Physics 139B Solutions to Homework Set 5 Fall 2009

1. Liboft, problem 13.51 on pages 749-750.

A one-dimensional harmonic oscillator of charge-to-mass ratio e/m, and spring
constant K oscillates parallel to the z-axis and is in its second excited state at t < 0
with energy Ey = 2hwy. An oscillating, uniform electric field E(t) = 2& coswt &
is turned on at t = 0.}

(a) The time-dependent Hamiltonian for ¢ > 0 is most easily derived from the
general formula for the Hamiltonian of a one-dimensional harmonic oscillator of
charge e in an external electric field:

ﬁ2
H=>"—+1Ks’+ed,
2m

where E = —ﬁ(j). It follows that ¢ = —2x&) coswt, and

52
H= b= + %K[L’2 — 2exé&y coswt
2m
where wy = /K /m is the characteristic angular frequency of the harmonic oscil-

lator.

(b) The harmonic perturbation is H'(t) = 2H' coswt, where H' = —ex&,.
Hence, the matrix element,?

= (n|H'|2) = —e& (n|z|2) .

n2_

We now use eq. (11.45) on p. 500 of Liboff,

<n|x|k> \/_5nk 1+ V 5nk+1] s BE mwo/h.

f 23
Thus,

H, = — \e/§° [f6n1+\f6n3].

'Liboff writes E(t) = 2&ycoswpt &. Although this is required in practice in order to drive
the transitions (if ¢ is large), it is mathematically cleaner to call the frequency of the oscillating
field w. The resonance condition that drives absorption or emission of energy is w ~ wy for
absorption and w ~ —wy for emission. These conditions are a consequence of the analysis (see
below).

2Liboff actually asks for Hb, , which is a little strange given that in part (c), he asks us to
compute Ps_,,, which depends on H/,. The computation is similar in both cases.




(c) The transition probability at time ¢ is given by eq. (13.52) on p. 711 of
2
[ |

Liboff,
t
hz / 62wn2t f(t/)dt/

where hw,o = E, — Fy = (n — 2)hwy is the difference of the corresponding bound
state energies of the unperturbed harmonic oscillator, and H'(¥,t) = H'(¥) f ().
In this notation, H'(¥) = —ex&, in which case we identify f(t) = 2coswt. For
this problem, we can replace the lower integration limit by ¢ = 0, since the
perturbation is absent for ¢ < 0. Hence,

t
. !
/ e“n2t’ cogwt'dt’
0

The integral over t’ is evaluated on p. 713 of Liboff,

P2—>n( ) -

Y

2

A|H, |
h2

P2—>n( ) -

¢, eilwna=)t/2gin Ly )t etlwn2twlt/2gin Ly, 4 )t
/ e“n2t coswt'dt’ = p{C ) + p1C ) .
0 Whpo — W Whe + W
Hence,
4|H % | ein2) 2 gin L(w,, —w)t  e@n2 ) 2gin Liw, , + w)t 2

_|_
Wy — W Wya + W

h2

As described on pp. 713-714 of Liboff, if w,, = hwy(n —2) > 0, corresponding
to the case where the time-dependent electric field excites only higher energy
oscillator eigenstates, then the first term inside the brackets of eq. (1) dominates
assuming that w ~ w,s is close to its resonant frequency. In this case,

2
) W= W

A|H, |
h2

sin 3 (w,, — w)t
Pg_m(t): 2( 2 )

wnz — W

Likewise, if w,, = hwo(n — 2) < 0, corresponding to the case where the time-
dependent electric field excites only lower energy oscillator eigenstates, then the
second term inside the brackets of eq. (1) dominates assuming that w ~ —w,; is
close to its resonant frequency. In this case,

2

4H/ 2
| n2| ’ W =Wy .

h2

Sin £ (w,, 4 w)t

P2—>n(t) =

Wha + W

Using the results from part (b) to evaluate H! ,, there are only two possible tran-
sitions, due to the Kronecker delta factors in H ,,

66252) sin® 2 (w, — w)t

(wy —w)?

