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§1.4 DERIVATIVE OF A TENSOR

In this section we develop some additional operations associated with tensors. Historically, one of the
basic problems of the tensor calculus was to try and find a tensor quantity which is a function of the metric

. . 0gij 029;;
tensor g;; and some of its derivatives g:i, Jij

g A solution of this problem is the fourth order
T Ox
Riemann Christoffel tensor R;;; to be developed shortly. In order to understand how this tensor was arrived

at, we must first develop some preliminary relationships involving Christoffel symbols.

Christoffel Symbols

Let us consider the metric tensor g;; which we know satisfies the transformation law

__ Ox° oxb
Jap = gabﬁﬁ'

Define the quantity

ap  Ogap 0a° Oz* Da® 0%z Oxb oz 9%a®

(aaﬁv,‘/) = 9% - oxc ﬁﬁﬁ + gabafo‘aj'y ﬁ T Gab oT™ 855857

1
and form the combination of terms 3 [(e, B,7) + (8,7,a) — (v, a, B)] to obtain the result

1 0G0 N 993, B ('Em] 1 [5gab Ogbe 5gca] dz® 9zl dx¢ Azl 92z (14.1)

5|00 T 0xf | 2| 0w T 0w oxt | 0 0P om | 9 onP orcom

In this equation the combination of derivatives occurring inside the brackets is called a Christoffel symbol
of the first kind and is defined by the notation

1 |:agab 8gbc agac:| (1 4 2)

lac, b] = [ca, b} = 2| ozc " Qxe  Oxb

The equation (1.4.1) defines the transformation for a Christoffel symbol of the first kind and can be expressed

as
[ ﬂ] — [ b]%a_xb% + 7a2xa _8xb
&= N e P o T Y gz o oz

Observe that the Christoffel symbol of the first kind [ac, b] does not transform like a tensor. However, it is

(1.4.3)

symmetric in the indices a and c.
At this time it is convenient to use the equation (1.4.3) to develop an expression for the second derivative

term which occurs in that equation as this second derivative term arises in some of our future considerations.

ozP
To solve for this second derivative we can multiply equation (1.4.3) by % g% and simplify the result to the
x

form 52 900 & o
z° de r® 0x®  ———= 0T 4
—_—— = — d— —g°°. 1.4.4
g~ 9 e dlgga g e Bl (144)
. de Y 3xd 3xe . .
The transformation ¢*¢ =g MF poer allows us to express the equation (1.4.4) in the form
T
0?z¢ d Ox® Ox° ———0z°
— = —g* d — 4+ g . 1.4.5
oT*oT" 9" lac, ]%a oz 9 [y, 6] oz ( )



Define the Christoffel symbol of the second kind as

i _ i _ oy _l io [ O9ka 39ja _ agjk
{jk}—{kj}—g ik, o] = 59 (axj Rl ol B (1.4.6)

This Christoffel symbol of the second kind is symmetric in the indices j and k and from equation (1.4.5) we

see that it satisfies the transformation law

po|0z¢ _ [ e )| Oz Oa* 0?z°
{ow}af“ B {ac} o7 o | omeom (14.7)

Observe that the Christoffel symbol of the second kind does not transform like a tensor quantity. We can use

the relation defined by equation (1.4.7) to express the second derivative of the transformation equations in
terms of the Christoffel symbols of the second kind. At times it will be convenient to represent the Christoffel

symbols with a subscript to indicate the metric from which they are calculated. Thus, an alternative notation

for { ! } is the notation { ! } .
Ik Jk | _
g

EXAMPLE 1.4-1. (Christoffel symbols) Solve for the Christoffel symbol of the first kind in terms of

the Christoffel symbol of the second kind.

Solution: By the definition from equation (1.4.6) we have

{jik} = g"[jk, a].

We multiply this equation by gg; and find

and so

EXAMPLE 1.4-2. (Christoffel symbols of first kind)
Derive formulas to find the Christoffel symbols of the first kind in a generalized orthogonal coordinate

system with metric coefficients
9i; =0 for i#j and  gue =hiy, =123

where 7 is not summed.

Solution: In an orthogonal coordinate system where g;; = 0 for ¢ # j we observe that

N 1 8gac 8gbc 8gab
[ab, c] = 3 ((%cb + e &rc) . (1.4.8)

Here there are 33 = 27 quantities to calculate. We consider the following cases:
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CASE I Let a = b = ¢ = i, then the equation (1.4.8) simplifies to

1 9gis
2 Ozt

From this equation we can calculate any of the Christoffel symbols

[ab, c] = [it,i] = (no summation on g). (1.4.9)

[11,1), [22,2], or [33,3].

CASE II Let a = b =i # ¢, then the equation (1.4.8) simplifies to the form

~ 109gi
2 Qz¢

since, g;c = 0 for i # c. This equation shows how we may calculate any of the six Christoffel symbols

[ab, c] = [it, c] = (no summation on ¢ and i # c¢). (1.4.10)
11,2, [11,3], [22,1], [22,3], [33.1], [33.2].

