Supplement 16-A

The Aharanov—Bohm Effect

Let us return to the description of an electron of charge —e and mass m,, in a time-
independent magnetic field. The system is described by the Hamiltonian

H= 2;1ne (—ih V + eA(r)): — ed(r) (16A-1)

and the time-independent Schrodinger equation reads
Hij(r) = E(r) (16A-2)
In the absence of a vector potential the Hamiltonian reads

H, = 2; (—ifi V) — ed(r) (16A-3)

and the Schrodinger equation reads

Hoo(r) = Efso(r) (16A-4)

We can show that formally the solution of (16A-4) and (16A-2) are related by a simple
phase factor. Let us write a general expression

() = M0 y(r) (16A-5)
It follows that
(—ih V + eA) i = eh VA" iy + " (—ih V + eA) i (16A-6)
We now observe that if we choose A such that
eh VA + eA =0 (16A-7)
then
(—ih V + eA) y = M (—ih V) iy, (16A-8)
When this is repeated, we obtain
Hy = ¢““Hyps, = ¢ Egpy = E (16A-9)

What we have just shown is that we can relate a solution of the Schrodinger equation with
a vector potential A(r) to one of the Schrodinger equation without a vector potential by
performing the gauge transformation shown in Eq. (16A-5). This depended, however, on
our ability for find a gauge function A(r) that satisfies Eq. (16A-7). This can only happen if

B(r) =V XA()=—-AV X VAIr) =0

You may wonder why we bother to go through this, since if B = 0, we did not have to write
out the Schrodinger equation in the form (16A-1). The point is that in quantum mechanics it
is the potentials that matter, and there are circumstances where their presence creates physical
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effects even when the magnetic field vanishes. We can write out the dependence on the vec-
tor potential by noting that Eq. (16A-7) can be solved by a line integral,

A(r) = —% f Al « A(r))
P

which starts at some fixed point P and goes to r. In terms of this (16A-5) takes the form

W(r) = et de'«A(r')%(r) (16A-10)

Is the line integral in the phase is independent of the path taken between P and r? Let us
consider two paths as shown in Fig. 16A-1. The difference between the line integrals is

fdl'A—jdl'AZ fﬁ dl*A (16A-11)
2 1 counterclockwise
By Stokes’ theorem we have
jgdl'AZ ff dS’VXAfodS’BICD (16A-12)
encl. surface N

This shows that for all paths that do not enclose any magnetic flux, the integral in the
phase factor is the same, so that the phase factor does not depend on the path taken. The
important point is that there may be situations when there is a local magnetic field, and
paths that go around the flux tube are not equivalent.

In 1959 Y. Aharanov and D. Bohm pointed out a previously overlooked! aspect of
the quantum mechanics of a charged particle in the presence of electromagnetic fields—
namely, that even in a field free region, in which B = 0, the presence in a field elsewhere
can have physical consequences because A # 0.

Consider, for example, a two-slit diffraction experiment carried out with electrons, as
shown in Fig. 16A-2. Suppose that there is a solenoid perpendicular to the plane in which
the electrons move, located as in Fig. 16A-2(a) away from the slits. The interference pat-
tern at the screen depends on the difference in phase between the wave functions for the

!Actually the A-B effect was discovered in an earlier paper by W. Ehrenberg and R. E. Siday (1949). Since the
effects of potentials were not of central interest in the paper, their important remarks on this subject were
completely overlooked.
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electrons passing through the two slits. In the absence of a magnetic field the interference
pattern emerges from the relative phases of s, and ¢/, in

=+, =R + Re'™ = e (R, + &V Ry) (16A-13)
In the presence of a solenoid, (16A-13) is replaced by

—iff de' « A(r') e [ae A

d} =é€ n 1 17[,1—'_6 fi 2 dJZ
e . . . (16A-14)
— 872{ d¢' « Ar') eISI(Rl + Rzer(Sz*S])JrleCIJ/ﬁ)

If the solenoid is placed as in Fig. 16A-2(a), then no flux is enclosed by the paths
of the electrons and there is no change in the interference pattern. If the flux is placed
between the slits, as in Fig. 16A-2(b), then there is an additional contribution to the
phase difference between ¢, and s,, so that the optical path difference is changed by a
constant that depends on the enclosed flux. This has the effect of shifting the peak inter-
ference pattern from the previous center, by an amount that depends on the enclosed
flux. The first experimental confirmation of the effect is due to R. G. Chambers in
1960. The definitive experiments were done by A. Tonomura and collaborators in 1980.