Py_s(t) = (

hmw,

corresponding to the absorption of a quantum hws, = hwy of energy, and



4e282 sin® (w — wy)t
(W —wp)?

Pri(t) = <

hmw,

corresponding to the emission of a quantum of —hAwo = hwy of energy.
For short times ¢t < |wy —w|™!, one can use the small argument approximation
for the sine functions above. This approximation yields:

_3erEgt?
 2hmw,

2E

hmw,

P2_>3(t) s P2_>1(t)

There are no first-order transitions to other oscillator energy eigenstates.

(d) If we wish to pump a harmonic oscillator to a higher energy state, we can
simply apply the oscillating electric field of this problem. In part (c), we obtained
Py_3(t) > Pa1(t), so that applying the oscillating field will cause more transitions
to the higher state as compared with the lower state. As this was only a first-order
perturbation theory computation, one might guess that at higher order, one can
induce transitions to even higher oscillator energy states. This is indeed correct,
although the probabilities for such higher order transitions are suppressed if the
applied oscillating field is weak.

2. Consider the scattering of particles by the square well potential in three di-

mensions:
-V forr <a
V(T) _ 0> 9
0, forr > a,

where Vj is positive.

(a) In the Born approximation for a spherical potential, the scattering ampli-
tude is given by:

[e.e]

F(0) = = rsin(qr)V (r)dr,

where ¢ = 2ksin(0/2) and p = hk is the momentum of the incoming beam.
Inserting the square well potential for V(r),

£(0) = Q;QVO /0 " sin(gr)dr = QH”;—QV; isin(ga) — qa cos(qa)] .
Hence,
d Vo>
o =10 = (St binta) - gacos(ga) )




(b) First consider the limit of low energy, ka < 1. Since g = 2ksin(0/2), it
follows that ga < 1. In this limit,
sin(ga) — ga cos(qa) = (qa — %qga3 + ﬁq‘r’a5 . ) —qa (1 — %qza2 + 2—14q4a4 . )
= %q?’a3 (1 — %q2a2 + .. ) .

Inserting this result into eq. (2),

do omVya®\ 2 2
m:< o ) (1L +..).

We shall evaluate the square of the series above, keeping only the first two terms,

which yields
2
do <2mV0a3) (1 1q%?)

dQ — \ 3R
Integrating over angles, keeping in mind the # dependence of ¢ = 2ksin(0/2), we
need to compute

/dQ (1-1ig%a®) = /dQ (1 — 2k*a” sin® g)

4 k22 1
=4r — 7r5a / dcosf(1 — cosb)
-1

where we have used the identity sin?(0/2) =
section in the low-energy limit is given by:

2 3\ 2 2
o ~4r ( mVoa ) [1 — —kzaz} , (ka < 1)

(1 — cos#). Hence, the total cross-

3h2 5

Next, we consider the high energy limit, ka > 1. The expression that we must
analyze is

2 pl
o=2m (Qm_Vo) / d cos 0 [sin(qa) — ga cos(qa)]® |
-1

where we have integrated over the azimuthal angle ¢. Let us change the integration
variable from cos 6 to ¢. Since ¢ = 2ksin(0/2) = k[2(1 — cos 0)]'/2, it follows that:

2
dg = —k[2(1 — cos 0)]"2d cos § = —%dcos@.

o (2mVy\® [ dq . . 2
o= — [sin(qa) — ga cos(qa)]”
o ¢

Hence,



where we have adjusted the integration limits to reflect the fact that ¢ = 0 at

cosf = 1 and g = 2k at cos = —1. It is more convenient to choose a dimensionless
integration variable. Thus, we define y = ga, in which case,
o2 [ 2mVpad\? /2’“’ dy s k (3)
o= — [siny — ycosy|” .
e\ e ) [ By ucosy

In fact, this integral can be performed exactly, although the computation is
long and tedious if performed by hand. But, since we are interested in the high
energy limit, we may set the upper limit of the above integral to infinity. It follows
that for ka > 1,

o= 2n_(2mVoe’ 2/00@[sin —ycosy|’ (4)
K2a2 \ R T y—ycosyl .