CASE III Let a = ¢ =i # b, and noting that g;, = 0 for ¢ # b, it can be verified that the equation (1.4.8)

simplifies to the form

109y . . .
[ab, c] = [ib,i] = [bi,i] = 3 6:5;" (no summation on ¢ and i # b). (1.4.11)
From this equation we can calculate any of the twelve Christoffel symbols
[12,1] = [21,1] [31,3] = [13,3]
32,3] = [23,3] 21,2) = [12,2]
[13,1] = [31,1] [23,2] = [32,2]

CASE IV Let a # b # ¢ and show that the equation (1.4.8) reduces to
[ab,c] =0, (a#b#c.)
This represents the six Christoffel symbols
[12,3] = [21,3] = [23,1] = [32,1] = [31,2] = [13,2] = 0.

From the Cases LILIILIV all twenty seven Christoffel symbols of the first kind can be determined. In
practice, only the nonzero Christoffel symbols are listed.

EXAMPLE 1.4-3. (Christoffel symbols of the first kind)Find the nonzero Christoffel symbols of the
first kind in cylindrical coordinates.

Solution: From the results of example 1.4-2 we find that for z' =r, 22=6, 3=z and
g1 =1, g2 = (z')? =17, gsz =1

the nonzero Christoffel symbols of the first kind in cylindrical coordinates are:

18922 1
[22, 1] = —§—ax1 = —r = —T
18922 1
21,2 = 12,2) = ;5% ==



EXAMPLE 1.4-4. (Christoffel symbols of the second kind)

Find formulas for the calculation of the Christoffel symbols of the second kind in a generalized orthogonal

coordinate system with metric coefficients
9i; =0 for i#j and  gue =hy, =123

where 7 is not summed.

Solution: By definition we have
{ _lmk _il'kl i2~k2 i3~k3
ik =Y [ik,m] = g" [jk, 1] + " [jk, 2] + " [jk, 3]
By hypothesis the coordinate system is orthogonal and so
g7 =0 for i#j and g¢g"=— i notsummed.

The only nonzero term in the equation (1.4.12) occurs when m = ¢ and consequently

{ ! } = g"[jk, 1] = ik, no summation on i.
ik Gii

We can now consider the four cases considered in the example 1.4-2.
CASE I Let j = k = ¢ and show

i [i, 1] 1 dgs 10 . .
= = - = ———1Ing;; no summation on .
11 Jii 2g;; Ox* 2 Ozt

CASE II Let k£ = j # ¢ and show

i i —1 8g.:
{ .Z.} = s ] = %95 o summation on i or J-
JJ Gii 2g;i Oz’

CASE III Let i = j # k and verify that

ik kj 9i; 295 Oz*

CASE IV For the case i # j # k we find

{_Z }: J ’2]20, i # j # k no summation on i.
Jk Yii

The above cases represent all 27 terms.

GV_ [\ _ kil _ 1 99 10 t or
= = _— = 2 8ij ngJJ no summation on ¢ or j.

(1.4.12)

(1.4.13)

(1.4.14)

(1.4.15)

(1.4.16)
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EXAMPLE 1.4-5. (Notation) In the case of cylindrical coordinates we can use the above relations and
find the nonzero Christoffel symbols of the second kind:

{1}:_L8922:_x1:_r
22 2g11 81‘1

20 _[21_ 1 99 1 1
{12}_{21}_%3;&_5_2

Note 1: The notation for the above Christoffel symbols are based upon the assumption that z! = r, 22 = 6

and =3 = z. However, in tensor calculus the choice of the coordinates can be arbitrary. We could just as well

2 = r and 22 = 6. In this latter case, the numbering system of the Christoffel symbols

have defined z! = z, x
changes. To avoid confusion, an alternate method of writing the Christoffel symbols is to use coordinates in

place of the integers 1,2 and 3. For example, in cylindrical coordinates we can write

{$}={£}=%am {&}Zﬂ=

If we define ' = r, 22 = 0,23 = 2, then the nonzero Christoffel symbols are written as

{é}:{;}:%am {;}zﬁ.

2

In contrast, if we define 2! = 2,22 = r, 2> = 0, then the nonzero Christoffel symbols are written

{;}:{;}:%am»{é}zw.

