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§2.6 ELECTRIC AND MAGNETIC FIELDS
Introduction
In electromagnetic theory the mks system of units and the Gaussian system of units are the ones most
often encountered. In this section the equations will be given in the mks system of units. If you want the

equations in the Gaussian system of units make the replacements given in the column 3 of Table 1.

Table 1. MKS AND GAUSSIAN UNITS
E (Electric field) volt/m E statvolt/cm
B (Magnetic field) weber /m? g gauss
D (Displacement field) coulomb/m? g statcoulomb/cm?
H (Auxiliary Magnetic field) ampere/m g oersted
J (Current density) ampere/m? J statampere/cm?
A (Vector potential) weber/m é gauss-cim
V (Electric potential) volt 1% statvolt
e (Dielectric constant) -
1 (Magnetic permeability) %

Electrostatics
A basic problem in electrostatic theory is to determine the force Fon a charge @ placed a distance r

from another charge q. The solution to this problem is Coulomb’s law

2 1 qQ
F = — e, 2.6.1
4dmeg 12 © (2:6.1)

where ¢, Q are measured in coulombs, ¢, = 8.85 x 1072 coulomb? /N -m? is called the permittivity in a
vacuum, 7 is in meters, [ﬁ] has units of Newtons and €, is a unit vector pointing from ¢ to Q if ¢, Q) have
the same sign or pointing from @ to ¢ if q,Q are of opposite sign. The quantity E=F /Q is called the
electric field produced by the charges. In the special case Q = 1, we have E = F and so Q =1 is called
a test charge. This tells us that the electric field at a point P can be viewed as the force per unit charge
exerted on a test charge @ placed at the point P. The test charge @ is always positive and so is repulsed if
q is positive and attracted if ¢ is negative.

The electric field associated with many charges is obtained by the principal of superposition. For
example, let ¢1,q2, ..., g, denote n-charges having respectively the distances r1, 73, ..., r, from a test charge
@ placed at a point P. The force exerted on @ is

F=F +F+---+F,

= ]- ~ ~ n ~
F= (@em+@em+...+g%)
dmeg \ 17 3 r2 (2.6.2)
s F1 (hai
E=E/P) == = YL,
or (P) Q  4Ameg = r? e
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where E = E(P) is the electric field associated with the system of charges. The equation (2.6.2) can be gen-
eralized to other situations by defining other types of charge distributions. We introduce a line charge density
A*, (coulomb/m), a surface charge density p*, (coulomb/m?), a volume charge density p*, (coulomb/m?),
then we can calculate the electric field associated with these other types of charge distributions. For example,
if there is a charge distribution A* = A\*(s) along a curve C, where s is an arc length parameter, then we

would have

E(P) = ! /E/\*ds (2.6.3)

 drmey Jo 12
as the electric field at a point P due to this charge distribution. The integral in equation (2.6.3) being a
line integral along the curve C and where ds is an element of arc length. Here equation (2.6.3) represents a
continuous summation of the charges along the curve C. For a continuous charge distribution over a surface

S, the electric field at a point P is

E(P) = ! //S%u*da (2.6.4)

4meg
where do represents an element of surface area on S. Similarly, if p* represents a continuous charge distri-

bution throughout a volume V', then the electric field is represented

1 e,
—p* 2.6.
47T60///‘/r2p dr (2.6.5)

where dr is an element of volume. In the equations (2.6.3), (2.6.4), (2.6.5) we let (z,y, z) denote the position

E(P) =

of the test charge and let (z/,4',2’) denote a point on the line, on the surface or within the volume, then

F=(x—-2)e;+(@y—y)es+(z—2)e; (2.6.6)

represents the distance from the point P to an element of charge A*ds, u*do or p*dr with r = |¥] and €, = iy
r

If the electric field is conservative, then V x E = 0, and so it is derivable from a potential function V

by taking the negative of the gradient of V and

E=-VV. (2.6.7)
For these conditions note that VV - d = —E - df is an exact differential so that the potential function can
be represented by the line integral
P
V=VY(P)= —/ E-dF (2.6.8)

where « is some reference point (usually infinity, where V(co) = 0). For a conservative electric field the line

integral will be independent of the path connecting any two points a and b so that

V(b)—V(a):—/:E-dF— <—/:E-df) :—/abE-dF:/abVV-dF. (2.6.9)

Let @ = oo in equation (2.6.8), then the potential function associated with a point charge moving in

the radial direction e, is

"e oL —q [T1 g 1 q
Vir)=— | E-di= =1 = :
() / " 47T€0/ 24 dmeg T 5 4dmegr

o0




By superposition, the potential at a point P for a continuous volume distribution of charges is given by

V(P)

adl do and for a line

P_dr and for a surface distribution of charges V(P)

- 4meg v T - dmeg J Jg T
1 A*
distribution of charges V(P) = 1 / — ds; and for a discrete distribution of point charges
ey Jo T
| X

V(P

=1 E K When the potential functions are defined from a common reference point, then the
TEY T
=1

principal of superposition applies.

The potential function V is related to the work done W in moving a charge within the electric field.
The work done in moving a test charge ) from point a to point b is an integral of the force times distance
moved. The electric force on a test charge @ is F= QE and so the force F = —QE is in opposition to this

force as you move the test charge. The work done is

b b b
W:/ ﬁ-dF:/ —QE-dF:Q/ VV - di = QV(b) — V(a)]. (2.6.10)

The work done is independent of the path joining the two points and depends only on the end points and
the change in the potential. If one moves @ from infinity to point b, then the above becomes W = QV (b).
An electric field E = E(P) is a vector field which can be represented graphically by constructing vectors
at various selected points in the space. Such a plot is called a vector field plot. A field line associated with
a vector field is a curve such that the tangent vector to a point on the curve has the same direction as the
vector field at that point. Field lines are used as an aid for visualization of an electric field and vector fields
in general. The tangent to a field line at a point has the same direction as the vector field E at that point.
For example, in two dimensions let ¥ = z€; + y €, denote the position vector to a point on a field line. The
tangent vector to this point has the direction dif = dz €, + dy€,. If E = E(z,y) = —N(z,y) €1 + M(z,y) €,
is the vector field constructed at the same point, then E and d7 must be colinear. Thus, for each point (z,y)
on a field line we require that dr = K E for some constant K. Equating like components we find that the

field lines must satisfy the differential relation.

dx _dy

Ny~ My (2.6.11)
or M(x,y)dx + N(x,y)dy =0.