The integral above is still rather non-trivial. If one computes the square of the
integrand, three terms are obtained. Each of the three resulting integrals is sep-
arately divergent due to the singularity of the integrand at y = 0, although the
sum of the three terms is integrable.> To perform the integral, one can search a
comprehensive table of integrals.* From such a table, you can obtain the following
result:

[Ty, oer () e (M)

P 2 ’
Y T(p+1)T (%ﬁ?’)

(-1<Rep<2n+1).

()
where j,(y) is a spherical Bessel function and I'?(z) is the square of the gamma
function. Using eq. (10.55) on p. 416 of Liboff,

_ siny —ycosy

) 2 : (6)

the integral of eq. (4) can be written as:

/% [siny o ycosy]2 _ /OOO [jl(y)de — 1 (7)

after substituting n = p = 1 in eq. (5), and using the fact that I'(n) = (n — 1)!
for positive integers n. Inserting this result into eq. (4) then yields:

2 Voa?\
a:k_g(mhga), (ka > 1)

3Although it appears that the full integrand, [siny — ycosy]?/y® is also singular at y = 0,
you can check (by expanding out the numerator around y = 0) that the full integrand vanishes
in the y — 0 limit.

4My personal favorite is 1.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and
Products, Tth edition, edited by A. Jeffrey and D. Zwillinger (Academic Press, Burlington, MA,
2007).



BONUS MATERIAL

Although I did not ask you to compute the exact cross section, it is possible to
evaluate it analytically. The integral given in eq. (3) can be evaluated by repeated
integration by parts (after expanding out the numerator of the integrand). Al-
ternatively, you can try one of the high powered mathematics software packages.
Remarkably, Mathematica 7 is unable to perform the integral, whereas Maple 13
handles it with no problem!

Here is a brief treatment of the exact integral:

Zka dy fsiny — P = Qk“d sin’y _ 2sinycosy N cos?y
= [siny —ycosy]” = Y - . 3
0 Y 0 Yy Y Yy

2ka .
1 1 cos 2 sin 2 Cos 2
:/ dy( 553~ 5y_ 4y+ 3?/)7
0 2> 2y 2y Yy 2y

where we have used:
sin®y = $(1 — cos 2y), cos’y = 3(1 4 cos2y), 2sinz cosx = sin 2.

Integrating the first two terms is trivial. As for the rest, integrating by parts
repeatedly yields a very simple final result for the indefinite integral:

[ dy . . 9 1 1 cos2y  sin2y
I(y):/;[smy—ycosy] =——7— 5t Sy + R

(8)

You can verify this result by showing that its derivative yields the original inte-
grand! By expanding sin 2y and cos2y in eq. (8) around y = 0, one can check
that:

1 1 1 1
im Z(y) = —— — — + — 1 =22+ 2y + — [29 — &3] = —Z.
ylf(l) (y) 8y 4y2+8y4[ Y +3y}+4y3[ 39} 1

Moreover, lim Z(y) = 0. Hence,
y—00
“dy . . <1
= [ Lping—yeosyl =20)| -7,
o Y 0

which recovers the result of eq. (7).
Of course, having evaluated Z(y) exactly, we can perform the integration in
eq. (3) to obtain the total cross-section:

o2 <2m%a3
o

= 55 (=5 )[I(Qk:a)—I(O)].