Note 2: Some textbooks use the notation I, p. for Christoffel symbols of the first kind and T'¢,, = g9 . for
Christoffel symbols of the second kind. This notation is not used in these notes since the notation suggests
that the Christoffel symbols are third order tensors, which is not true. The Christoffel symbols of the first
and second kind are not tensors. This fact is clearly illustrated by the transformation equations (1.4.3) and
(1.4.7).

|
Covariant Differentiation
Let A; denote a covariant tensor of rank 1 which obeys the transformation law
— oz’
Differentiate this relation with respect to Z° and show
0A 0%z’ 0A; 0x7 Ox°
o z 1o v (1.4.18)

o7 omeons | 0al 978 07

Now use the relation from equation (1.4.7) to eliminate the second derivative term from (1.4.18) and express

04, o ) 9zt ) Ozl Oz
—5 =4 9 .. ( a3
oz afB ) oz’ jk | 0z ozP

it in the form
OA; 0z Oxt




Employing the equation (1.4.17), with « replaced by o, the equation (1.4.19) is expressible in the form

A, — o\ _ 0A; dxd dxk ) dxd dxk
i Al o = kg A | (1:4:20)
or alternatively
A, — o _ 0A; ) dx? dxk
oz’ _A"{aﬁ} B {W_Al{jk}}ﬁﬁ' (1.4.21)
Define the quantity
0A; i

as the covariant derivative of A; with respect to 2%, The equation (1.4.21) demonstrates that the covariant

derivative of a covariant tensor produces a second order tensor which satisfies the transformation law

— Ox? Ok
Aap=Ajka—a 5" 1.4.23
B J’kafa 8fﬂ ( )
Other notations frequently used to denote the covariant derivative are:
Ajr = A = Ajji = Vidj = Al (1.4.24)

In the special case where g;; are constants the Christoffel symbols of the second kind are zero, and conse-
0A;
Oxk’
Christoffel symbols of the second kind are zero, the covariant derivative reduces to an ordinary derivative.

quently the covariant derivative reduces to A; = That is, under the special circumstances where the

Covariant Derivative of Contravariant Tensor

)

ox“

A contravariant tensor A¢ obeys the transformation law A = A®

which can be expressed in the
form

i —a &rl
A=A
ozT™

by interchanging the barred and unbarred quantities. We write the transformation law in the form of equation

(1.4.24)

(1.4.24) in order to make use of the second derivative relation from the previously derived equation (1.4.7).
Differentiate equation (1.4.24) with respect to 27 to obtain the relation
AT o %2t 07°  9A" 03 o'

90~ orond 00 T 070 0a 070 (1-4.25)

Changing the indices in equation (1.4.25) and substituting for the second derivative term, using the relation

from equation (1.4.7), produces the equation

(1.4.26)

v aB[07°  \mk[ 97° 977 | 97 | 2P 027 07

0A" _ o { o }axi _{ i }axm axkl o8 A" 0zP ox

Applying the relation found in equation (1.4.24), with ¢ replaced by m, together with the relation

oTP dxk

_ <k
907 058~
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we simplify equation (1.4.26) to the form

OA! i oA” o \=o
, A" = | — A

[axﬁ{mj} } af”{aﬁ}

) QA i
A .= . A™
3= P+ {mj}

Define the quantity

o or
Oxi 0z

(1.4.27)

(1.4.28)

as the covariant derivative of the contravariant tensor A’. The equation (1.4.27) demonstrates that a covariant

derivative of a contravariant tensor will transform like a mixed second order tensor and

A=A
J ? 0xi 07

Again it should be observed that for the condition where g;; are constants we have Ai’ ;=

(1.4.29)

8A. and the
rJ

covariant derivative of a contravariant tensor reduces to an ordinary derivative in this special case.

In a similar manner the covariant derivative of second rank tensors can be derived. We find these

derivatives have the forms:

8Aij

ag ag
Ok _A"j{ik}_A“’{jk}
7 _ 7 o Al
Aj’k_axk+A]{ak} A"{jk}

. OAY ) : . j
oo 7 oj i0
av, =20 {Uk}M {k}

In general, the covariant derivative of a mixed tensor

Aijk =

Ak

lm...p

of rank n has the form

lm...p,q — Oxd Im...p oq lm...p oq

_ ik 3O qhdek ) O
Um...p{lq} lo...p mq

A’L]...U
””“'p{ o q}
lm...o pq

(1.4.30)

(1.4.31)

and this derivative is a tensor of rank n + 1. Note the pattern of the + signs for the contravariant indices

and the — signs for the covariant indices.

Observe that the covariant derivative of an nth order tensor produces an n+ 1st order tensor, the indices

of these higher order tensors can also be raised and lowered by multiplication by the metric or conjugate

metric tensor. For example we can write

gimAjk|m _ A]k|l and gimAjk|m _ Ajk|i



Rules for Covariant Differentiation

The rules for covariant differentiation are the same as for ordinary differentiation. That is:

(i) The covariant derivative of a sum is the sum of the covariant derivatives.

(ii) The covariant derivative of a product of tensors is the first times the covariant derivative of the second

plus the second times the covariant derivative of the first.

(iii) Higher derivatives are defined as derivatives of derivatives. Be careful in calculating higher order deriva-

tives as in general
Ai ik # Ai ke

EXAMPLE 1.4-6. (Covariant differentiation) Calculate the second covariant derivative A; ;.