In two dimensions, the family of equipotential curves V(z,y) = C1 =constant, are orthogonal to the family

of field lines and are described by solutions of the differential equation
N(z,y)dx — M(z,y)dy =0

obtained from equation (2.6.11) by taking the negative reciprocal of the slope. The field lines are perpendic-
ular to the equipotential curves because at each point on the curve V = C; we have VYV being perpendicular
to the curve V = C; and so it is colinear with E at this same point. Field lines associated with electric
fields are called electric lines of force. The density of the field lines drawn per unit cross sectional area are

proportional to the magnitude of the vector field through that area.
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Figure 2.6-1. Electric forces due to a positive charge at (—a,0) and negative charge at (a,0).

EXAMPLE 2.6-1.
Find the field lines and equipotential curves associated with a positive charge ¢ located at the point

(—a,0) and a negative charge —q located at the point (a,0).

Solution: With reference to the figure 2.6-1, the total electric force E on a test charge @ = 1 place
at a general point (z,y) is, by superposition, the sum of the forces from each of the isolated charges and is

E = El + Eg. The electric force vectors due to each individual charge are

kq(z +a)e; + kqyes

E = 3 with 7 = (z 4 a)? +¢°
L1
~ ~ (2.6.12)
- —kq(z — —k
7, — k= a);%l W ith = (1—a) 4y
)
where k = is a constant. This gives
TEQ
- - kq(x +a kq(lx —a)| . k k ~
E=F+ FEs= C](3 )— (](3 )]e1+|:%—%]eg.
AT T2 ™ T3
This determines the differential equation of the field lines
dx dy
Faate)  Ra@—a) kg _ Fay (2.6.13)
3 3 3 3
L1 Ty Ty T
To solve this differential equation we make the substitutions
cosf = rta and cosfy = r-a (2.6.14)

1 T2



Figure 2.6-2. Lines of electric force between two opposite sign charges.

as suggested by the geometry from figure 2.6-1. From the equations (2.6.12) and (2.6.14) we obtain the

relations
ride — (z + a) dr

2
1

—sin#; db; =

2ridry =2(x + a) dx + 2ydy

dr — (z —a)d
—sin 92 d6‘2 :Tg ZC (2 CL) 2
T3

2rodre =2(x — a) dx + 2y dy

which implies that
(x +a)ydy N y? dx

—sinf; df; = — 3 3
r r
! p 22 (2.6.15)
—sinfy dfy; = — (z ag)y LA 3x
T3 T2

Now compare the results from equation (2.6.15) with the differential equation (2.6.13) and determine that
y is an integrating factor of equation (2.6.13) . This shows that the differential equation (2.6.13) can be

written in the much simpler form of the exact differential equation
—sinf; df; +sinfy df; = 0 (2.6.16)
in terms of the variables §; and 3. The equation (2.6.16) is easily integrated to obtain
cos@; —cosly =C (2.6.17)

where C is a constant of integration. In terms of x,y the solution can be written

xr+a B r—a
Ve+a?+y2  (z—a)? +y?

These field lines are illustrated in the figure 2.6-2.

=C. (2.6.18)
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The differential equation for the equipotential curves is obtained by taking the negative reciprocal of

the slope of the field lines. This gives

ka(@—a) _ kq(a+a)
y _ 3 T

dz kqy _ kqy

3 3
1 2

This result can be written in the form

3 3

[ (@ +a)dz +ydy n (x — a)dx + ydy _0
1 T2 -

which simplifies to the easily integrable form

dry  dre
3 t—3 =0
1 T2

in terms of the new variables 1 and 2. An integration produces the equipotential curves

1 1
- - = =0
1 2

1 1
or — =C5.

Vit+a?+y?  (z—a)?+y?

The potential function for this problem can be interpreted as a superposition of the potential functions

k k
V) = ™ and Vo = ™ associated with the isolated point charges at the points (—a,0) and (a,0). ]
™ T2

Observe that the electric lines of force move from positive charges to negative charges and they do not
cross one another. Where field lines are close together the field is strong and where the lines are far apart
the field is weak. If the field lines are almost parallel and equidistant from one another the field is said to be
uniform. The arrows on the field lines show the direction of the electric field E. If one moves along a field
line in the direction of the arrows the electric potential is decreasing and they cross the equipotential curves
at right angles. Also, when the electric field is conservative we will have V x E=0.

In three dimensions the situation is analogous to what has been done in two dimensions. If the electric
field is E = E(x, y,z2) = P(x,y,2) €1+ Q(x,y,2) €2+ R(x,y,2) €3 and ¥ = x € + y€s + z €3 is the position
vector to a variable point (z,y,z) on a field line, then at this point di and E must be colinear so that

di = KE for some constant K. Equating like coefficients gives the system of equations

dx dy dz
Pl Qs Ry (2.6:19)

From this system of equations one must try to obtain two independent integrals, call them u(z,y,2) = ¢
and us(x,y,2) = co. These integrals represent one-parameter families of surfaces. When any two of these
surfaces intersect, the result is a curve which represents a field line associated with the vector field E. These
type of field lines in three dimensions are more difficult to illustrate.

The electric flux ¢ of an electric field E over a surface S is defined as the summation of the normal

component of E over the surface and is represented

o N m?2
¢E=//E-ﬁda with units of én (2.6.20)
S




where n is a unit normal to the surface. The flux ¢ can be thought of as being proportional to the number
of electric field lines passing through an element of surface area. If the surface is a closed surface we have

by the divergence theorem of Gauss

(;SE://VV-EdT://SE-ﬁdU

where V' is the volume enclosed by S.

Gauss Law
Let do denote an element of surface area on a surface S. A cone is formed if all points on the boundary
of do are connected by straight lines to the origin. The cone need not be a right circular cone. The situation

is illustrated in the figure 2.6-3.

do=doc cos ©

Figure 2.6-3. Solid angle subtended by element of area.

We let 7 denote a position vector from the origin to a point on the boundary of do and let n denote a
unit outward normal to the surface at this point. We then have i - 7 = rcosf where r = || and 6 is the
angle between the vectors n and 7. Construct a sphere, centered at the origin, having radius r. This sphere
intersects the cone in an element of area d{2. The solid angle subtended by do is defined as dw = d—2 Note
that this is equivalent to constructing a unit sphere at the origin which intersect the cone in an elgment of
area dw. Solid angles are measured in steradians. The total solid angle about a point equals the area of the
sphere divided by its radius squared or 4 steradians. The element gf area dfQ is the projection of do on the
constructed sphere and df) = do cosf = ﬂdcr so that dw = n—.;da = —5. Observe that sometimes the
dot product 0 - 7 is negative, the sign depe;ding upon which of Qhe norm;:ls to the surface is constructed.
(i.e. the inner or outer normal.)

The Gauss law for electrostatics in a vacuum states that the flux through any surface enclosing many
charges is the total charge enclosed by the surface divided by €¢y. The Gauss law is written

flzaa={;

p { = for charges inside .S
ag =

€

=

) (2.6.21)
0 for charges outside S
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where . represents the total charge enclosed by the surface S with i the unit outward normal to the surface.