Using the above results, we end up with:

g

_ 21 (mVpa? ? - 11 +sin(4ka)+cos(4ka)
k2 N\ R2 4(ka)?  32(ka)* = 8(ka)® = 32(ka)*

6



A nice check of this result is to verify the low-energy and high-energy limits
previously obtained. In the limit of ka > 1, we immediately recover our previous
result. In the limit of ka < 1, we must expand out the sine and cosine around
zero. Setting x = ka,

1 111 32 , 128 . 1028
lim = [1— — — B Tl B s
= { 12 32 8 ( v * )

7m0 72 37 T 5 T B
32 , 256 , 516 8 222
1— 2 D g .8 = |1 =1
+32x4( STt g 45$+315x)} 9{ 5}
Hence,
2mVpa®\ > 2,
U:47r( 72 ) {1—5(/’{@) , (ka < 1),

which confirms the result obtained previously.

(c) In class, we indicated that the Born approximation is valid for scattering
in a central potential V' (r) if

2

m
< 1.

e * 2ikr_
a /0 (25 _ 1)V (1)dr

We then examined separately the low-energy limit (k — 0) and the high-energy
limit (k — o0).
The Born approximation is valid in the low-energy limit if

om [ ?
‘h—T/O rV(r)dr| < 1.
For the square well, this condition reads:
2mVy [ 2
‘— 2 /0 rdr| <1.

Evaluating the integral yields:

Thus, if the square well potential is weak enough, then the Born approximation
is valid for all energies.
The Born approximation is valid in the high energy limit if

[e’) 2
m
Applying this to the square well,
mVy (¢ |
- d 1.
‘ Pk /0 r <

7



Thus, we find that
mihe)*
h2k '

Using the fact that £ = h*k?/(2m), we can rewrite this inequality as:

mVia?

E
> 5h2

That is, no matter how strong the potential is, the Born approximation will be
satisfied if the energy E' is large enough, as indicated above.

(d) For s-wave scattering, the scattering amplitude is independent of angle.
Likewise, |f(0)]*> = do/dS) is independent of the scattering angle, in which case
the total cross section is simply o = 47 (do/dS?). Eq. (14.20) of Liboff on p. 771
provides the total cross-section. Hence, it follows that:

do o (tankja ? o, (tankia ?
a < fna ) ’ Y ’ )

where E + Vo = h?k?/(2m) and E = h?k?/(2m) imply that:

/ 2mV;

Since we have neglected the higher partial waves, eq. (9) should be valid only in
the low-energy limit. Thus, we expect that eq. (9) should coincide with the lowest-
order results obtained in parts (a) and (b) if the Born approximation is valid in
the low-energy limit. In part (c) we saw that the latter is true if mVya?/h? < 1.
If this limit is satisfied, then in the low energy limit where ka < 1, it follows from
eq. (10) that kja < 1 as well.

Thus, we shall approximate the cross-section in eq. (9) in the limit of kja < 1.
In particular, since tan kia ~ kia + %(l{:la)?’ for kia < 1, it follows that

tan kia

o 1~ 1(kia)?, for kia<1.

Inserting this result into eq. (9) yields:

4rkia®
5

o~

If we now employ eq. (10) under the assumption that ka < (2mVya?/h?)'/?,
which defines more precisely what we mean by the low-energy limit, then we can

approximate k? ~ 2mV;/h%. Inserting this value into the expression above yields:

<2m%a3)2
o~4m

RY/




which reproduces the leading term of the Born-approximated total cross-section
in the low-energy limit, obtained in part (b). Likewise, the leading term of the dif-
ferential cross-section in the low-energy limit, obtained in part (a) is independent
of angle [since the angular dependence resides in ¢ = 2k sin(6/2)].

Hence, in the low-energy, weak potential limit where ka < (2mVya®/h?)"/?
and mVya?/h? < 1, the leading term of the Born-approximated differential and
total cross sections coincide with the corresponding results obtained by retaining
only the s-wave contribution to the scattering amplitude.

