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The velocity and momentum four-vectors

1. The four-velocity vector

The velocity four-vector of a particle is defined by:

Uµ =
dxµ

dτ
= (γc ; γ~v ) , (1)

where xµ = (ct ; ~x) is the four-position vector and dτ is the differential proper time. To
derive eq. (1), we must express dτ in terms of dt, where t is the time coordinate. Consider
the infinitesimal invariant spacetime separation,

ds2 = −c2dτ 2 = ηµνdx
µdxν , (2)

in a convention where
ηµν = diag(−1 , 1 , 1 , 1) .

In eq. (2), there is an implicit sum over the repeated indices as dictated by the Einstein
summation convention. Dividing by −c2 yields

dτ 2 =
1

c2

(

c2dt2 −
3
∑

i=1

dxidxi

)

=
c2 − v2

c2
dt2 =

(

1−
v2

c2

)

dt2 = γ−2dt2 ,

where we have employed the three-velocity vi = dxi/dt and v2 ≡
∑

i v
ivi. In the last step

we have introduced γ ≡ (1− v2/c2)−1/2. It follows that

dτ = γ−1 dt . (3)

Using eq. (3) and the definition of the three-velocity, ~v = d~x/dt, we easily obtain eq. (1).
Note that the squared magnitude of the four-velocity vector,

U2 ≡ ηµνU
µUν = −c2 (4)

is a Lorentz invariant, which is most easily evaluated in the rest frame of the particle where
~v = 0, in which case Uµ = c (1 ; ~0).

2. The relativistic law of addition of velocities

Let us now consider the following question. Suppose that in an inertial frame K ′ is
moving with relative velocity ~w with respect to an inertial frame K. Given a particle
with three-velocity ~v ′ as seen in inertial frame K ′, what is the three-velocity ~v as seen by
an observer in inertial frame K? To answer this question, we consider the corresponding
four-velocity vectors in inertial frames K and K ′,

Uµ = (U0 ; ~U) = (γc ; γ~v) and U ′ µ = (U ′ 0 ; ~U ′) = (γ′c ; γ′~v ′) ,

where γ ≡ (1− v2/c2)−1/2 and γ′ ≡ (1− v′ 2/c2)−1/2, respectively.
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The two four-vectors Uµ and U ′µ are related by a Lorentz boost,

U ′ µ = Λµ
νU

ν (5)

with the boost matrix Λµ
ν given by1

Λ =







γw −γw
~β

−γw
~β δij + (γw − 1)

βiβj

β2






, (6)

where ~β ≡ ~w/c, β ≡ |~β| and γw ≡ (1− β2)−1/2. Then, eqs. (5) and (6) imply that:

U ′ 0 = γw(U
0 − ~β ·

~U ) , (7)

~U ′ = ~U +
(γw − 1)

β2
(~β ·

~U) ~β − γw
~β U0 . (8)

Actually, we need the inverse transformation, which can be obtained by interchanging the
primed and unprimed variables and replacing ~β with −~β,

U0 = γw(U
′ 0 + ~β ·

~U ′ ) , (9)

~U = ~U ′ +
(γw − 1)

β2
(~β ·

~U ′) ~β + γw
~βU ′ 0 . (10)

Dividing these two equations yields:

~U

U0
=

1

U ′ 0 + ~β ·
~U ′

[

~U ′

γw
+

(γw − 1)

γwβ
2

(~β ·
~U ′) ~β + ~βU ′ 0

]

. (11)

Substituting U ′ 0 = γ′c, ~U ′ = γ′~v ′, and ~U/U0 = ~v/c in eq. (11) and using ~β ≡ ~w/c, we
arrive at:

~v =
1

1 +
~v ′

· ~w

c2

[

~v ′

γw
+

(γw − 1)

|~w|2γw
(~v ′

· ~w) ~w + ~w

]

. (12)

This result can be rewritten as:

~v =
1

1 +
~v ′

· ~w

c2

[

1

γw

(

~v
′ −

~v ′
· ~w

|~w|2
~w

)

+

(

1 +
~v ′

· ~w

|~w|2

)

~w

]

. (13)

This is the relativistic law of addition of velocities.