The proof of Gauss’s theorem follows. Consider a single charge ¢ within the closed surface S. The electric

field at a point on the surface S due to the charge ¢ within S is represented E= 4—1 €, and so the flux

Teg T2

=N q ar . fl q dQ q
= FE-ndo = ——do = — = — 2.6.22
¢z //S nae //S dmeg 12 7 4meq //s 2 € ( )

e.-n cosfd dQ)
since — > = > 7 _ — = dw and // dw = 4m. By superposition of the charges, we obtain a similar
r r r g

integral is

n
result for each of the charges within the surface. Adding these results gives Q. = Z ¢;. For a continuous
i=1

distribution of charge inside the volume we can write Q. = / / / p* dr, where p* is the charge distribution
per unit volume. Note that charges outside of the closed surfacg do not contribute to the total flux across
the surface. This is because the field lines go in one side of the surface and go out the other side. In this
case / / E -fdo =0 for charges outside the surface. Also the position of the charge or charges within the
volume fioes not effect the Gauss law.

The equation (2.6.21) is the Gauss law in integral form. We can put this law in differential form as

follows. Using the Gauss divergence theorem we can write for an arbitrary volume that

//sﬁ'ﬁdaz//vv'EdT:///vi_;dT:%:%///Vp*dT

which for an arbitrary volume implies

v E=". (2.6.23)
€0
The equations (2.6.23) and (2.6.7) can be combined so that the Gauss law can also be written in the form

V2V = — 2 Which is called Poisson’s equation.
€0

EXAMPLE 2.6-2

Find the electric field associated with an infinite plane sheet of positive charge.
Solution: Assume there exists a uniform surface charge p* and draw a circle at some point on the plane
surface. Now move the circle perpendicular to the surface to form a small cylinder which extends equal
distances above and below the plane surface. We calculate the electric flux over this small cylinder in the
limit as the height of the cylinder goes to zero. The charge inside the cylinder is u* A where A is the area of
the circle. We find that the Gauss law requires that

//SE hde — Ye 1A (2.6.24)

€o €o

where n is the outward normal to the cylinder as we move over the surface S. By the symmetry of the
situation the electric force vector is uniform and must point away from both sides to the plane surface in the
direction of the normals to both sides of the surface. Denote the plane surface normals by €, and —e,, and
assume that E = 3@, on one side of the surface and E = —3@,, on the other side of the surface for some

constant . Substituting this result into the equation (2.6.24) produces

//S E-ido = 26A (2.6.25)



since only the ends of the cylinder contribute to the above surface integral. On the sides of the cylinder we
will have n - +¢€, = 0 and so the surface integral over the sides of the cylinder is zero. By equating the

results from equations (2.6.24) and (2.6.25) we obtain the result that § = 5— and consequently we can write
€

0
E= 5 €, where €, represents one of the normals to the surface. m
€0
Note an electric field will always undergo a jump discontinuity when crossing a surface charge p*. As in
* *
the above example we have E,, = ;— e, and Eyoun = —g— €,, so that the difference is
€0 €
Bup— Bgoun =28, o  ERV1ER® L o (2.6.26)
€0 €0

It is this difference which causes the jump discontinuity.

EXAMPLE 2.6-3.

Calculate the electric field associated with a uniformly charged sphere of radius a.
Solution: We proceed as in the previous example. Let p* denote the uniform charge distribution over the
surface of the sphere and let €, denote the unit normal to the sphere. The total charge then is written as

q= / / pwrdo = 4ma®p*. If we construct a sphere of radius 7 > a around the charged sphere, then we have
Sa

/// Boendo— %1 (2.6.27)
S, €0 €0

Again, we can assume symmetry for E and assume that it points radially outward in the direction of the

by the Gauss theorem

surface normal €, and has the form E = Be€, for some constant 3. Substituting this value for E into the

equation (2.6.27) we find that
// E-érda:ﬁ// do = 4rpr? = L. (2.6.28)
Sy Sy €0
I ¢

This gives E = yp— €, where €, is the outward normal to the sphere. This shows that the electric field
meY T

outside the sphere is the same as if all the charge were situated at the origin. m

For S a piecewise closed surface enclosing a volume V and F' = Fi(z!, 22, 23) i = 1,2,3, a continuous
vector field with continuous derivatives the Gauss divergence theorem enables us to replace a flux integral

of F over S by a volume integral of the divergence of F over the volume V such that

//Finida:// FfidT or //ﬁ-fldcr:// divF dr. (2.6.29)
s v s v

If V contains a simple closed surface 3 where F? is discontinuous we must modify the above Gauss divergence

theorem.

EXAMPLE 2.6-4.
We examine the modification of the Gauss divergence theorem for spheres in order to illustrate the
concepts. Let V' have surface area S which encloses a surface ¥. Consider the figure 2.6-4 where the volume

V enclosed by S and containing 3 has been cut in half.
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Figure 2.6-4. Sphere S containing sphere X.

Applying the Gauss divergence theorem to the top half of figure 2.6-4 gives

// F’:n?da—k// Finbr da—!—// Finl" do = /// F'.dr (2.6.30)
St Sb1 Zr vr

where the n; are the unit outward normals to the respective surfaces S, Sy and Y. Applying the Gauss

divergence theorem to the bottom half of the sphere in figure 2.6-4 gives

// FinB da+// Finbs do+// Fip¥s doz/// Fi. dr (2.6.31)
Sp Sba b Ve

Observe that the unit normals to the surfaces Sp; and Spo are equal and opposite in sign so that adding the

equations (2.6.30) and (2.6.31) we obtain

// Fin;do + // Fin/l(»l) do = /// F' dr (2.6.32)
S b Vo4V



where S = St + Sp is the total surface area of the outside sphere and ¥ = X7 + X g is the total surface area

)

of the inside sphere, and n; "’ is the inward normal to the sphere X when the top and bottom volumes are

combined. Applying the Gauss divergence theorem to just the isolated small sphere ¥ we find

// Fin® da:/// Fidr (2.6.33)
by Vs

where ”5‘2) is the outward normal to X. By adding the equations (2.6.33) and (2.6.32) we find that

// Fimda—i—/ (an§1>+Fin§2)) da:// Fidr (2.6.34)
S 3 1%

where V = Vi + Vi 4+ V. The equation (2.6.34) can also be written as

//Fnlda—// Fi dr — / Fin®® + Fin (2)) do. (2.6.35)

In the case that V' contains a surface X the total electric charge inside S is

Qe:///vp*dT-f—//Eu* do (2.6.36)

where p* is the surface charge density on % and p* is the volume charge density throughout V. The Gauss

/ Einida——— /// dr + — //,u do. (2.6.37)
s €0 €0 €0

In the case of a jump discontinuity across the surface ¥ we use the results of equation (2.6.34) and write