3. Liboff, problem 14.8 on pages 782.

An important parameter in scattering theory is the scattering lenght a. This
length is defined as the negative of the limiting value of the scattering amplitude
as the energy of the incident particle goes to zero,

a=—lim f(0). (11)

k—0

(a) The partial wave expansion of the scattering amplitude is given by:

£(0) = i::(ze +1) (@) Py(cos ) .

£=0

In the limit of low-energies where ka < 1, only s-wave scattering is important.
Thus, we can approximate
"% sin &,
)~ ———
fo)~
If |6o] < 1, then at leading order €' ~ 1 and sin dy ~ &y, which yields
f(0) = d0/k.

Hence, according to the definition of the scattering length as given in eq. (11),

a=—lim — (12)

(b) We can easily compute the differential and total cross-sections.

do (8
e =lror= () -

Since the differential cross-section is independent of angle, the total cross-section
is obtained simply by multiplying the differential cross section by 4w, which yields

o ~ 4ra?

9



(c) In class, we computed the phase shift for the scattering of particles from a
rigid sphere (often called a hard sphere) of radius a. The corresponding potential
analyzed in class was given by:

Vir) = oo, for r<c:z,
0, for r>a.

We found that the exact expression for the phase shifts was given by:

Je(ka)
ng(k:d) ’

tand, = (13)

In particular, for ka < 1, one can use the small-argument approximation for the

spherical Bessel functions, given in Table 10.1 on p. 418 of Liboff, to obtain:
_(kd)2€+1

(20+1)[(2¢ — 1)N]2~

tand, ~

This result demonstrates that as k — 0, the s-wave scattering dominates. More-
over, if we set £ = 0 in eq. (13), we find that tandy = — tan ka, which implies
that

0g = —ka,

which again is an exact result. Inserting this result into eq. (12) yields

Hence we conclude that in the zero energy limit, all obstacles scatter as though
they were rigid spheres of radius equal to the scattering length.’

4. Consider the case of low-energy scattering from a spherical delta-function shell,
Vr)=Wi(r—a),

where Vj and a are constants. First, we solve the Schrodinger equation. Following
the standard steps (see e.g., Liboff p. 446), we write the solution as:

() = “Dymeg 4.

r

where u(r) = rR(r) is related to the radial wave function R(r), and satisfies the
reduced radial equation,

h? d? R0+ 1
___u+ V(T)—l—ﬂ

57 a2 u(r) = Eu(r),

2mr?

SHere, I have quoted from a nice discussion of the low-energy behavior of the phase shifts
given by Roger G. Newton, Scattering Theory of Waves and Particles, 2nd edition (Dover
Publications, Inc., Mineola, NY, 2002), Section 11.2.

10



subject to the boundary condition that u(r = 0) = 0. In the low-energy limit,
we may assume that ka < 1 so that only s-wave scattering is important. Thus,
we can simply take £ = m = 0. Hence, for the delta-function potential, we must

solve: » .
_u AamYoe. _ 72
72 + 72 d(r —a)u(r) = k*u(r). (14)

where FE = h?k?/(2m) defines k as usual.
For r # a, the delta function vanishes, and we can solve the simple equation:

d*u 9
The solution is thus given by:
u(r) = Asi'nkr, for r<a, (16)
Bsin kr + C'cos kr, for r>a,

where we have imposed the boundary condition at the origin, u(r = 0) = 0.
However, there is a more useful way to write the solution for u(r) in the region
r > a. In class, we showed that the asymptotic form for the wave function at
large r is given by:®

1 o

Y(F) —— — Z Cysin(kr — $0m + 6,) Py(cos ) .
T kT o

Since we are focusing on s-wave scattering, we set ¢ = 0, in which case the

asymptotic form of the reduced radial wave function is simply:

u(r) —— %C’O sin(kr 4 do) .

r—00

Our eventual goal is to determine dy. But the above result suggests that we should
rewrite eq. (16) as:

Asink fi
u(r):{ ST o= (17)

B'sin(kr + ég) , for r>a,

where there is a simple relation between B, C' and B’, §y. There is no need to
write out this relation, as the above form for u(r) clearly satisfies eq. (15) in the
stated regions. The advantage of using the form of u(r) given in eq. (17) is that
we will be able to deduce directly an expression for the s-wave phase shift.