Solution: The covariant derivative of A; is

8Al g
Ai = - Ao’ (e
Y O { 0] }

By definition, the second covariant derivative is the covariant derivative of a covariant derivative and hence

0 [04; o m m
A¢7jk = (Ai7j)7k- = w [5%3 —Aa{z]}] _Am’j{ik} —Ai,m{jk}.

Simplifying this expression one obtains
02 A; 0A, [ o 0 o
Aijp = —2t 2L R
KT Oz 0k &rk{ij} 8xk{z]}
0A,, o m 0A; o m
el - A U
Rearranging terms, the second covariant derivative can be expressed in the form
A= LA 04 [0 OAn[m]) _OAi [m
Bk T 9xigxk xR i oxd |ik ox™ | jk

a0 U

(1.4.32)
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Riemann Christoffel Tensor

Utilizing the equation (1.4.32), it is left as an exercise to show that

Aiji — Aikjg = ARy,

AR A R P EA R (] EA

is called the Riemann Christoffel tensor. The covariant form of this tensor is

where

Rpjr = gihR;'kp (1.4.34)

It is an easy exercise to show that this covariant form can be expressed in either of the forms

0 . 0 . . s . s
Rinjk = @[nk,z] — @[n],z] + [zk,s]{nj} - [zj,s]{nk}

1 8% 92951 0?9 0?9k Ny . . )
or Man =g (axjaxk " Pwioak  dwioal axiaxl) g (k. Bllit. of = [jt. Bllik. o).

From these forms we find that the Riemann Christoffel tensor is skew symmetric in the first two indices
and the last two indices as well as being symmetric in the interchange of the first pair and last pairs of

indices and consequently
Rjiki = —Riju Riji = —Riju Ry = Rijur.

In a two dimensional space there are only four components of the Riemann Christoffel tensor to consider.

These four components are either +R1212 or —Rj212 since they are all related by
Ri212 = —Ra112 = Ra121 = —Ri221.

In a Cartesian coordinate system Rpijx = 0. The Riemann Christoffel tensor is important because it occurs
in differential geometry and relativity which are two areas of interest to be considered later. Additional

properties of this tensor are found in the exercises of section 1.5.



Physical Interpretation of Covariant Differentiation

In a system of generalized coordinates (!, 22, 2%) we can construct the basis vectors (Ey, Ea, E3). These

basis vectors change with position. That is, each basis vector is a function of the coordinates at which they

are evaluated. We can emphasize this dependence by writing

il 1,2 3)287_"

E; = E;(z', 22, — i =1,2,3.
(2%, x e )

Associated with these basis vectors we have the reciprocal basis vectors
E' :Ei(ml,mQ,xS), 1=1,2,3
which are also functions of position. A vector A can be represented in terms of contravariant components as
A= A'E, + A’Ey + A’E3 = AVE, (1.4.35)
or it can be represented in terms of covariant components as
A= A E' + AyE? + A3E® = A7, (1.4.36)

A change in the vector A is represented as

where from equation (1.4.35) we find

0A  OE; QA
or alternatively from equation (1.4.36) we may write

oA OET  9Aj =
w = j@ + %ZEJ. (1.4.38)

We define the covariant derivative of the covariant components as

0A - A, oE7 -

A = B, = —— . F,. 1.4.39
F T ok oxk T 9k ( )
The covariant derivative of the contravariant components are defined by the relation
. 0A ., 9AT  OE; -
Ay =—— FE'=_—+A_— E" 1.4.40
kT Ok Oxk + Oxk ( )
Introduce the notation
OE; m) OEI ila
— = En d — =— E™. 1.4.41
dzk {jk} an Ok {mk} ( )

We then have

- 8Ej_ m\z =z [mla [
R e ta
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and

— 8EJ _ j om - ] m __ j
El'w__{mk}E 'El__{mk}di __{ik ) (1.4.43)

Then equations (1.4.39) and (1.4.40) become

04 [
i {ikj}AJ

. OA? ) .
? = — J
AJC axk—i—{jk}A,

which is consistent with our earlier definitions from equations (1.4.22) and (1.4.28). Here the first term of

the covariant derivative represents the rate of change of the tensor field as we move along a coordinate curve.
The second term in the covariant derivative represents the change in the local basis vectors as we move
along the coordinate curves. This is the physical interpretation associated with the Christoffel symbols of
the second kind.

We make the observation that the derivatives of the basis vectors in equations (1.4.39) and (1.4.40) are

related since

B B =
and consequently
8 = g = 8EJ 8E”L — .
—(E;-B)=F;- —+——-E'=0
ok ( ) dxk  Oxk

. QEY . OFE;
or Elw:_Ejaxk

Hence we can express equation (1.4.39) in the form

0A4; - OE;

A== —A;F’ 1.4.44
kT gk J oxk ( )
We write the first equation in (1.4.41) in the form
8Ej m — . . B
—J = imBE" = [jk,i|E* 1.4.4
5ot = { ) Jo ' = ik (14.45)
and consequently
B N ‘
e (e )
O Jk gk Jk (1.4.46)
OE;

and - By =[jk,i)E" - Ep = [jk, )6 = [jk, m].