The A-B paper generated a certain amount of controversy, because many people be-
lieved that since only electric and magnetic fields were “physical” nothing could depend
on vector potentials. As was pointed out by M. Peshkin and others, the existence of the
A-B effect is intimately tied to the quantization of angular momentum, and its absence
would raise serious questions about quantum mechanics.

Consider a particle of charge —e confined to a very thin torus with radius p lying in
the x-y plane. A solenoid with radius a << p is placed along the z-axis. The magnetic field
B inside the solenoid points in the positive z-direction. The vector potential in a conve-
nient, cylindrically symmetric gauge is

1
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that is,

P (16A-15)

The Hamiltonian operator has the form

2;1 (—ifi V + eA) + V(p)
= L (A2~ 2iehA -V + 242) + Vi
= om ie eA%) (p) (16A-16)
_ # (& 10 1 P\ _iehB g ¢ BP
- 2m, (alf * Pop  p? 9¢2> 2m, d¢ - 8m, + Vie)
Now
L= (16A-17)
Cidd
so that the Hamiltonian operator takes the form
w (&P 10 L} eBL. &BYp
2m, <ap ! pap> T omg 2w, S, VW)
(16A-18)

(P 19 1 eBp*\?
=S+ + L + +
2me (l?pz P ap> Zmepz ( 4 2 V(P)
Let us now takeV(p) such that the electron is confined to a torus, so narrow that we
may treat p as constant. In that case the Hamiltonian becomes

H= 2mlep2 (L + ‘;‘7’;)2 (16A-19)
aside from a constant. The eigenfunctions of H are eigenfunctions of L. With
Lip = mh (16A-20)
where m = 0, = 1, £2, ..., we find the energy eigenvalues to be
E= 2ij2 <m + 267?ﬁ>2 (16A-21)

It is clear that the energy depends on the flux, even though the electron wave function
nowhere overlaps the external magnetic field. To avoid this one would have to abandon
quantization of angular momentum when the x-y plane has “holes” in it, or one would
have to abandon the Schrodinger equation, or the measurability of energies (or rather en-
ergy differences) in the presence of such confined fluxes. There is no question of the cor-
rectness of this effect.

There is an interesting sidelight to the A-B effect. Consider a ring made of a super-
conductor placed in an external magnetic field, at a temperature above the critical temper-
ature 7, below which the material becomes superconducting. When the temperature is
lowered the superconductor expels the magnetic field (Fig. 16A-3) except for a thin sur-
face layer so that B = 0 inside the material (this is the so-called Meissner effect),” and

*Chapter 21 in the Feynman Lectures on Physics, Vol III contains an excellent discussion of these macroscopic
manifestations of quantum mechanics.
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Figure 16A-3 A superconductor at temperature 7' > T, (the critical temperature) acts like any other
metal, and magnetic flux lines can penetrate it. When the temperature is lowered until 7 < 7, the
ring becomes superconducting, and expels magnetic flux lines. Some of these become trapped
inside the ring. It is the trapped flux that is found to be quantized.

magnetic flux is trapped inside the ring. The wave function of the superconductor is
single-valued, and this implies that the phase factor that appears in (16A-10), when taken
around a path that is inside the superconducting ring and encircles the flux region, must be
unity. This implies that

et =1 (16A-22)
Thus the flux inside the ring is quantized, with

% = 2m (16A-23)

This is almost right. The only modification that must be made is that the superconductor
consists of a condensate of “correlated electron pairs,” so that the appropriate charge that
appears in eq. (16A-23) is 2e, and the flux quantization reads

_ 2wh

=5, N (16A-24)
where n is an integer. The effect has been measured and the prediction (16A-24) was con-
firmed.



