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Solution of the Inhomogeneous Wave Equation via the Green Function

For electromagnetic waves in vacuum (propagating at the speed of light c), the four-
vector potential in the Lorenz gauge satisfies

�Aµ(x) =
4π

c
Jµ(x) , (1)

where gaussian units are being employed, Aµ = (Φ ; ~A), and � ≡ ∂µ∂
µ. This is an

inhomogeneous wave equation with a source term of Jµ = (cρ ; ~J). Naively, one might
propose a solution of the form

Aµ(x) =
4π

c
�

−1Jµ(x) . (2)

However, we know that �−1 does not exist due to the fact that there exist eigenfunctions
of the D’Alembertian operator � with zero eigenvalues.1 In particular, given the four
vectors x = (ct ; ~x) and k = (ω/c ; ~k), with corresponding dot product k·x = ωt−~k · ~x,
it follows that

� eik ·x = � eiωt−i~k·~x =

(
k2 −

ω2

c2

)
eiωt−i~k·~x = 0 , (3)

after making use of the dispersion relation in vacuum, |~k| = ω/c. That is eik ·x is an
eigenfunction of � with zero eigenvalue.

Consider the inhomogeneous wave equation,2

�Ψ(~x, t) = 4πf(~x, t) . (4)

The most general solution to this equation is of the form

Ψ(~x, t) = Ψ0(~x, t) + Ψ1(~x, t) , (5)

where
�Ψ0(~x, t) = 0 , �Ψ1(~x, t) = 4πf(~x, t) . (6)

The most general solution to the homogeneous wave equation is well known. It can
be expanded in a Fourier series consisting of a linear combination of plane waves of
mode (~k, ω), where ω = |~k|c. The so-called particular solution, Ψ1(~x, t), satisfies the
inhomogeneous wave equation.

1It is well known that in finite dimension vector spaces, a linear transformation is noninvertible if it has
a zero eigenvalue. This is equivalent to saying that the matrix that represents the linear transformation
is noninvertible if its determinant vanishes, since the determinant of a matrix is equal to a product of its
eigenvalues. This result generalizes to infinite dimensional function spaces.

2The factor of 4π in eq. (4) is conventional, as this matches the µ = 0 component of eq. (1).
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Since � is not an invertible operator, it follows that either no solution exists or an
infinite number of solutions to eq. (4) exist. It turns out that the latter is the case
here. For the problem at hand, we wish to choose the unique solution that satisfies the
physical requirements of our problem. In the case of electromagnetic wave propagation,
the condition we shall impose is causality. In this context, causality implies that the waves
are generated only after the source turns on and the signal reaches a distant observer only
after the waves have propagated with a finite speed (equal to the speed of light c).

We will solve eq. (4) by employing the Green function technique. We define a Green
function G(x, x′) (where x and x′ are four vectors) by3

�xG(x− x′) = 4πδ4(~x− ~x
′) , (7)

where �x indicates partial differentiation with respect to the four vector x (with x′ held
fixed), and the four-dimensional delta function is defined by

δ4(x− x′) = δ3(~x− ~x
′)δ(x− x0) , (8)

where x0 = ct. By translational invariance, G(x, x′) = G(x − x′). That is, the Green
function can only depend on the difference of the two spacetime points.

As a check, assuming that G(x − x′) is known, the particular solution to eq. (4) is
given by

Ψ1(x) =

∫
d4x′ G(x− x′)f(x′) . (9)

As a check, we apply �x to both sides eq. (9) to obtain

�Ψ1(x) = 4π

∫
d4x′ f(x′)�G(x− x′) = 4π

∫
d4x′ f(x′)δ4(x− x′) = 4πf(x) , (10)

as required.
Since G(x, x′) = G(x− x′), we can set x′ = 0 without loss of generality and solve the

equation
�G(x) = 4πδ4(x) . (11)

We shall solve eq. (11) using a Fourier transform method, as this will convert the differen-
tial equation into an algebraic equation that is easily solved. The Fourier representation
of G(x) is

G(x) =
1

(2π)4

∫
d4k G̃(k) e−ik ·x , (12)

where k·x = k0x0 − ~k · ~x. We shall also make use of the integral representation of the
four-dimensional delta function,

δ4(x) =
1

(2π)4

∫
d4x e−ik ·x . (13)

Plugging eqs. (12) and (13) into eq. (11), we obtain the algebraic equation,

−k2G̃(k) = 4π , (14)

3It is convenient to employ the factor of 4π in eq. (7) in light of the factor of 4π that appears in eq. (4).
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which has the immediate solution

