
Physics 171 Problem Set #3 Fall 2015

MIDTERM ALERT: The midterm exam will be a take-home exam and will cover the first
seven topics of the Physics 171 Course Outline. The exam will be posted to the course
website on the evening of Friday November 6. Completed exams must be returned to my
ISB mailbox no later than noon on Monday November 9. While working on the exam,
you are permitted to consult with your class notes, any material provided on the course
website, the textbook by Ta-Pei Cheng and one other relativity textbook of your choosing.

DUE: THURSDAY NOVEMBER 5, 2015

1. (a) Show that raising and lowering of indices commutes with covariant differentiation;
e.g., DαAµ = Dα(gµνA

ν) = gµνDαA
ν .

(b) Suppose that Aµ is a covariant vector and Fµν is an antisymmetric tensor. Prove
that:

(i) DµAν −DνAµ = ∂µAν − ∂νAµ ,

(ii) DρFµν +DνFρµ +DµFνρ = ∂ρFµν + ∂νFρµ + ∂µFνρ .

(c) Maxwell’s equations in Minkowski space are given in Chapter 12.2 of Cheng. Us-
ing the principle of general covariance and the results of part (b), find the appropriate
generalization of Maxwell’s equations in curved spacetime.

(d) How should the equation for current conservation (∂µJ
µ = 0) be generalized in

curved spacetime? [EXTRA CREDIT: Prove that this result is a consequence of Maxwell’s
equations in curved spacetime.]

2. (a) Suppose that the metric gµν is diagonal. Prove the following result for four-
dimensional spacetime:
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where g ≡ det gµν . Note the implicit sum over the index µ. [EXTRA CREDIT: Derive
eq. (1) without assuming any special form for the metric.]

(b) The result of part (a) is valid for an arbitrary choice of metric. Making use of
eq. (1), show that if Aµ is a contravariant vector and F µν is an antisymmetric tensor,
then:
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3. Consider a three-dimensional spacetime with a metric that is given by:

ds2 = −

(

1−
2GM

c2r

)

c2dt2 +
(

1−
2GM

c2r

)−1

dr2 + r2dφ2 .

(a) From the corresponding Lagrangian L = gµνq
µqν , where qµ ≡ dxµ/ds, write down

the Euler-Lagrange equations which (as shown in class) are equivalent to the geodesic
equations,

dqµ

ds
+ Γµ

αβ q
αqβ = 0 .

Use this result to work out the non-vanishing connection coefficients.

(b) Check the connection coefficients obtained in part (a) by calculating them directly
from the formula for Γµ

αβ in terms of the derivatives of the metric tensor.

4. The line element of flat spacetime in a frame with coordinates (ct ; x , y , z) that is
rotating counterclockwise with an angular velocity ω about the z-axis of an inertial frame
is

ds2 = −[c2 − ω2(x2 + y2)]dt2 + 2ω(xdy − ydx)dt+ dx2 + dy2 + dz2 . (2)

(a) Show that by transforming to spherical coordinates (r, θ, φ), and then making the
substitution φ′ = φ+ ωt, the line element given in eq. (2) takes the following form

ds2 = −c2dt2 + dr2 + r2(dθ2 + sin2 θ dφ′ 2) ,

corresponding to the line element for Minkowski space in spherical coordinates (r, θ, φ′).

(b) Find the geodesic equations in the rotating frame (i.e., written in terms of the
variables x, y, z and t).

(c) Show that in the non-relativistic limit, the geodesic equations obtained in part (b)
reduce to the usual equations of Newtonian mechanics for a free particle in a roatating
frame exhibiting the centrifugal force and the Coriolis force.

5. The metric for the two-dimensional surface of a sphere of radius 1 is given by

ds2 = dθ2 + sin2 θ dφ2 .

(a) Using the geodesic equations, show that all lines of longitude, corresponding to
constant azimuthal angle φ on the surface of a sphere, are geodesics.

(b) EXTRA CREDIT: Solve the geodesic equations for the most general geodesic on
the surface of a sphere.