1A derivation of the form of the most general Lorentz boost matrix is given in Appendix A. For consis-
tency, I should really define ~β

w
≡ ~w/c. However, there should be no confusion in the present discussion,

so I will omit the subscript w to reduce the clutter in the typography.
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In the simple case where ~v ′ and ~w are parallel, it follows that these two vectors are
proportional. More explicitly,2

~v ′ =

(

~v ′
· ~w

|~w|2

)

~w . (14)

In this case, eq. (13) simplifies immediately to:

~v =
~v ′ + ~w

1 + ~v ′
· ~w/c2

. (15)

In the non-relativistic limit, γw ≃ 1 and β ≪ 1. Thus, eqs. (13) and (15) both reduce to
the expected form: ~v = ~v ′ + ~w.

EXERCISE: Compare the result of eq. (15) with eq. (2.22) of our textbook. Explain why
minus signs appear in the numerator and denominator in eq. (2.22) of our textbook in
contrast to the plus signs that appear in eq. (15).

3. The four-momentum vector

The four-momentum vector is related in a simple way to the velocity four-vector:

P µ = mUµ = (E/c ; ~p ) , (16)

where [using eq. (1)]

~p = γm~v , (17)

E = γmc2 . (18)

Note that by dividing these two equations, one deduces an expression for the particle
velocity:

~v =
~p c2

E
. (19)

Here, ~v [which also appears implicitly in the factors of γ in eqs. (17) and (18)] corresponds
to the velocity of the particle. Thus, in the rest frame of the particle, ~v = 0 and γ = 1,
which implies that P µ = mc(1 ; ~0 ).

Furthermore, the massm is a scalar quantity (which is Lorentz invariant); it corresponds
to the rest energy of the particle divided by c2. This also follows from the observation3

that the Lorentz invariant scalar PµP
µ = −m2c2. Finally, by noting that

ηµνP
µP ν = | ~P |2 − (P 0)2 = −m2c2 , (20)

2One can check the correctness of eq. (14) by taking the dot product of both sides of the equation
with ~w.

3Since Lorentz scalars do not depend on the reference frame, I may compute it in any reference frame.
By choosing the rest frame of the particle, the computation is trivial.
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and inserting P 0 = E/c and ~P = ~p, one obtains an expression for the relativistic energy:

E2 = c2|~p|2 +m2c4 . (21)

Taking the square root, and expanding out the resulting expression in the limit of |~v| ≪ c
yields:

E ≃ mc2 +
|~p|2

2m
, (22)

which we recognize as the sum of the rest energy and the non-relativistic kinetic energy.
More generally, the relativistic energy can be written as E = mc2 + T , which defines the
relativistic kinetic energy as:

T =
√

c2|~p|2 +m2c4 −mc2 . (23)

Appendix A: The most general Lorentz boost matrix

Consider two reference frames K and K ′, where K ′ is moving with velocity ~v with
respect to K. Four-vectors in K ′ are related to four-vectors in K by a Lorentz transforma-
tion that is called a boost.4 Eq. (3.16) of our textbook exhibits a Lorentz boost along the
x1-direction,

Λµ
ν =









γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1









,

where
β ≡ v/c , γ = (1− v2/c2)−1/2 .

Here, v is the velocity along the x-direction. The four-position vector in reference frames
K and K ′ are related by

x′µ = Λµ
νx

ν . (24)

In this appendix, I shall derive the most general boost matrix, where the velocity of
K ′ relative to K points in an arbitrary direction. To do this, we first write out eq. (24)
explicitly,

x′ 0 = γ(x0 − βx1) , (25)

x′ 1 = γ(x1 − βx0) , (26)

x′ 2 = x2 , (27)

x′ 3 = x3 . (28)