To make further progress, we must impose the correct boundary conditions at
r = a. These are:

(i)  wu(r) is continuous at r = a,

(i) [j—“

6We also showed in class that Cp = i*(2¢ 4 1)e?*¢. However in general, it is enough to isolate
the sin(kr — $¢m + &;) term in order to determine the phase shift &.

du

e dr

72 u(a) .

]_QmVO

11



Boundary condition (ii) arises after integrating eq. (14) from r = a — € to a + €
(where 0 < € < 1). In particular, in the limit of € — 0,

—dr +

ate d2u 2me
—/a 0 7 u(a) =0.

—€

The right hand side is zero as a consequence of boundary condition (i) above.
I have also used the fact that for any € # 0 (no matter how small),

/ TS — ) f(r)dr = f(a).

—€

for any well-behaved function f(r). The remaining integral is:

/ e dy du du
—dr=—| — — :
a—e Adr? dri, . dri,_.
which establishes condition (ii) above.
From eq. (17), we obtain:
d_u_ kA coskr, for r<a,
dr | kB cos(kr + &), for r>a.

Applying conditions (i) and (ii) then yield:

B'sin(ka + §g) = Asinka,,

2mV;
B’ cos(ka + dp) = Acoska — gko Asinka.
Diving these two equation, one obtains,
2mV;
cot(ka + o) = cot ka + % : (18)

which is an implicit equation for the s-wave phase shift. To obtain &y, we make
use of the trigonometric identity:

—1
cot(ka + d) = cot ka cot &y

cot ka + cot dg
We can then rewrite eq. (18) as:
cot ka cot g — 1 2mVj
= cotka + ——.
cot ka + cot dg cotfva + h2k

Cross-multiplying and solving for cot dy, we find:

h2k 2mV;
cot 0p = —vao [1 + cot ka (cot ka + ;;ko)} )

12



It is slightly more convenient to rewrite the above in terms of tan dy = 1/ cot dy,

2mV, 1 n 2mVy cos ka !
2k |sin?ka h2k sinka ’

tan dg =

where we have used the identity 1+ cot? ka = 1/sin® ka and the definition of the
cotangent. A simple rearrangement yields the desired result,

—sin? ka
2k
2mV,

tandy = (19)

+ sin ka cos ka

The partial wave expansion of the scattering amplitude is given by:

£(0) = i(ze +1) (@) Py(cos ) .

£=0

In the limit of low-energies where ka < 1, only s-wave scattering is important.
Thus, we can approximate '
' sin §,

0) ~
o) ~
Applying the low-energy limit, ka < 1, to eq. (19) yields,

o]
t ~ — 1 .
an do ka [ + 2m%a}

Indeed, |tandy| < 1 (as expected), in which case,
€' sin &y ~ sin dy ~ tan dy ~ dy .

Hence,

and

13



5. This problem provides a crude model for the photoelectric effect. Consider
the hydrogen atom in its ground state (where we shall neglect the spins of the
electron and proton). At time ¢ = 0, the atom is placed in a high frequency
uniform electric field that points in the z-direction,

E(t) = Ezsinwt.

We wish to compute the transition probability per unit time that an electron is
ejected into a solid angle lying between 2 and €2 + d€2. From this result, we can
obtain the differential and total ionization rates.