/ / E'n;do = / / Ei dr — / (Ein§.1>+Ein§2>) do. (2.6.38)
S v by

Subtracting the equation (2.6.37) from the equation (2.6.38) gives

/// ( eo) dT_// <E )+ B + )dU—O (2.6.39)

For arbitrary surfaces S and X, this equation implies the differential form of the Gauss law

theorem requires that

*

go= (2.6.40)

N
s €0

Further, on the surface 3, where there is a surface charge distribution we have

EnY + Ein® + £ — ¢ (2.6.41)
€0

which shows the electric field undergoes a discontinuity when you cross a surface charge p*. m
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Electrostatic Fields in Materials

When charges are introduced into materials it spreads itself throughout the material. Materials in
which the spreading occurs quickly are called conductors, while materials in which the spreading takes a
long time are called nonconductors or dielectrics. Another electrical property of materials is the ability to
hold local charges which do not come into contact with other charges. This property is called induction.
For example, consider a single atom within the material. It has a positively charged nucleus and negatively
charged electron cloud surrounding it. When this atom experiences an electric field E the negative cloud
moves opposite to E while the positively charged nucleus moves in the direction of E.If E is large enough it
can ionize the atom by pulling the electrons away from the nucleus. For moderately sized electric fields the
atom achieves an equilibrium position where the positive and negative charges are offset. In this situation
the atom is said to be polarized and have a dipole moment p.

Definition: When a pair of charges +¢ and —q are separated by a distance 2d the electric dipole
moment is defined by 7 = 2dg, where § has dimensions of [Cm].

In the special case where d has the same direction as E and the material is symmetric we say that p’
is proportional to E and write p= aE, where « is called the atomic polarizability. If in a material subject
to an electric field their results many such dipoles throughout the material then the dielectric is said to be
polarized. The vector quantity P is introduced to represent this effect. The vector P is called the polarization
vector having units of [C/m?], and represents an average dipole moment per unit volume of material. The

vectors P; and F; are related through the displacement vector D; such that
P, =D, —¢E;. (2.6.42)
For an anisotropic material (crystal)
Di=¢E; and P, =dlE (2.6.43)

where eg is called the dielectric tensor and 04{ is called the electric susceptibility tensor. Consequently,

Pi=dlE;j =€ E; — eFE; = (€ — €d))E; so that o) =€ — . (2.6.44)
A dielectric material is called homogeneous if the electric force and displacement vector are the same for any
two points within the medium. This requires that the electric force and displacement vectors be constant
parallel vector fields. It is left as an exercise to show that the condition for homogeneity is that ef e = 0.
A dielectric material is called isotropic if the electric force vector and displacement vector have the same
direction. This requires that eg = e5§ where 5;'- is the Kronecker delta. The term e¢ = ¢gK, is called the
dielectric constant of the medium. The constant ¢y = 8.85(10)~'2coul?/N - m? is the permittivity of free
space and the quantity k. = % is called the relative dielectric constant (relative to €p). For free space ke = 1.
Similarly for an isotropic material we have o = epa.d] where a is called the electric susceptibility. For a

linear medium the vectors 13, D and E are related by

D; =eE; + P, = ¢gB; + cqae By = 60(1 + Oée)Ei =K. E; =€k (2645)



where K. = 1 + . is the relative dielectric constant. The equation (2.6.45) are constitutive equations for
dielectric materials.

The effect of polarization is to produce regions of bound charges p, within the material and bound
surface charges 1 together with free charges py which are not a result of the polarization. Within dielectrics
we have V- P = pp for bound volume charges and P.g&, = up for bound surface charges, where €, is a

unit normal to the bounding surface of the volume. In these circumstances the expression for the potential
1 1
V= /// P dr + //ﬁda (2.6.46)
4dTeg v T dmeg J Jg T

«V-E=p"=p +pr=-V- }3+pf or V(eoE + P) = py. (2.6.47)

function is written

and the Gauss law becomes

Since D = GQE + P the Gauss law can also be written in the form

V-D=p; or Di=p; (2.6.48)

2

When no confusion arises we replace ps by p. In integral form the Gauss law for dielectrics is written

//S D-fdo = Q. (2.6.49)

where Qs is the total free charge density within the enclosing surface.

Magnetostatics

A stationary charge generates an electric field E while a moving charge generates a magnetic field B.
Magnetic field lines associated with a steady current moving in a wire form closed loops as illustrated in the
figure 2.6-5.

Figure 2.6-5. Magnetic field lines.

The direction of the magnetic force is determined by the right hand rule where the thumb of the right
hand points in the direction of the current flow and the fingers of the right hand curl around in the direction

of the magnetic field B. The force on a test charge ) moving with velocity Vina magnetic field is
F,=Q( x B). (2.6.50)

The total electromagnetic force acting on @ is the electric force plus the magnetic force and is

F=Q|E+(V x E)} (2.6.51)
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which is known as the Lorentz force law. The magnetic force due to a line charge density A* moving along

a curve C is the line integral

—

Frag = / N ds(V x B) = / I x Bds. (2.6.52)
c C

Similarly, for a moving surface charge density moving on a surface

ﬁmagz//u do(V x B) = / K x Bdo (2.6.53)

and for a moving volume charge density

Fnag = / / / prdr(V x B) = / Jx Bdr (2.6.54)
1% 1%

where the quantities I = )\*‘7, K= u*V and J = p*\7 are respectively the current, the current per unit
length, and current per unit area.

A conductor is any material where the charge is free to move. The flow of charge is governed by Ohm’s
law. Ohm’s law states that the current density vector J; is a linear function of the electric intensity or
Ji = 0im Ep, where oy, is the conductivity tensor of the material. For homogeneous, isotropic conductors
Oim = 00;m so that J; = o F; where o is the conductivity and 1/ is called the resistivity.

Surround a charge density p* with an arbitrary simple closed surface S having volume V' and calculate

the flux of the current density across the surface. We find by the divergence theorem

//Sf-ﬁda://vv-de. (2.6.55)

If charge is to be conserved, the current flow out of the volume through the surface must equal the loss due

to the time rate of change of charge within the surface which implies

J[rasem s st =[S0
]

This implies that for an arbitrary volume we must have

or

ap* B
- } dr = 0. (2.6.57)

- ap*
V-J——at.

(2.6.58)

Note that equation (2.6.58) has the same form as the continuity equation (2.3.73) for mass conservation and
so it is also called a continuity equation for charge conservation. For magnetostatics there exists steady line

currents or stationary current so % = 0. This requires that V - J=0.



Figure 2.6-6. Magnetic field around wire.