G̃(k) = −
4π

k2
= −

4π

k2
0 − |~k|2

. (15)

Plugging in eq. (15) back into eq. (11),

G(x) = −
4π

(2π)4

∫
d4k

k2
e−ik ·x = −

1

4π3

∫
d3k ei

~k·~x

∫ ∞

−∞

dk0
e−ik0x0

k2
0 − κ2

, (16)

where κ ≡ |~k|. We immediately see a problem. Namely, the integral over k0 does not exist
due to the singularities of the integrand at k0 = ±κ. Thus, G(x) as derived above does not
exist. Of course, this is equivalent to saying that �−1 does not exist. If we had obtained a
unique convergent expression for G(x) we would have concluded that G(x) = 4π�−1δ4(x)
is well-defined, implying the existence of �−1.

However, as previously noted, eq. (11) does not possess a unique solution. Hence,
we shall adopt a strategy to produce many solutions to eq. (11) and choose the unique
solution among them that respects causality. This can be accomplished by examining
four different expressions which are slightly perturbed versions eq. (16) that depend on a
real positive infinitesimal parameter ǫ. Here are four possible choices:

GR(x) = −
1

4π3

∫
d3k ei

~k·~x

∫ ∞

−∞

dk0
e−ik0x0

(k0 − κ+ iǫ)(k0 + κ+ iǫ)
, (17)

GA(x) = −
1

4π3

∫
d3k ei

~k·~x

∫ ∞

−∞

dk0
e−ik0x0

(k0 − κ− iǫ)(k0 + κ− iǫ)
, (18)

GF (x) = −
1

4π3

∫
d3k ei

~k·~x

∫ ∞

−∞

dk0
e−ik0x0

(k0 − κ+ iǫ)(k0 + κ− iǫ)
, (19)

GAF (x) = −
1

4π3

∫
d3k ei

~k·~x

∫ ∞

−∞

dk0
e−ik0x0

(k0 − κ− iǫ)(k0 + κ+ iǫ)
. (20)

As long as ǫ 6= 0, these integrals are all well-defined. Moreover, one can check that
they are indeed solutions to eq. (11), where the limit of ǫ → 0 is taken after evaluating
the corresponding integrals. Thus, we have actually found four possible solutions to
eq. (11). Indeed, one can take arbitrary linear combinations of the above four solutions
and then normalize the corresponding combination to find an infinite number of solutions
to eq. (11).

The condition of causality is

G(x) = 0 for all t < 0. (21)

This condition arises since in eq. (11), we see that the source term (i.e., the delta function)
is zero until x = (ct ; ~x) = 0. Thus, no signal can be generated until t ≥ 0. This condition
uniquely selects the so-called retarded Green function,

G(x) = lim
ǫ→0

GR(x) =
1

4π3

∫
d3k ei

~k·~x

∫ ∞

−∞

dk0
e−ik0x0

(k0 − κ+ iǫ)(k0 + κ + iǫ)
, (22)
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where the limit ǫ → 0 should be applied after evaluating the integral above. Let us verify
this claim. Suppose that x0 = ct < 0. Then x0 = −|x0|. We can perform the integral
over x0 by analyzing the integrand in the complex k0 plane. Because |x0| < 0, we can
close the contour in the upper half complex lane with a semicircle of radius R, which we
denote by C1 in the figure below. By taking R → ∞, we see that along the semicircular
path C1,

e−ik0x0 = ei(Re k0+i Im k0)|x0| = ei|x0|Re k0e−|x0| Im k0 → 0 as R → ∞, (23)

since Im k0 > 0 in the upper half complex plane. That is, in the limit of R → ∞,
there is no contribution to the integral along the semicircle C1 as a result of eq. (23). In
particular, the integral given in eq. (22) is equal to the integral over the closed integration
path exhibited in the figure below.

R

Re k0

Im k0

C1

κ− iǫ−κ− iǫ

I1(R, ε) ≡

∫ R

−R

+

∫

C1

dk0
e−ik0x0

(k0 − κ+ iǫ)(k0 + κ+ iǫ)

Since there are no poles inside the closed contour, it follows (by Cauchy’s theorem)
that limR→∞ I1(R, ǫ) = 0. Hence, we conclude that

GR(x) = lim
ǫ→0

I1(∞, ǫ) = 0 , for x0 < 0. (24)

Next, we consider the case of x0 = ct > 0. Then x0 = |x0|. We can again perform the
integral over x0 by analyzing the integrand in the complex k0 plane. Because |x0| > 0,
we can close the contour in the lower half complex plane with a semicircle of radius R,
which we denote by C2 in the figure below. By taking R → ∞, we see that along the
semicircular path C2,

e−ik0x0 = e−i(Re k0+i Im k0)|x0| = e−i|x0|Re k0e|x0| Im k0 → 0 as R → ∞, (25)

since Im k0 < 0 in the lower half complex plane. That is, in the limit of R → ∞, there
is no contribution from the integration along the semicircle C2 to the integral as a result
of eq. (25). In particular, the integral given in eq. (22) is equal to the integral over the
closed integration path exhibited in the figure below.