Ok
These results also reduce the equations (1.4.40) and (1.4.44) to our previous forms for the covariant deriva-
tives.

oot and G

reciprocal basis vectors of the space. The covariant derivative relations then take into account how these

The equations (1.4.41) are representations of the vectors in terms of the basis vectors and

vectors change with position and affect changes in the tensor field.

The Christoffel symbols in equations (1.4.46) are symmetric in the indices j and k since

9E; 9 (9F\ 9 [0F\ OE
ork = Dt (a—) = o (w) = ui (1.447)



The equations (1.4.46) and (1.4.47) enable us to write

hon] ~Bn- 25 L5, OB | g OB
o (B B) 0 g ()5 B
3 e (B )+ g () -5 -
:% _531@ (Em 3) + 5%1 ( im #’f) - 5x8m (Ej Ek):|
- [ g5 - 5k -

which again agrees with our previous result.

For future reference we make the observation that if the vector A is represented in the form A=A Ej,

involving contravariant components, then we may write

—

o 0A . [ow 0L
dA = 5 de <a B+ A )dx

QAT =\ .
(8 B+ A {jk}E) dr
AJ i . , , -
- <g:1,‘k +{ﬂik}Am> Ejdxk:A]’kdxkEj.

Similarly, if the vector Ais represented in the form A= AjEj involving covariant components it is left as

(1.4.48)

an exercise to show that

dA = Aj ), da* BV (1.4.49)

Ricci’s Theorem

Ricci’s theorem states that the covariant derivative of the metric tensor vanishes and g;;; = 0.

Proof: We have

‘ 59m m)| [ m
Gik,l = kl Gim il Imk
Jik,l = — [kl,i] — [il, k]

4 Ogir  Oga _ Ogu| _ 1|09k  Ogw _ Ogul| _
Gikl = xl ozt 9zF  Oxt ozt Oxt Qxk|

Because of Ricci’s theorem the components of the metric tensor can be regarded as constants during covariant

differentiation.
EXAMPLE 1.4-7. (Covariant differentiation) Show that 5;‘-’,@ =0.

, o6t 7 (o ) )
) J o _ st — _ —
= 6k+5{ok} 5“{jk} {Jk} {yk} .

Solution
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EXAMPLE 1.4-8. (Covariant differentiation) Show that gij_k, =0.
Solution: Since g;;¢’* = 6% we take the covariant derivative of this expression and find
(9i59°%) 0 = 51%; =0
gijg] y + gingJk = 0.
But g;;,; = 0 by Ricci’s theorem and hence gijgj kJ = 0. We multiply this expression by ¢*™ and obtain

9" 919" = 67" = g™ =0

which demonstrates that the covariant derivative of the conjugate metric tensor is also zero.

EXAMPLE 1.4-9. (Covariant differentiation) Some additional examples of covariant differentiation

are: . .
(1) (9aA" )k = gad’ = Aik

(”) (gimgjnAij) k= gimgjnAi?k = Amn,k

Intrinsic or Absolute Differentiation

The intrinsic or absolute derivative of a covariant vector 4; taken along a curve 2 = x%(t),i =1,...,N
is defined as the inner product of the covariant derivative with the tangent vector to the curve. The intrinsic

derivative is represented

04, dvd

st T dt

(SAZ‘ 8AZ « d{Ej

- = - — Aoy | o 4.
ot {8% {ZJH dt (1.4.50)
oA A, fado

5t dt “Nijf dt -’

Similarly, the absolute or intrinsic derivative of a contravariant tensor A* is represented

- k(7 at

§A ; dz? dA i p A
R R P

The intrinsic or absolute derivative is used to differentiate sums and products in the same manner as used
in ordinary differentiation. Also if the coordinate system is Cartesian the intrinsic derivative becomes an
ordinary derivative.
The intrinsic derivative of higher order tensors is similarly defined as an inner product of the covariant
derivative with the tangent vector to the given curve. For example,
0Afm _ qij  da?
5t THme gy

is the intrinsic derivative of the fifth order mixed tensor Azm.



EXAMPLE 1.4-10. (Generalized velocity and acceleration) Let ¢ denote time and let x = x%(t)
for i = 1,..., N, denote the position vector of a particle in the generalized coordinates (x!,...,z"). From

the transformation equations (1.2.30), the position vector of the same particle in the barred system of

coordinates, (Z',72,...,TV), is

The generalized velocity is v* = dditi, i=1,...,N. The quantity v’ transforms as a tensor since by definition

—1

dz' o' da? afiv
dt — Oxd dt  OxI

g, (1.4.51)

Let us now find an expression for the generalized acceleration. Write equation (1.4.51) in the form