Biot-Savart Law
The Biot-Savart law for magnetostatics describes the magnetic field at a point P due to a steady line

current moving along a curve C and is

- _ Ko I'x @,
B(p) = 4W/g o ds (2.6.59)

with units [N/amp - m] and where the integration is in the direction of the current flow. In the Biot-Savart
law we have the constant pp = 47 x 10~7 N/amp? which is called the permeability of free space, I=1¢is
the current flowing in the direction of the unit tangent vector €; to the curve C, €, is a unit vector directed
from a point on the curve C toward the point P and r is the distance from a point on the curve to the
general point P. Note that for a steady current to exist along the curve the magnitude of I must be the
same everywhere along the curve. Hence, this term can be brought out in front of the integral. For surface

currents K and volume currents J the Biot-Savart law is written

~ K x 8,
B(p) = // # do
47 S T
and B(P) —@/// Jx & dr
_47T v 7"2 '
EXAMPLE 2.6-5.

Calculate the magnetic field B a distance h perpendicular to a wire carrying a constant current I.

Solution: The magnetic field circles around the wire. For the geometry of the figure 2.6-6, the magnetic

field points out of the page. We can write
Ixe =18 x @, =Iésina

where € is a unit vector tangent to the circle of radius A which encircles the wire and cuts the wire perpen-

dicularly.
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For this problem the Biot-Savart law is
B( HOI /
In terms of § we find from the geometry of figure 2.6-6
s . 9 h
tanﬁzﬁ with ds = hsec*0df and cosﬁz;.

Therefore,

db.

72 ~A . 2

- 140 Iésina hsec” 0

B(pP)=2 ittt
(P) ™ /91 h?/ cos? 6

But, o = m/2 + 0 so that sin = cos§ and consequently

. 16 [0 Ié
B(P) = Z(;_; A os0df = Z(;_;(sinﬁg —sinfq).
- Ié
For a long straight wire §; — —7/2 and 65 — 7/2 to give the magnetic field B(P) = l;o ;- |
T

IOI \/Olullle CuIIeIltb tlle Blot—SaVaIt laW 1S

V-B=0. (2.6.61)

and consequently (see exercises)

Recall the divergence of an electric field is V - E = % is known as the Gauss’s law for electric fields and so
in analogy the divergence V- B = 0 is sometimes referred to as Gauss’s law for magnetic fields. If V- B = 0,
then there exists a vector field A such that B = V x A. The vector field A is called the vector potential of
B. Note that V- B = V- (V x A) = 0. Also the vector potential A is not unique since B is also derivable

from the vector potential A+ V¢ where ¢ is an arbitrary continuous and differentiable scalar.

Ampere’s Law

Ampere’s law is associated with the work done in moving around a simple closed path. For example,
consider the previous example 2.6-5. In this example the integral of B around a circular path of radius h
which is centered at some point on the wire can be associated with the work done in moving around this

path. The summation of force times distance is
— o — R MOI
B-df=({Q)B-éds= ds = pol (2.6.62)

where now dr' = éds is a tangent vector to the circle encircling the wire and ygds = 2mh is the distance

c
around this circle. The equation (2.6.62) holds not only for circles, but for any simple closed curve around

the wire. Using the Stoke’s theorem we have

glgé-df'://(Vxé)-Endaz,uglz// Lo - €, do (2.6.63)
C S S



where / / J - €,do is the total flux (current) passing through the surface which is created by encircling
s

some curve about the wire. Equating like terms in equation (2.6.63) gives the differential form of Ampere’s
law

— =

V x B = polJ. (2.6.64)

Magnetostatics in Materials

Similar to what happens when charges are introduced into materials we have magnetic fields whenever
there are moving charges within materials. For example, when electrons move around an atom tiny current
loops are formed. These current loops create what are called magnetic dipole moments 17 throughout the
material. When a magnetic field Bis applied to a material medium there is a net alignment of the magnetic
dipoles. The quantity M , called the magnetization vector is introduced. Here M is associated with a
dielectric medium and has the units [amp/m] and represents an average magnetic dipole moment per unit
volume and is analogous to the polarization vector P used in electrostatics. The magnetization vector M
acts a lot like the previous polarization vector in that it produces bound volume currents J, and surface
currents K » where V x M= fb is a volume current density throughout some volume and M x e, = K pis a
surface current on the boundary of this volume.

From electrostatics note that the time derivative of 6()%-? has the same units as current density. The
total current in a magnetized material is then ft = fb + ff + 60%—? where fb is the bound current, ff is the
free current and eo%—]f is the induced current. Ampere’s law, equation (2.6.64), in magnetized materials then

becomes

— —

., - - - OF - OF
V x B = podt = po(Jp + Jr+ GOE) = pod + NOeOE (2.6.65)

where J = J, + ff The term eo%—lf is referred to as a displacement current or as a Maxwell correction to
the field equation. This term implies that a changing electric field induces a magnetic field.

An auxiliary magnet field H defined by

1
H;=—B;,— M, (2.6.66)
Ho

is introduced which relates the magnetic force vector B and magnetization vector M. This is another con-

stitutive equation which describes material properties. For an anisotropic material (crystal)
Bi=wH; and M;=xlH, (2.6.67)

where ,uf is called the magnetic permeability tensor and X{ is called the magnetic permeability tensor. Both

of these quantities are dimensionless. For an isotropic material
) = pé? where = pokn,. (2.6.68)

Here o = 47 x 1077 N/amp? is the permeability of free space and k,, = % is the relative permeability
coefficient. Similarly, for an isotropic material we have X{ = Xm5g' where Yy, is called the magnetic sus-

ceptibility coefficient and is dimensionless. The magnetic susceptibility coefficient has positive values for
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materials called paramagnets and negative values for materials called diamagnets. For a linear medium the

quantities B , M and H are related by
B, = ;L()(Hi + Ml) = poH; + poxmH; = M()(l + Xm)Hi = pokn H; = pH; (2.6.69)

where pu = pokm = po(l + xm) is called the permeability of the material.

Note: The auxiliary magnetic vector H for magnetostatics in materials plays a role similar to the
displacement vector D for electrostatics in materials. Be careful in using electromagnetic equations from
different texts as many authors interchange the roles of B and H. Some authors call H the magnetic field.

However, the quantity B should be the fundamental quantity.!

Electrodynamics

In the nonstatic case of electrodynamics there is an additional quantity J; = %—If called the polarization

current which satisfies

. 9P _9_ 5 Op
V-JP—V-E—§V-P——E (2.6.70)
and the current density has three parts
.. . - P
J=Jb+Jf+Jp=V><M+Jf+aa—t (2.6.71)

consisting of bound, free and polarization currents.
Faraday’s law states that a changing magnetic field creates an electric field. In particular, the electro-
magnetic force induced in a closed loop circuit C' is proportional to the rate of change of flux of the magnetic

field associated with any surface S connected with C. Faraday’s law states

gﬂé-df: —2//13?- 8, do.
c ot ) /s
Using the Stoke’s theorem, we find

. 0B
//S(VXE)-enda——//SE-endo.