Re k0

Im k0

C2

−R R

k + iε−k − iε
I2(R, ε) ≡

∫ R

−R

+

∫

C2

dk0
e−ik0x0

(k0 − κ+ iǫ)(k0 + κ+ iǫ)
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We now employ the theory of residues to evaluate the integral over the closed integra-
tion path exhibited above. Two poles are present inside the closed contour, and thus we
pick up contribution from the two residues at the poles, respectively. Since the integration
path shown above is clockwise, an extra minus sign appears in the residue theorem. Thus,
in the limit of ǫ → 0,

∮
dk0

e−ik0x0

(k0 − κ + iǫ)(k0 + κ + iǫ)
= −2πi

1

2κ

[
e−iκx0 − eiκx0

]
= −

2π

κ
sin

(
κx0

)
. (26)

Returning to eq. (22), we have

G(x) = lim
ǫ→0

GR(x) =
1

2π2
Θ(x0)

∫
d3k ei

~k·~x
sin(κx0)

κ
. (27)

where we have introduced the step function,

Θ(x0) =

{
1 , for x0 > 0,

0 , for x0 < 0,
(28)

which automatically takes care of the two cases treated above. Writing d3k = κ2 dκ d cos θ dφ,
the integration over φ is immediate and gives 2π. Hence,

G(x) = lim
ǫ→0

GR(x) =
1

π
Θ(x0)

∫ ∞

0

κ dκ sin(κx0)

∫ 1

−1

eiκr cos θ d cos θ

=
1

π
Θ(x0)

∫ ∞

0

κ dκ sin(κx0)
eiκr − e−iκr

iκr

=
2

πr
Θ(x0)

∫ ∞

0

dκ sin(κx0) sin(κr)

=
Θ(x0)

2πr

∫ ∞

−∞

dκ
[
ei(x0−r)κ − ei(x0+r)κ

]

=
Θ(x0)

r

[
δ(x0 − r) + δ(x0 + r)

=
Θ(x0)

r
δ(x0 − r) , (29)

where we have introduced r ≡ |~x|. Note that Θ(x0)δ(x0 + r) = 0, since the step function
requires x0 > 0 but the argument of the delta function never vanishes in this case. Finally,
we note that Θ(x0)δ(x0 − r) = δ(x0 − r), since the delta function is nonzero only in the
case of x0 = r > 0, in which case Θ(x0) = 1. We have therefore obtained our final result
for the Green function of the D’Alembertian operator that is consistent with causality:

G(x) =
δ(x0 − |~x|)

|~x|
. (30)
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We can now insert eq. (30) back into eq. (9) to obtain the particular solution to the
inhomogeneous wave equation,

Ψ1(x) =

∫
d3x′

∫ ∞

−∞

dx′
0

δ(x0 − x′
0 − |~x− ~x

′|

|~x− ~x
′|

f(~x ′, t) . (31)

The integration over x′
0 is trivial due to the delta function. We end up with

Ψ1(x) =

∫
d3x′

|~x− ~x
′|
f
(
x′, t′ = t−

|~x− ~x
′|

c

)
. (32)

It is convenient to introduce the following notation:

[
f(~x ′, t′)

]
ret

≡ f
(
x′, t′ = t−

|~x− ~x
′|

c

)
. (33)

Using this notation, the particular solution to the inhomogeneous wave equation is given
by [cf. eq. (6.47) of Jackson]:

Ψ1(~x, t) =

∫
d3x′

[
f(~x ′, t′)

]
ret

|~x− ~x
′|

. (34)

The time variable t′ is called the retarded time. Its name derives from the fact that
when the emission of radiation by charge and current density sources occurs, the radiated
electromagnetic fields observed by an observer at the spacetime point (ct ; ~x) is due to
the sources located at ~x ′ at and earlier (or retarded) time t′ = t − |~x − ~x

′|/c, allowing
for the (causal) transmission of the radiated field from the source to the observer (which
propagates at the speed of light c).
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