
the ground state to excited states of the oscillator with quantum number k ≥ 2 are
possible. For this particular problem, one can actually solve the time-dependent
Schrodinger equation exactly, and compute P0→k for any value of k. The general
result is quite interesting, and I quote it here:3

P0→k = e−P P k

k!
, where P =

q2E2
0 τ

2

2m~ω0

e−ω2

0τ2/2 , (21)

for any non-negative integer k. We recognize eq. (21) as describing a Poisson
distribution. Note that the total probability for either no transition or some
transition must be equal to 1. This is easily verified:

∞
∑

0

P (0 → k) = e−P
∞
∑

0

P k

k!
= e−P eP = 1 .

To see that this general result is consistent with our first-order perturbation
theory computation, we note that if P ≪ 1, then one can approximate e−P ≃ 1,
in which case one sees from eqs. (20) and (21) that P0→1 ≃ P as required (and
P (0 → k) for k ≥ 2 is negligible). Moreover, in this limit, the probability of no
transition is given by P0→0 = e−P ≃ 1 − P = 1 − P0→1, as expected.4 If the
condition P ≪ 1 does not hold, then the first-order perturbative result given in
eq. (20) is unreliable.

3See e.g., A. Galindo and P. Pascual Quantum Mechanics II (Springer-Verlag, Berlin, Ger-
many, 1991), section 11.3.

4Here, we need to be a little more accurate in our estimate of e−P for P ≪ 1, since we know
that the total probability for either no transition or some transition must be equal to 1.
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4. Liboff, problem 13.44 on page 735.

Radioactive tritium H3 decays to light helium (He3+) with the emission of
an electron. This electron quickly leaves the atoms and may be ignored in the
following calculation. The effect of the β-decay is to change the nuclear charge at
t = 0 without effecting any change in the orbital electron. This is an example of
a sudden time-dependent perturbation.

We assume that the atom is initially in its ground state. In order to compute
the probability that the He+ ion is left in the ground state of the decay, we note
that the wave function of the He+ ion just after the β-decay is the same as the
wave function of the tritium H3 just before the decay. This must be true, since the
wave function does not have time to re-adjust as the sudden perturbation occurs
over a time-scale much shorter than any of the natural time-scales of the atomic
system.

Let ψH(r) be the wave function of the ground state of tritium, and let ψHe(r)
be the wave function of the ground state of the He+ ion. For any hydrogen-like
atom with nuclear charge Ze, the ground state wave function is given by:

ψ(r) =

(

Z3

πa3
0

)1/2

e−Zr/a0 . (22)

For tritium, Z = 1 and for the He+ ion, Z = 2. To determine the probability that
the He+ ion is in its ground state, one must expand the He+ ion wave function
with respect to the He+ ion energy eigenstates,5

|ψ〉 =
∞
∑

n,ℓ,mℓ

|n ℓmℓ〉 〈n ℓmℓ|ψ〉 .

The ground state corresponds to (n , ℓ , mℓ) = (1 , 0 , 0). Thus, the probability
that the He+ ion is in its ground state is simply | 〈1 0 0|ψ〉|2. As noted above,
|ψ〉 in the coordinate representation is given by eq. (22) with Z = 1, and |1 0 0〉
is given in the coordinate representation is given by eq. (22) with Z = 2. Hence,
the probability that the He+ ion is in its ground state is given by:

| 〈1 0 0|ψ〉|2 =

∣

∣

∣

∣

∣

2
√

2

πa3
0

∫

d3r e−3r/a0

∣

∣

∣

∣

∣

2

.

The integral above is easily evaluated:
∫

d3r e−3r/a0 = 4π

∫

∞

0

r2e−3r/a0 dr = (4π)·2!
(

1
3

)3
a3

0 =
8π

27
a3

0 .

Thus, the probability that the He+ ion is in its ground state is:

| 〈1 0 0|ψ〉|2 =

(

16
√

2

27

)2

=
512

729
≃ 0.70 .

5We neglect electron spin here, although this plays no role in the computation.
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5. Liboff, problem 14.7 on page 782.

Consider the scattering of particles of mass m from the attractive Gaussian
potential,

V (r) = −V0 exp

[

−
(r

a

)2
]

.

The scattering amplitude, f(θ), for the scattering by a central potential in the
Born approximation, is given by eq. (14.37) on p. 780 of Liboff,

f(θ) = − 2m

~2K

∫

∞

0

dr rV (r) sinKr , where K ≡ 2k sin(θ/2) ,

and θ is the scattering angle. Thus, we must compute:

f(θ) =
2mV0

~2K

∫

∞

0

dr re−r2/a2

sinKr .

Note that the integrand is an even function of r, so we can rewrite it as:6

f(θ) =
mV0

~2K

∫

∞

−∞

dr re−r2/a2

sinKr . (23)

The easiest way to evaluate this integral is to make use of sinKr = Im eiKr.
Then, employing the “completing the square” technique illustrated in the solution
to problem 4,

f(θ) =
mV0

~2K
Im

∫

∞

−∞

dr re−r2/a2

eiKr

=
mV0

~2K
e−K2a2/4 Im

∫

∞

−∞

dr r exp
[

−
(

r
a
− 1

2
iKa

)2
]

=
mV0a

2

~2K
e−K2a2/4 Im

∫

∞

−∞

dξ
(

ξ + 1
2
iKa

)

e−ξ2

=
mV0a

3

2~2
e−K2a2/4

∫

∞

−∞

dξ e−ξ2

=
mV0a

3
√
π

2~2
e−K2a2/4 , (24)

where we changed the integration variable to ξ ≡ r
a
− 1

2
iKa and deformed the

contour of integration to lie along the real ξ-axis.

6Even though the radial variable r is non-negative, in evaluating the integral above, there is
no mathematical reason that prevents us from rewriting the integral in the form of eq. (23).
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The differential cross-section for a particle with energy E = ~
2k2/(2m), fol-

lowing eq.(14.6) on p. 765 of Liboff, is given by:

dσ

dΩ
= |f(θ)|2 .

Hence, eq. (24) yields:

dσ

dΩ
=
πm2V 2

0 a
6

4~4
e−2k2a2 sin2(θ/2) ,

after substituting K ≡ 2k sin(θ/2). The total cross-section is given by

σ =

∫

dσ

dΩ
dΩ = 2π

∫ 1

−1

dσ

dΩ
d cos θ

=
π2m2V 2

0 a
6

2~4

∫ 1

−1

e−2k2a2 sin2(θ/2) d cos θ

=
π2m2V 2

0 a
6

2~4

∫ 1

−1

e−k2a2(1−w) dw ,

where w ≡ cos θ. In performing the last step above, we have used the identity,
sin2(θ/2) = 1

2
(1 − cos θ). The last integral above is easily obtained:

∫ 1

−1

e−k2a2(1−w) dw = e−k2a2

∫ 1

−1

ewk2a2

dw =
1

k2a2

(

1 − e−2k2a2

)

.

Hence, the total cross-section in the Born approximation is given by:

σ =
π2m2V 2

0 a
4

2~4k2

(

1 − e−2k2a2

)

.

13