The above equation must hold for an arbitrary surface and loop. Equating like terms we obtain the differential

form of Faraday’s law

VxE=—>" (2.6.72)

This is the first electromagnetic field equation of Maxwell.
Ampere’s law, equation (2.6.65), written in terms of the total current from equation (2.6.71) , becomes
OE

- - - 9P
VXB:MO(VXM—’—Jf—’—E)—’_HOeOa_

: (2.6.73)

which can also be written as

1. - -9
VX (oB = M) =y + 5P+ o)

'D.J. Griffiths, Introduction to Electrodynamics, Prentice Hall, 1981. P.232.
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or

—

. - 0D
Vx H=Js+ %—t. (2.6.74)

This is Maxwell’s second electromagnetic field equation.

To the equations (2.6.74) and (2.6.73) we add the Gauss’s law for magnetization, equation (2.6.61) and
Gauss’s law for electrostatics, equation (2.6.48). These four equations produce the Maxwell’s equations of
electrodynamics and are now summarized. The general form of Maxwell’s equations involve the quantities

E;, Electric force vector, [F;] = Newton/coulomb

B;, Magnetic force vector, [B;] = Webelr/m2

H;, Auxilary magnetic force vector, [H;] = ampere/m
D;, Displacement vector, [D;] = coulomb/m?

Ji, Free current density, [J;] = ampere/m?

P;, Polarization vector, [P;] = coulomb/m?

M;, Magnetization vector, [M;] = ampere/m
for i = 1,2, 3. There are also the quantities

0, representing the free charge density, with units [g] = coulomb/ m>
€0, Permittivity of free space, [¢g] = farads/m or coulomb?/Newton - m? .

to, Permeability of free space, [1o] = henrys/m or kg - m/coulomb?
In addition, there arises the material parameters:

1, magnetic permeability tensor, which is dimensionless
dielectric tensor, which is dimensionless
electric susceptibility tensor, which is dimensionless

X;-, magnetic susceptibility tensor, which is dimensionless

These parameters are used to express variations in the electric field E; and magnetic field B; when

acting in a material medium. In particular, P;, D;, M; and H; are defined from the equations

D; :egEj =e¢E; + P 63- = 605§ + ozz
B; =plH; = poH; + p10 M, 15 = o (85 + x5)
Pi:agEj, and Mi:x{Hj fori=1,2,3.

The above quantities obey the following laws:

Faraday’s Law This law states the line integral of the electromagnetic force around a loop is proportional
to the rate of flux of magnetic induction through the loop. This gives rise to the first electromagnetic field

equation:
. OB »
VXxE= or IR By =

0B 9B’
ot

ot -

(2.6.75)
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Ampere’s Law  This law states the line integral of the magnetic force vector around a closed loop is
proportional to the sum of the current through the loop and the rate of flux of the displacement vector

through the loop. This produces the second electromagnetic field equation:

oD’
ot

5 = 0D
VxH=Jr+— or

ot P Hy = T+

(2.6.76)

Gauss’s Law for Electricity This law states that the flux of the electric force vector through a closed

surface is proportional to the total charge enclosed by the surface. This results in the third electromagnetic

field equation: 5
. : 1
V-D=ps or D', =py or ﬁaxi

Gauss’s Law for Magnetism Thig law states the magnetic flux through any closed volume is zero. This

produces the fourth electromagnetic field equation:

(vVaD') = py- (2.6.77)

19
Vg 0zt

When no confusion arises it is convenient to drop the subscript f from the above Maxwell equations.

V-B=0 o B,=0 or (2.6.78)

(V3B =0.

Special expanded forms of the above Maxwell equations are given on the pages 176 to 179.

Electromagnetic Stress and Energy
Let V' denote the volume of some simple closed surface S. Let us calculate the rate at which electro-
magnetic energy is lost from this volume. This represents the energy flow per unit volume. Begin with the

first two Maxwell’s equations in Cartesian form

0B;
€ijk Bk = — e (2.6.79)
oD;
€ijkHy; =Ji + —— (2.6.80)

ot -

Now multiply equation (2.6.79) by H; and equation (2.6.80) by E;. This gives two terms with dimensions of

energy per unit volume per unit of time which we write

0B,
€ijkEr,j Hi = — WHZ‘ (2.6.81)
0D;
€iijk,jEi =J;E; + WEZ'. (2.6.82)
Subtracting equation (2.6.82) from equation (2.6.81) we find
0D; 0B;
ijk(EkjHi — H j B;) = — Ji B — E; — ——H,
ejk( k,j k,j ) J, ot ot
0D; 0B,
€iji [(ExHi) j — ExHij + Hi jE] = — JiE; — E; — ——H,
ot ot
Observe that €;x; (ExH;) ; is the same as €;;;(E;Hy),; so that the above simplifies to
dD; 0B;

’ ot ot



Now integrate equation (2.6.83) over a volume and apply Gauss’s divergence theorem to obtain

oD; 0B;
/AeijkEijnid0+//VJiEidT——///V( B E; + ot

The first term in equation (2.6.84) represents the outward flow of energy across the surface enclosing the

H;)dr. (2.6.84)

volume. The second term in equation (2.6.84) represents the loss by Joule heating and the right-hand side
is the rate of decrease of stored electric and magnetic energy. The equation (2.6.84) is known as Poynting’s

theorem and can be written in the vector form

//S(Exﬁ)-ﬁda:///v(—ﬁ-aa—lt)—ﬁ-aa—f—ﬁ-f)dr (2.6.85)

For later use we define the quantity
S;=eyxEjHy or S=ExH [Watts/m?| (2.6.86)

as Poynting’s energy flux vector and note that S; is perpendicular to both E; and H; and represents units

of energy density per unit time which crosses a unit surface area within the electromagnetic field.