. Ol
v =T (1.4.52)
0T
and differentiate with respect to time to obtain
dv? - 0% dzF dv 0a)
v 0*x T v Ox (1.4.53)

at U ozozk dt | dt ox

The equation (1.4.53) demonstrates that dd—”: does not transform like a tensor. From the equation (1.4.7)

previously derived, we change indices and write equation (1.4.53) in the form

dv?  _ dz" { o }amj { Jj }8x“ 8x“] Oz dv’
ac

at U ar ik [oz ozt oz* | | oz dt

Rearranging terms we find
oI dxk J ox®_, Azt dz* ox’ dvt dzF o) _; 007 dz*
—— + —V — | =+ . V' — or
Oxk dt ac| \ OF oTk dt oz z* dit ik 0x° dt

oI i o] do® v’ o \_;| dz* 027
=+ VY —— ==+ . (Y| o =
Oxk ak dt 0z ik dt 0T
dvl oY oz?
5t 8t 9z
The above equation illustrates that the intrinsic derivative of the velocity is a tensor quantity. This derivative
is called the generalized acceleration and is denoted

Ok Cde? A i d?a? i) dx™ dx™
i OV i del myn — &L A i—1,...N 1.4.54
T T +{mn}v v e +{mn} at dt (1454)

To summarize, we have shown that if

z'=2'(t), i=1,...,N is the generalized position vector, then
vt = e 1=1,...,N is the generalized velocity, and

Ok - dxd
ffr=— ' 1=1,..., N is the generalized acceleration.
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Parallel Vector Fields

Let y* = yi(t), i = 1,2, 3 denote a space curve C in a Cartesian coordinate system and let Y define a
constant vector in this system. Construct at each point of the curve C the vector Y. This produces a field
of parallel vectors along the curve C. What happens to the curve and the field of parallel vectors when we
transform to an arbitrary coordinate system using the transformation equations

y' =y'(zh,2%2%), i=1,23
with inverse transformation
o =2yl y?y?), i=1,2,37

The space curve C in the new coordinates is obtained directly from the transformation equations and can

be written
ot =ty (1), 7 (), P (1) = 2'(t), i=1,2,3.

The field of parallel vectors Y* become X? in the new coordinates where

yi = xi 9%

= XIz=. (1.4.55)

Since the components of Y are constants, their derivatives will be zero and consequently we obtain by
differentiating the equation (1.4.55), with respect to the parameter ¢, that the field of parallel vectors X

must satisfy the differential equation

dX7 Oy o 0%yt de™ dY?
—_— X —7 = =0. 1.4.
dt O0xJ oxIdx™ dt dt 0 (1.4.56)

Changing symbols in the equation (1.4.7) and setting the Christoffel symbol to zero in the Cartesian system

of coordinates, we represent equation (1.4.7) in the form

2y ooy
0xigzm | jm [ Oz

and consequently, the equation (1.4.56) can be reduced to the form

§XI  dX7 { j }Xkdxm

The equation (1.4.57) is the differential equation which must be satisfied by a parallel field of vectors X*

along an arbitrary curve x(t).
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EXERCISE 1.4

» 1. Find the nonzero Christoffel symbols of the first and second kind in cylindrical coordinates

(', 2%, 23) = (1,0, z), where x = r cos 6, y = rsinb, z=z.

» 2. Find the nonzero Christoffel symbols of the first and second kind in spherical coordinates

(z*, 22, 2%) = (p, 0, ¢), where z = psinfcos¢, y=psinfsing, z= pcosb.

» 3. Find the nonzero Christoffel symbols of the first and second kind in parabolic cylindrical coordinates
1
(z*, 22, 2%) = (£,n,2), where z = €n,  y = 5(52 —n?), z=-z

» 4. Find the nonzero Christoffel symbols of the first and second kind in parabolic coordinates
1

(xl,xQ,x3)=(§,77,¢), Wherex:§ncos¢, y:fnbln¢a 225(52_7’]2)

» 5. Find the nonzero Christoffel symbols of the first and second kind in elliptic cylindrical coordinates

(z*, 22, 2%) = (€,n,2), where & = cosh€ cosn, y =sinhésing, z = z.

» 6. Find the nonzero Christoffel symbols of the first and second kind for the oblique cylindrical coordinates

(z*,22,2%) = (r,¢,n), where x = rcos ¢, y=rsing+ncosa, z=mnsina with0 < a < 5 and « constant.

Hint: See figure 1.3-18 and exercise 1.3, problem 12.

_ Agik

> 7. Show [ij. k] + [kjii] = Z.

(a) Let = g"'[st,i] and solve for the Christoffel symbol of the first kind in terms of the Christoffel

r
st
symbol of the second kind.
(b) Assume [st,i] = gm{ nt} and solve for the Christoffel symbol of the second kind in terms of the
s

Christoffel symbol of the first kind.

a) Write down the transformation law satisfied by the fourth order tensor €; g, m,.

~~ o~
o :
=

Show that € ,» = 0 in all coordinate systems.
Show that (1/g)r = 0.

—
o
~

» 10. Show eijffn =0.