The time-dependent Hamiltonian that governs the electron (of charge —e) of
the hydrogen atom. is given by H'(t) = —e¢, where E = —V¢. That is,

H'(t) = ez&y sinwt = Z—jgo [t —e™™"] . (20)

(a) The minimum frequency, wy, of the field necessary to ionize the atom is
equal to the ionization energy divided by h. The ionization energy of the ground

state of hydrogen is equal to the negative of the bound state energy, and is given

by 1 Ry = 13.6 eV. That is,
met

= o5 (21)

Wo

(b) Fermi’s golden rule for the transition rate for the absorption of energy from
an harmonic perturbation is given by [cf. eq. (13.64) on p. 717 of Liboft]:

Waralt) = S| (8O [a ) p(EL), (22

where p(EIEO)) is the density of states of the ionized electron. In eq. (22), we have
written H'(t) = 2H' sinwt. Using eq. (20), it follows that”

H/ = %6280 .
The state ‘a(0)> is the unperturbed wave function for the ground state of hydrogen,

1
o) = Yanlr) = T
The state ‘b(0)> is the unperturbed wave function for the ionized wave function.
This wave function is actually quite complicated, since one cannot really neglect
the effects of the long-range Coulomb potential. Nevertheless, we shall simplify the
computation by assuming the wave function of the ejected electron is a free-particle
plane wave, with wave number vector E, where the direction of k corresponds to

"Although the derivation in class was performed for an harmonic perturbation proportional
to coswt, it is easy to check that the same result for Fermi’s golden rule is obtained in the case
of sinwt.

14



that of the ejected electron. That is, (0)> = ei’;"?/ VV. Taking the hermitian

conjugate yields,

<b(°)} _ L e—iE~1‘~‘
\/v

Note that we have normalized the free-particle plane wave by placing the system
in a very large box of volume V. Imposing periodic boundary conditions, the
possible values of k are quantized as discussed in class. This will be convenient
since we can later use the expression derived in class for the free-particle density
of states.

We are now ready to compute the matrix element, (b(® | H’ }a(0)>. Employing
spherical coordinates, z = r cosf and

/ e& 1 13 _—r'/ag —ik-7
(OH o) = (VTO)W/ dr' r'3e7"/ /dQ/e kT cos @' (23)

In order to perform this integral, we make use of the following trick. There is
a very useful identity given by Liboff in eq. (10.67) on p.421 (see also, problem
10.11 on p. 427 of Liboff):®

m
‘31

=dry Y Gk YO Y0, 0) (24)

=0 m=—4

where the vector 7 points in a direction with polar and azimuthal angles ¢, ¢’
with respect to a fixed z-axis, and the vector k points in a direction with polar
and azimuthal angles 6, ¢ with respect to a fixed z-axis. Taking the complex
conjugate of eq. (24) and inserting the result into eq. (23) yields:

47T€8 T /a - m * m
OH |a®) = S Z / dr'r'Ser (k') Y 1Y (0, 9)] / dsY cos ' Y{"(6/, ') .
m=—¢
(25)
It may look like we have made things more complicated, but the reverse is true!
Noting that we can write (with the help of Table 9.1 on p. 373 of Liboff):

1/2
cos ' = (%”) YO, )

8This identity should look familiar. In particular, if #’ points along the z-direction, then
= = 0, 1n which case , = ,0) = (== mo- us, only the m = 0 term
¢ =0, in which case Y (0/,¢) = Y;(0,0) = (2£2)"/25,,,5. Thus, only th 0

in the sum over m survives. Using Y2(6, ¢) = (%)1/2 Py(cosb), eq. (24) reduces to:

oo

et = Z(% 4+ 1)i%jo(kr)Py(cosf)
=0

which is a result obtained in class. In fact using the addition theorem for spherical harmonics
(see p. 390 of Liboff, identity (b) in the caption to Figure 9.16), one can use the above equation
to derive eq. (24) or vice versa (cf. problem 10.12 of Liboff on p. 427).
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the integration over solid angles in eq. (25) can be immediately performed:

47

1/2 4\ /2
3 ) /dQ/ cos 0" Y, (0, ) [Y(O, §)]" = (—) 0010mo 5

3
(26)