Electromagnetic Stress Tensor

Instead of calculating energy flow per unit volume, let us calculate force per unit volume. Consider a
region containing charges and currents but is free from dielectrics and magnetic materials. To obtain terms
with units of force per unit volume we take the cross product of equation (2.6.79) with D, and the cross

product of equation (2.6.80) with B; and subtract to obtain

B, +

oD; 0B
_eirseijk(Ek,jDs + Hk,st) = €risJi Bs + €ris <W ot Dl)

which simplifies using the e — § identity to

0
_(5rj55k - 5rk5sj)(Ek,jDs + Hk,st) = GrisJiBs + €ris§(DiBs)

which further simplifies to

0
_ES,T‘DS + Er,st - Hs,rBs + Hr,sBs = GrisJiBs + E(erisDiBs)- (2687)

Observe that the first two terms in the equation (2.6.87) can be written
Er,st - ES,TDS :ET’,SDS - €0ES,TES

1
:(ETDS),S - ErDs,s - 60(§ESES),T

1
:(ETDS),S - pEr - §(Eij53r),s

1
:(ETDS — EEijdrs),s — pEr
which can be expressed in the form

Er,st - ES,T‘DS = TTES - pEr

yS
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where
1
T3 = BxDs = 5 B;D;dr,s (2.6.88)

is called the electric stress tensor. In matrix form the stress tensor is written

E\D; - LE;D; E7\Ds EyDs
T) = Es D,y EyDy — 5E;D; EyD3 . (2.6.89)
E3D1 E3D2 E3D3 — %EJ‘DJ*

By performing similar calculations we can transform the third and fourth terms in the equation (2.6.87) and

obtain
H,,B;— H,,Bs = Trj\fg (2.6.90)
where
1
Ty = HyBs — 5 H;Bjors (2.6.91)

is the magnetic stress tensor. In matrix form the magnetic stress tensor is written

BiH, — 1B;H; By H B\ H;
TN = By H, BoHs — 1B H; BoHj . (2.6.92)
B3 Hy BsHs BsHs — %BjHj

The total electromagnetic stress tensor is
T,s =TE +TM. (2.6.93)
Then the equation (2.6.87) can be written in the form

0
Trs,s - pEr - €r1'sJiBs + =

T8 D1B9
7 )

or

9
ot

For free space D; = ¢gE; and B; = pgH; so that the last term of equation (2.6.94) can be written in terms

pEr + €risJiBs = Trs,s - (erisDiBs)~ (2694)

of the Poynting vector as

95, _ 9
Hoco 5 = B¢

Now integrate the equation (2.6.94) over the volume to obtain the total electromagnetic force

/// PE, dr—i—/// €ris)i Bs dr_/// Touvdr — poco

Applying the divergence theorem of Gauss gives

/// pETdT—i—/// erisJiBSdT:// Trsnsdo—uoeo// 95 d
v v s v Ot

The left side of the equation (2.6.96) represents the forces acting on charges and currents contained within

(2.6.96)

the volume element. If the electric and magnetic fields do not vary with time, then the last term on the

right is zero. In this case the forces can be expressed as an integral of the electromagnetic stress tensor.



EXERCISE 2.6

» 1. Find the field lines and equipotential curves associated with a positive charge ¢ located at (—a,0) and

a positive charge ¢ located at (a,0). The field lines are illustrated in the figure 2.6-7.

Figure 2.6-7. Lines of electric force between two charges of the same sign.

» 2. Calculate the lines of force and equipotential curves associated with the electric field
E = E(z,y) = 2y €, + 2z &,. Sketch the lines of force and equipotential curves. Put arrows on the lines of

force to show direction of the field lines.

» 3. A right circular cone is defined by
T = wsin fy cos ¢, Yy = usin @y sin ¢, z =wucosby

with 0 < ¢ < 27 and u > 0. Show the solid angle subtended by this cone is Q = % = 27(1 — cosbp).

> 4. A charge +q is located at the point (0,a) and a charge —q is located at the point (0, —a). Show that
1 —2aq ~
— 47‘(‘60 (CL2 + IE2)3/2 €9.

the electric force E at the position (z,0), where z > a is E

» 5.  Let the circle 22 + y? = a? carry a line charge \*. Show the electric field at the point (0,0, 2) is
B 1 Maz(2r)e;

4o (a2 4 22)3/2°

> 6. Use superposition to find the electric field associated with two infinite parallel plane sheets each

carrying an equal but opposite sign surface charge density p*. Find the field between the planes and outside

of each plane. Hint: Fields are of magnitude i% and perpendicular to plates.

» 7. For a volume current .J the Biot-Savart law gives B = Z—O /// J X2 °r dr. Show that V - B = 0.
m v T
Hint: Let €, = " and consider V- (J x %) Then use numbers 13 and 10 of the appendix C. Also note that
T T

V x J = 0 because J does not depend upon position.
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» 8. A homogeneous dielectric is defined by D; and FE; having parallel vector fields. Show that for a

homogeneous dielectric eZ e = 0.
» 9. Show that for a homogeneous, isotropic dielectric medium that € is a constant.

» 10. Show that for a homogeneous, isotropic linear dielectric in Cartesian coordinates

P = Ge
’ 1+ e

Py

» 11. Verify the Maxwell’s equations in Gaussian units for a charge free isotropic homogeneous dielectric.

~  10B oOH
— ]. — E = = —— = —E_
VE:gV'DZO VX c ot ¢ ot
VB =uVH=0 v goloD Amp OE  dm
c Ot c c Ot c
> 12. Verify the Maxwell’s equations in Gaussian units for an isotropic homogeneous dielectric with a
charge.
S 1868
VD =dmp VEET o
—0 L 47 - 10D
v v fodmy, LoD
c c Ot

» 13. For a volume charge p in an element of volume dr located at a point (§,7,{) Coulombs law is

Le.d
47T60 //v

(a) Show that 72 = (z — €)% + (y — n)? + (z — )%
(b) Show that €, = ((x e+ (y—ne+(z—()es).

(c¢) Show that
- /// e1+(yy nﬂ))eg?( g)C])W dédn C——/// < >pd£dnd§

E(z,y,2

E(z,y,2)

: 1 p(&:n:¢)
d) Show that the potential function for EisV = dédnd¢
@ " Tl ) (P P P T
(e) Show that E = —VV.
ow that = —= Hint: Note that the integrand is zero everywhere except at the point where
f) Show that V2V = —£ Hint: Note that th d h h h
& n,¢) = (x,y,2). Con51der the integral split into two regions. One region being a small sphere

about the point (z,y, z) in the limit as the radius of this sphere approaches zero. Observe the identity

~

Via,y,2) (er) = -V(&,n,0) (%) enables one to employ the Gauss divergence theorem to obtain a

P e . P o
Irey //S ps -ndS = Feoéhr since n = —e€,.

» 14. Show that for a point charge in space p* = qd(x — 20)d(y — y0)d(z — 20), where J is the Dirac delta

surface integral. Use a mean value theorem to show —

function, the equation (2.6.5) can be reduced to the equation (2.6.1).

> 15.
(a) Show the electric field E = 2 e, is irrotational. Here e, = ? is a unit vector in the direction of 7.

(b) Find the potential function V such that E = —VV which satisfies V(rg) = 0 for ro > 0.