» 11. Calculate the second covariant derivative A; ;.

e
» 12. The gradient of a scalar field ¢(x!, 22, 23) is the vector grad ¢ = E" 6¢”
x’L
(a) Find the physical components associated with the covariant components ¢ ;
do A'g;

(b) Show the directional derivative of ¢ in a direction A is A= (TS YOS
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> 13.
(a) Show /g is a relative scalar of weight +1.
(b) Use the results from problem 9(c) and problem 44, Exercise 1.4, to show that

V=50 {1 bvi=o.

m | 0 _ 1 dg

0 1 0
» 14. Use the result from problem 9(b) to show {kT:Ln = 9.k In(\/g) = @a—ai
Hint: Expand the covariant derivative .5, and then substitute €4 = /ge,st. Simplify by inner

multiplication with and note the Exercise 1.1, problem 26.

Vg
» 15. Calculate the covariant derivative Aﬁm and then contract on m and ¢ to show that

i _ 1.0 i

i
» 16. Show — — (/g9 { }gpq = 0. Hint: See problem 14.
» 17. Prove that the covariant derivative of a sum equals the sum of the covariant derivatives.

Hint: Assume C; = A; + B; and write out the covariant derivative for C; ;.

» 18. Let C} = A’B; and prove that the covariant derivative of a product equals the first term times the
covariant derivative of the second term plus the second term times the covariant derivative of the first term.

. . - dx® daP . L .
» 19. Start with the transformation law A;; = A —— and take an ordinary derivative of both sides

afa=;
0Tt OxJ
with respect to Z* and hence derive the relation for Ajjk given in (1.4.30).

. ox* 0
» 20. Start with the transformation law A% = A%” 833& % and take an ordinary derivative of both sides
z

with respect to 2* and hence derive the relation for A ] .. given in (1.4.30).

» 21. Find the covariant derivatives of

(a) AYF () AY () A (@) A

» 22. Find the intrinsic derivative along the curve o = 2%(t), i=1,...,N for
(@) A9 (b)) A% (9 Al (d) A
» 23.

(a) Assume A = A'E; and show that dA = Ay da E;.
(b) Assume A = A,E' and show that dA = Aik dz* Ei.
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> 24. (parallel vector field) Imagine a vector field A® = A%(z!, 22, 2®) which is a function of position.
Assume that at all points along a curve x* = z%(t),i = 1,2,3 the vector field points in the same direction,
we would then have a parallel vector field or homogeneous vector field. Assume Ais a constant, then

dA = gTA,: dz* = 0. Show that for a parallel vector field the condition A; , = 0 must be satisfied.

dlik,n] 0 (o . . o
» 25. Show that Eyvi gm@{ik} + ([ng, 0] + [oj,n]) {zk}

04, 04,
Oxs Oz’

» 26. Show A, — A, =
» 27. In cylindrical coordinates you are given the contravariant vector components

Al =7 A2 = cosh A% = zsin6

(a) Find the physical components A4,, Ag, and A..

Arr Ar9 Arz
(b) Denote the physical components of A*; , i,j =1,2,3, by Ag, Ags Ag.

Azr Az€ Azz-
Find these physical components.

» 28. Find the covariant form of the contravariant tensor C* = €% Ay ;.

Express your answer in terms of Akj.

1
» 29. In Cartesian coordinates let « denote the magnitude of the position vector ;. Show that (a) z ; = —x;

1 1 2 1 —8;; 3,7
(b) T i = 55” — inl‘j (C) X 4i = E (d) LetU = E, T 75 0, and show that Uﬂ'j = x—BJ 3;533]

U,ii =0.

and

» 30. Consider a two dimensional space with element of arc length squared

ds* = g11(du')? + goo(du®)®  and metric gij = <g11 0 >
0 g2
where u', u? are surface coordinates.
(a) Find formulas to calculate the Christoffel symbols of the first kind.
(b) Find formulas to calculate the Christoffel symbols of the second kind.

» 31. Find the metric tensor and Christoffel symbols of the first and second kind associated with the
two dimensional space describing points on a cylinder of radius a. Let u! = 6 and u? = z denote surface

coordinates where .
T =acosf =acosu

y=asinf = asinu!

Z:Z:’LL2
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> 32. Find the metric tensor and Christoffel symbols of the first and second kind associated with the
two dimensional space describing points on a sphere of radius a. Let u' = # and u? = ¢ denote surface

coordinates where . 5
T =asinfcos¢p =asinu cosu

y = asinfsin ¢ = asinu! sin u?

z=uacosf = acosu'

» 33. Find the metric tensor and Christoffel symbols of the first and second kind associated with the
two dimensional space describing points on a torus having the parameters a and b and surface coordinates
ul =&, u? = n. illustrated in the figure 1.3-19. The points on the surface of the torus are given in terms

of the surface coordinates by the equations
x = (a+bcos€)cosn
y = (a+bcos&)sinn

z="bsiné

» 34. Prove that eijkambjckuim + eijkaibmckuj;m + eijkaibjcmulfm = ufreijkaibjck. Hint: See Exercise 1.3,

problem 32 and Exercise 1.1, problem 21.

