

1. (a) Prove that in the local inertial frame, $D_\alpha g_{\mu\nu} = 0$, where D_α is the covariant derivative operator.

(b) Using the result of part (a), explain why $D_\alpha g_{\mu\nu} = 0$ is valid in an arbitrary reference frame.

(c) Starting from the expression for the covariant derivative of a contravariant vector,

$$D_\mu V^\nu = \frac{\partial V^\nu}{\partial x^\mu} + \Gamma_{\mu\alpha}^\nu V^\alpha,$$

derive an expression for the covariant derivative of a covariant vector, $V_\nu \equiv g_{\nu\beta} V^\beta$.

HINT: Be sure to make use of the result of part (b) above.

2. Let $x^\mu(\tau)$ represent a timelike curve in spacetime, where τ is the proper time as measured by an observer traveling along the curve. The four-vector velocity $u^\mu \equiv dx^\mu/d\tau$ is tangent to the curve at any point τ along the curve.

(a) If $g_{\mu\nu}$ is the metric of spacetime, compute the magnitude of the vector u^μ . Compare your result with the one obtained in flat Minkowski spacetime.

HINT: The magnitude of a timelike vector v^μ is given by $(-g_{\mu\nu} v^\mu v^\nu)^{1/2}$.

(b) Consider a contravariant timelike vector v^μ at a point P on the curve $x^\mu(\tau)$. Move the vector v^μ from the point P to an arbitrary point Q on the curve via parallel transport. Prove that the magnitude of the vector v^μ at the point Q is equal to the magnitude of v^μ at the point P .

(c) Suppose that the curve $x^\mu(\tau)$ is a geodesic and $u^\mu \equiv dx^\mu/d\tau$ is the corresponding tangent vector. At the point P on the geodesic curve, let $v^\mu = u^\mu$. Now, parallel transport the vector v^μ along the geodesic curve to an arbitrary point Q . Show that $v^\mu = u^\mu$ at the point Q .

NOTE: The result of part (c) implies that a vector tangent to a geodesic at a given point will always remain tangent to the geodesic curve when parallel transported along the geodesic.

3. (a) Consider a spacetime governed by a diagonal metric $g_{\mu\nu}$. Show that the corresponding connection coefficients satisfy the following conditions:

$$\Gamma_{\alpha\beta}^\mu = 0 \text{ if } \mu, \alpha \text{ and } \beta \text{ are all different.} \quad (1)$$

(b) Consider a Schwarzschild geometry with a metric that is given by:

$$ds^2 = - \left(1 - \frac{2G_N M}{c^2 r}\right) c^2 dt^2 + \left(1 - \frac{2G_N M}{c^2 r}\right)^{-1} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2).$$

From the corresponding Lagrangian $L = g_{\mu\nu}q^\mu q^\nu$, where $q^\mu \equiv dx^\mu/ds$, write down the Euler-Lagrange equations which (as shown in class) are equivalent to the geodesic equations,

$$\frac{dq^\mu}{ds} + \Gamma_{\alpha\beta}^\mu q^\alpha q^\beta = 0.$$

Use this result to work out the non-vanishing connection coefficients. Check that your results for the connection coefficients satisfy the conditions specified in eq. (1).

4. Consider the following line element in a two-dimensional spacetime:

$$ds^2 = -e^{f(r)} c^2 dt^2 + dr^2,$$

where $f(r)$ is a function only of r (i.e., f is does not depend explicitly on t).

(a) Compute the non-vanishing connection coefficients.

(b) Compute the Ricci tensor, $R_{\mu\nu}$. Show that it is proportional to $g_{\mu\nu}$, where the coefficient multiplying $g_{\mu\nu}$ depends on the first and second derivatives (with respect to r) of the function f .

(c) Using the result of part (b), find the most general form for $f(r)$ such that the spacetime under consideration is flat by solving a simple differential equation. The solution to this equation will depend on two constants. Choose one constant such that the metric reduces to the standard Minkowski metric at $r = 0$. What is the physical interpretation of the second constant?

5. (a) Assume that $f(x)$ is a well behaved scalar function of the spacetime coordinate x^μ . Evaluate:

$$(D_\beta D_\alpha - D_\alpha D_\beta)f(x),$$

where D_α is the covariant derivative operator.

(b) In class, I proved that for any covariant vector V_μ ,

$$(D_\beta D_\alpha - D_\alpha D_\beta)V_\mu = R^\rho_{\mu\alpha\beta}V_\rho, \quad (2)$$

where $R^\rho_{\mu\alpha\beta}$ is the Riemann curvature tensor. Show that for a contravariant vector W^μ ,

$$(D_\beta D_\alpha - D_\alpha D_\beta)W^\mu = -R^\mu_{\nu\alpha\beta}W^\nu. \quad (3)$$

(c) Given a contravariant second rank tensor $T^{\mu\nu}$ and a covariant vector V^μ , the contravariant vector defined by $W^\mu \equiv T^{\mu\nu}V_\nu$ satisfies eq. (3). Using eqs. (2)–(3) and Leibniz's rule, show that

$$(D_\beta D_\alpha - D_\alpha D_\beta)T^{\mu\nu} = -R^\mu_{\rho\alpha\beta}T^{\rho\nu} - R^\nu_{\rho\alpha\beta}T^{\mu\rho}. \quad (4)$$

(d) Noting the forms of eqs. (3) and (4), deduce without further computation a formula for $(D_\beta D_\alpha - D_\alpha D_\beta)T_{\mu\nu}$, where $T_{\mu\nu}$ is a covariant second rank tensor, based on the form of eq. (2). Do the same for $(D_\beta D_\alpha - D_\alpha D_\beta)T^\mu_{\nu}$, where T^μ_{ν} is a mixed second rank tensor.