4The most general Lorentz transformation consists of a combination of a three-dimensional rotation and
a boost. The Lorentz transformations considered in these notes and in Chapters 2 and 3 of our textbook are
pure boosts, since no extra three-dimensional rotation of the inertial frame K ′ relative to K is preformed.
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We now define ~x‖ as the component of ~x that is parallel to ~β = ~v/c. Likewise, we define

~x⊥ as the component of ~x that is perpendicular to ~β. In equations, we have

~x‖ =

(

~x ·
~β

β2

)

~β , ~x⊥ = ~x− ~x‖ , (29)

where β2 ≡ ~β ·
~β is the squared magnitude of the three-vector ~β. Note that ~β · ~x = ~β · ~x‖

and ~β · ~x⊥ = 0. The magnitude of ~x‖, denoted by x‖, is given by

x‖ =
~x ·

~β

β
.

As an example, for ~β = (v/c, 0, 0), we have ~x‖ = (x1, 0, 0) and ~x⊥ = (0, x2, x3). It

immediately follows that x‖ = x1. Thus, we can rewrite eqs. (25)–(28) as

x′ 0 = γ(x0 − ~β · ~x) , (30)

~x′
‖ = γ(~x‖ −

~β x0) , (31)

~x′

⊥
= ~x⊥ . (32)

In particular, for ~β = (v/c, 0, 0), we have ~β · ~x = ~β · ~x‖ = vx1/c. Note that eq. (31) can
also be rewritten as

x′
‖
= γ(x‖ − βx0) ,

where β is the magnitude of the vector ~β.
I now claim that eqs. (30)–(32) provides the correct Lorentz transformation for an

arbitrary boost in the direction of ~β = ~v/c. This should be clear since I can always
rotate my coordinate system to redefine what is meant by the components (x1, x2, x3) and
(v1, v2, v3). However, dot products of two three-vectors are invariant under such a rotation.
Thus, the definitions of ~x‖ and ~x⊥ given in eq. (29) are unchanged. Thus, eqs. (30)–(32)
must be valid for an arbitrary boost.

We can rewrite eqs. (30)–(32) in matrix form,
(

x′ 0

x′ i

)

=

(

γ −γβj

−γβi δij + (γ − 1)βiβj/β2

)(

x0

xj

)

, (33)

where β2 ≡
∑

i β
iβi, and there is an implicit sum over repeated indices. To validate eq. (33),

we perform the matrix multiplication to obtain

x′ 0 = γ(x0 − ~β · ~x) , (34)

~x
′ = ~x− γ~βx0 + (γ − 1)

(~x ·
~β)~β

β2
. (35)

Eq. (34) has reproduced eq. (30). We next show that eq. (35) is equivalent to eqs. (31)

and (32). First, we take the dot product of eq. (35) with ~β and then multiply by ~β/β2 to
obtain

(~x ′
·
~β)~β

β2
= γ

(

(~x ·
~β)~β

β2
− ~βx0

)

, (36)
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which reproduces eq. (31). Subtracting eqs. (35) and (36) then yields

~x
′ −

(~x ′
·
~β)~β

β2
= ~x−

(~x ·
~β)~β

β2
,

which reproduces eq. (32). Thus, we have proven that

Λµ
ν =

(

γ −γ~β

−γ~β δij + (γ − 1)βiβj/β2

)

, (37)

represents the most general Lorentz boost in the direction of ~β = ~v/c.
Finally, it is useful to compute the inverse matrix Λ−1, where Λ is the general boost

matrix given in eq. (37). Physically, the inverse of a Lorentz boost in the direction of ~β is

equal to a Lorentz boost in the direction of −~β. That is,

(Λ−1)µν =

(

γ γ~β

γ~β δij + (γ − 1)βiβj/β2

)

.

Indeed, it is easy to verify by explicit calculation that

(

γ −γβj

−γβi δij + (γ − 1)βiβj/β2

)(

γ γβk

γβj δjk + (γ − 1)βjβk/β2

)

=

(

1 0
0 δik

)

,

after noting that γ2 = (1− β2)−1 and γ2β2 = γ2 − 1.
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