» 35. Calculate the second covariant derivative Ai’ k-

i 1 0 . i
» 36. Show that 0"/, = —— o) 4 g™
T /g 0% (Vo) mn
» 37. Find the contravariant, covariant and physical components of velocity and acceleration in (a) Cartesian

coordinates and (b) cylindrical coordinates.

» 38. Find the contravariant, covariant and physical components of velocity and acceleration in spherical

coordinates.

» 39. In spherical coordinates (p, 8, ¢) show that the acceleration components can be represented in terms

of the velocity components as

2 2 2
. vg + vy . VpVp Vg . VpUg VgV
=0, — ——, =vp + — — ) = V¢ + ——
To r p Jo o p ptand Jo ¢ p ptand
Hint: Calculate v,, vg, Vg.
» 40. The divergence of a vector A is AQ That is, perform a contraction on the covariant derivative

Ai’j to obtain A’;. Calculate the divergence in (a) Cartesian coordinates (b) cylindrical coordinates and (c)

spherical coordinates.

» 41. If S is a scalar invariant of weight one and A;k is a third order relative tensor of weight W, show

that S*WAé-k is an absolute tensor.



» 42. Let Y'i = 1,2,3 denote the components of a field of parallel vectors along the curve C defined by
the equations 7' = y'(t),i = 1,2, 3 in a space with metric tensor g;;, i,j = 1,2,3. Assume that Y* and dd—y;

are unit vectors such that at each point of the curve C' we have
_did
ginl% = cos = Constant.

(i.e. The field of parallel vectors makes a constant angle 6 with the tangent to each point of the curve C')
Show that if Y* and #%(t) undergo a transformation ' = 2%(y',%%,4%), i = 1,2,3 then the transformed

vector X™ =Y %"”_ﬁ makes a constant angle with the tangent vector to the transformed curve C' given by
' =2 (7' (), 7 (1), 7 (1))

y]

oz’
» 43. Let J denote the Jacobian determinant | P |. Differentiate J with respect to ™ and show that
z

aJ a | 0zP r
ozm J{ap}axm _J{rm}'

Hint: See Exercise 1.1, problem 27 and (1.4.7).

» 44. Assume that ¢ is a relative scalar of weight W so that ¢ = J" ¢. Differentiate this relation with

respect to ZF. Use the result from problem 43 to obtain the transformation law:

ol a |- w | 0¢ r oz™
— =W =JV |—-W —.
lafk { ak }4 [&vm mr ¢ oz*
The quantity inside the brackets is called the covariant derivative of a relative scalar of weight W. The

covariant derivative of a relative scalar of weight W is defined as

_0¢ T
QSJC_w_W{kr}QS

and this definition has an extra term involving the weight.
It can be shown that similar results hold for relative tensors of weight W. For example, the covariant

derivative of first and second order relative tensors of weight W have the forms
, T’ i r ,
T = =— T —W T
ow axk+{km} {kr}

T 5 =—1 TS — T — T
3k axk+{k0} J {jk} i W{kr} J

When the weight term is zero these covariant derivatives reduce to the results given in our previous definitions.

» 45. Let dg‘l—"”ti = v’ denote a generalized velocity and define the scalar function of kinetic energy T of a
particle with mass m as
1 o
T=_-mg;v'v = Emgij;tla'c].

2
Show that the intrinsic derivative of T is the same as an ordinary derivative of T. (i.e. Show that % = %.)

127
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» 46. Verify the relations

0gi; dgm™
89177. _ mn ij 8g3m

oz — Y P

. . 1 0 3
» 47. Assume that B7* is an absolute tensor. Is the quantity 7% = — —— (,/gB"*) a tensor? Justify
\/— a )
g Oz

your answer. If your answer is “no”, explain your answer and determine if there any conditions you can
impose upon B¥* such that the above quantity will be a tensor?

» 48. The e-permutation symbol can be used to define various vector products. Let A;, B;, C;, D;

i=1,..., N denote vectors, then expand and verify the following products:
(a) In two dimensions

R =e;;A;B; ascalar determinant.
R; =e;jA; a vector (rotation).
(b) In three dimensions
S =e;j1AiB;jC),  a scalar determinant.

Si =eijkBjCy  a vector cross product.

Sij =eijkCr  a skew-symmetric matrix

(c) In four dimensions

T =eijkmAiB;jCrD,, a scalar determinant.
T; =€ijkm BjCr Dy,  4-dimensional cross product.
Tij =€ijkmCr Dy skew-symmetric matrix.
Tijk =€ikmDm  skew-symmetric tensor.

with similar products in higher dimensions.

» 49. Expand the curl operator for:
(a) Two dimensions B = e;;A4;;
(b) Three dimensions B; = ;1 Ak

(c) Four dimensions B;; = €jjimAm,k