/dQ' cos0' Y, (0, ¢') = (
where we have used the orthogonality relations of the spherical harmonics,
/dQ Yfm(Q) [YZ’nI(QH* = 000 O -

Inserting eq. (26) back into eq. (25) collapses both the sums over m and ¢, re-
spectively. Only the ¢ = 1, m = 0 term of the sums survives. Thus, using

Y20, ¢) = (%)1/2 cos B, eq. (26) reduces to:

4

2mieEycosf [ sinkr  coskr
0 0 - 0 3 _—r/a
<b( )‘H' ‘a( )> = 7(‘/%@8)1/2 /0 dr rPer/a0 ( eI ) )

where we have substituted for j;(kr) using eq. (6). (For notational convenience,
I have now dropped the primes on the integration variable r.) My integral tables
provide the following results:”

o0 2ka?
—r/ag o kr dr = 0
/0 re sin kr dr 7(1 ERITE

2a3(1 — 3k2a2)
(1+ k2a2)?

o0
/ r2 e~/ cos kr dr =
0

Thus,

o0 inkr  coskr 8kap
d 3 _—r/ao S o — 0 )
/0 rre ( k2r2 kr (1 + k2a)?

Hence, it follows that:

Wag) Y2 kg
(

<b(0)} H }a(0)> = 16ie&y cos < v 1+ k2a2)3

We are now ready to compute the transition rate. Using the density of states

derived in class,
_ Vmhk 4O

p( )—(%h)3 :

the transition rate [see eq. (22)] is given by:

21 Vmhk i (2567re2€§a(5) 00829> (kag)?
(

Wamb = 5 (2rh)3 v 1+ ka2

9For simple integrals, my reference table of choice is H.B. Dwight, Table of Integrals and
other Mathematical Data (Macmillan Publishing Co., Inc., New York, 1961).
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Simplifying the above result, and noting that me?/h? = 1/ag, we end up with:

dwe—y  64E5agcos® 0  (kag)?

) 7h (1 + k2a3)6

The factors of the volume V' have canceled out, which indicates that the transition
rate for ionization is a physical quantity.

Fermi’s golden rule also imposes energy conservation. The initial energy is
the ground state energy of hydrogen, which is given by EY = —hwy, as noted in
part (a). The final state energy is Eéo) = h?k?/(2m). Since this is an absorption
process, a quantum of energy Aw from the harmonic perturbation must account
for the energy difference between the final and initial state energies. Therefore,

hk?
hw=— + hUJ() .
2m
Solving for k2, we can write:
2ma2 2h3 W — W
k*al = - O (W —wpy) = pr (W—wpy) = o

where we have used the definition of the Bohr radius, ag = h?/(me?), and the re-
sults of part (a). Thus, we can rewrite the differential transition rate for ionization
as:

dwa—p _ 64E2a} (@)6 Yo o2 cos? 0
dQ) mh w wo

Note that as wy is the minimum frequency of the field necessary to ionize the
hydrogen atom, it follows that w > wy.

(¢) Integrating over solid angles [using [ df2cos®6 = 47/3], we find that the
total ionization rate is given by:

2.3 6 3/2
Wa—p = 725680% (ﬂ) (i — 1)

3h w wo

Note that the ionization rate approaches zero both in the limit of w — wy and in
the limit of w — oo. Moreover, the ionization rate (which is a physical observable)
must be non-negative for wyg < w < oo. Thus, there must be some value of w in
the range wy < w < oo for which the ionization rate is maximal. To find this
value of w, take the derivative of the expression above with respect to w and set
it to zero. Thus, we solve:

6 3/2 3 1/2
(2 1) + Y1) =o.
w? \wp 2wlwo \ wo
This can be easily simplified, and one finds that the the above equation is satisfied
for only one value, w = %wo. We conclude that at this frequency, the ionization
rate must be maximal. (Of course, one can also verify this by computing the sign

of the second derivative.)
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