> 16.
(a) If E is a conservative electric field such that E = —VV), then show that E is irrotational and satisfies
V x E =curl E = 0.
(b) If V x E = curl E = 0, show that E is conservative. (i.e. Show E = —VV.)
Hint: The work done on a test charge Q = 1 along the straight line segments from (xg,yo, 20) to

(z, Y0, 20) and then from (zx,yo, 20) to (z,y, 20) and finally from (x,y, z0) to (x,y, z) can be written
T Y z
V=V(ry,z)= —/ Er(x,y0,20) dv — [ Ea(x,y, 20) dy —/ E3(z,y, z) dz.
Zo Yo 20

Now note that 5 s 5
_V:_EQ(x,y,ZQ)—/ 3(1’,y,2’) dz
20

dy dy
., E. E
and from V x E = 0 we find % = %, which implies g_V = —Fs(z,y, z). Similar results are obtained
Y z Y

for 8—V and 8—V Hence show —VV = E.
ox 0z

> 17.
(a) Show that if V - B = 0, then there exists some vector field A such that B = V x A.
The vector field A is called the vector potential of B.

1
Hint: Let A(z,y,z) = / sB(sx, sy, sz) x Pds where ¥ = 16, + y €, + z €3
0

1
dB;

and integrate / s 52 ds by parts.
0 S

(b) Show that V- (V x A) = 0.
» 18. Use Faraday’s law and Ampere’s law to show

, . P a |, OE!
m EJ4 m— ]mEl R 7
9 ( ,])7 g ,mj ,u()at l:J + €o ot :|

» 19. Assume that J = o E where o is the conductivity. Show that for p = 0 Maxwell’s equations produce

OF PE _,=
_ _— = E
Hoo o + Ho€o 9 \Y
OB #?B _,=
and 'UOUE + ,LL()GOW =V*B.

Here both E and B satisfy the same equation which is known as the telegrapher’s equation.

» 20.  Show that Maxwell’s equations (2.6.75) through (2.6.78) for the electric field under electrostatic

conditions reduce to .
V x E =0

V-D=ps

Now F is irrotational so that E = —VV. Show that V2V = —ﬁ.
€
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» 21. Show that Maxwell’s equations (2.6.75) through (2.6.78) for the magnetic field under magnetostatic
conditions reduce to V x H = J and V - B = 0. The divergence of B being zero implies B can be derived
from a vector potential function A such that B = V x A. Here A is not unique, see problem 24. If we select
A such that V- A = 0 then show for a homogeneous, isotropic material, free of any permanent magnets, that
V2A = — ,uj

> 22. Show that under nonsteady state conditions of electrodynamics the Faraday law from Maxwell’s
equations (2.6.75) through (2.6.78) does not allow one to set E = —VV. Why is this? Observe that

V- B =0 so we can write B = V x A for some vector potential A Using this vector potential show that

. 0A
Faraday’s law can be written V x <E + E) = 0. This shows that the quantity inside the parenthesis is
conservative and so we can write E + o = —VYV for some scalar potential V. The representation
- oA
E=-VVY—-—
ot

is a more general representation of the electric potential. Observe that for steady state conditions %—‘f =0

so that this potential representation reduces to the previous one for electrostatics.

- 0A
» 23. Using the potential formulation £ = —VV — ¥ derived in problem 22, show that in a vacuum

A
(a) Gauss law can be written V2V + 3V8t S—
€
(b) Ampere’s law can be written °
. - oV 02 A
V x (V X A) = /J()J — /J()G()V (E) — /JJ()GQW

(¢) Show the result in part (b) can also be expressed in the form

o 0A o oV -
<V2A — u()GQE) -V <V A + ,U()GOE) = _,LL(]J

» 24. The Maxwell equations in a vacuum have the form

= 6é e 813 — — —
V x o V x o +p \Y p \Y
where D = GQE, B = Moﬁ with €p and pg constants satisfying eg o = 1/c2 where c¢ is the speed of light.
- - - a A
Introduce the vector potential A and scalar potential V defined by B =V x A and FE = —%—t - V.

Note that the vector potential is not unique. For example, given 1 as a scalar potential we can write
B=VxA=Vx (A' + V), since the curl of a gradient is zero. Therefore, it is customary to impose some

kind of additional requirement on the potentials. These additional conditions are such that E and B are

> - 19V
not changed. One such condition is that A and V satisfy V- A + Ry 0. This relation is known as the
c
Lorentz relation or Lorentz gauge. Find the Maxwell’s equations in a vacuum in terms of A and V and show
that
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(a)

In a vacuum show that E and B satisty
. 10%E - 18°B o =
P=—=— B= 55— E=0 B=0
2 o2 v 2 o2 v v

Show that the wave equations in problem 25 have solutions in the form of waves traveling in the
x- direction given by

E = E(x,t) = Bpel*=*«  and B = B(x,t) = Byelthatwt)

where Ey and By are constants. Note that wave functions of the form u = Ae!***“) are called plane

2:

harmonic waves. Sometimes they are called monochromatic waves. Here i —1 is an imaginary unit.

FEuler’s identity shows that the real and imaginary parts of these type wave functions have the form
Acos(kz + wt) and Asin(kz + wt).

These represent plane waves. The constant A is the amplitude of the wave , w is the angular frequency,
and k/27 is called the wave number. The motion is a simple harmonic motion both in time and space.
That is, at a fixed point = the motion is simple harmonic in time and at a fixed time ¢, the motion is
harmonic in space. By examining each term in the sine and cosine terms we find that « has dimensions of
length, k has dimension of reciprocal length, ¢ has dimensions of time and w has dimensions of reciprocal
time or angular velocity. The quantity ¢ = w/k is the wave velocity. The value A = 27/k has dimension
of length and is called the wavelength and 1/A is called the wave number. The wave number represents
the number of waves per unit of distance along the x-axis. The period of the wave is T = \/¢ = 27 /w
and the frequency is f = 1/T. The frequency represents the number of waves which pass a fixed point
in a unit of time.

Show that w = 2x f

Show that ¢ = fA

Is the wave motion u = sin(kz — wt) + sin(kx + wt) a traveling wave? Explain.
1 0%

— —— have solutions in the form of waves traveling in
2 ot?

Show that in general the wave equation VZ¢ =

either the +x or —z direction given by

¢ = ¢(z,t) = f(x +ct) + gl — ct)

where f and g are arbitrary twice differentiable functions.

Assume a plane electromagnetic wave is moving in the +z direction. Show that the electric field is in
the xy—plane and the magnetic field is in the xz—plane.

Hint: Assume solutions E, = ¢g1(x — ct), E, = g2(x —ct), E, = g3(x — ct), By = ga(z — ct),

B, = gs(x — ct), B, = gs(x — ct) where g;,i = 1,...,6 are arbitrary functions. Then show that E,
does not satisfy V - E = 0 which implies g; must be independent of x and so not a wave function. Do
the same for the components of B. Since both V- E = V- B = 0 then E, = B, = 0. Such waves
are called transverse waves because the electric and magnetic fields are perpendicular to the direction
of propagation. Faraday’s law implies that the E and B waves must be in phase and be mutually

perpendicular to each other.
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