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Solution of the Inhomogeneous Wave Equation via the Green Function

For electromagnetic waves in vacuum (propagating at the speed of light ¢), the four-
vector potential in the Lorenz gauge satisfies

4
OA () = —J"(x), (1)
c
where gaussian units are being employed, A* = (; K), and O = 0,0". This is an
inhomogeneous wave equation with a source term of J* = (¢p; J). Naively, one might
propose a solution of the form
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Al(z) = O (z). 2)

c
However, we know that [J=! does not exist due to the fact that there exist eigenfunctions
of the D’Alembertian operator [J with zero eigenvalues.! In particular, given the four
vectors x = (ct; &) and k = (w/c; E), with corresponding dot product k-z = wt — k-Z,
it follows that
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after making use of the dispersion relation in vacuum, |k| = w/c. That is e*'® is an

eigenfunction of [ with zero eigenvalue.
Consider the inhomogeneous wave equation,?

OW(Et) = 4dnf(Z,1). (4)
The most general solution to this equation is of the form
U(F, 1) = Wo(, ) + Uy (7, 1), (5)

where

OWy(Z,t) = 0, O, (Z,t) = 47 f(Z,1). (6)

The most general solution to the homogeneous wave equation is well known. It can
be expanded in a Fourier series consisting of a linear combination of plane waves of
mode (k,w), where w = |k|c. The so-called particular solution, W, (Z,t), satisfies the
inhomogeneous wave equation.

Tt is well known that in finite dimension vector spaces, a linear transformation is noninvertible if it has
a zero eigenvalue. This is equivalent to saying that the matrix that represents the linear transformation
is noninvertible if its determinant vanishes, since the determinant of a matrix is equal to a product of its
eigenvalues. This result generalizes to infinite dimensional function spaces.

2The factor of 47 in eq. (4) is conventional, as this matches the ;= 0 component of eq. (1).



Since [ is not an invertible operator, it follows that either no solution exists or an
infinite number of solutions to eq. (4) exist. It turns out that the latter is the case
here. For the problem at hand, we wish to choose the unique solution that satisfies the
physical requirements of our problem. In the case of electromagnetic wave propagation,
the condition we shall impose is causality. In this context, causality implies that the waves
are generated only after the source turns on and the signal reaches a distant observer only
after the waves have propagated with a finite speed (equal to the speed of light c).

We will solve eq. (4) by employing the Green function technique. We define a Green
function G(z,z') (where x and 2’ are four vectors) by?

0,G(x — o) = 4nd* (£ — &), (7)

where [, indicates partial differentiation with respect to the four vector = (with 2’ held
fixed), and the four-dimensional delta function is defined by

M —2')=0*(x —x")0(x — x0), (8)

where xy = ct. By translational invariance, G(x,2') = G(z — 2’). That is, the Green
function can only depend on the difference of the two spacetime points.

As a check, assuming that G(z — ) is known, the particular solution to eq. (4) is
given by

U, (x) = /d4I,G(l’ — ) f(x'). 9)

As a check, we apply [, to both sides eq. (9) to obtain

O, (z) = 4n / d'2' f()OG(x —2') = 47T/d4l’/ f(@)6*(x — ') =4nf(z), (10

as required.
Since G(z,2") = G(x — 2’), we can set 2’ = 0 without loss of generality and solve the
equation

OG(x) = 4n6* (). (11)

We shall solve eq. (11) using a Fourier transform method, as this will convert the differen-
tial equation into an algebraic equation that is easily solved. The Fourier representation
of G(x) is
1 ~ .
G(x) = d*k G(k) e k= 12
(@) = g7 [ ARGl e, (12)

where k-z = kozo — k + . We shall also make use of the integral representation of the
four-dimensional delta function,
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Plugging egs. (12) and (13) into eq. (11), we obtain the algebraic equation,
—k*G(k) = 4x, (14)

31t is convenient to employ the factor of 47 in eq. (7) in light of the factor of 47 that appears in eq. (4).
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which has the immediate solution

Glk) = —— = ————— (15)

Plugging in eq. (15) back into eq. (11),

4
Gla) = — 4 d*k
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where kK = |l_£ |. We immediately see a problem. Namely, the integral over kg does not exist
due to the singularities of the integrand at ky = £x. Thus, G(z) as derived above does not
exist. Of course, this is equivalent to saying that [J=! does not exist. If we had obtained a
unique convergent expression for G(x) we would have concluded that G(z) = 4x0716%(z)
is well-defined, implying the existence of (17

However, as previously noted, eq. (11) does not possess a unique solution. Hence,
we shall adopt a strategy to produce many solutions to eq. (11) and choose the unique
solution among them that respects causality. This can be accomplished by examining
four different expressions which are slightly perturbed versions eq. (16) that depend on a
real positive infinitesimal parameter €. Here are four possible choices:
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As long as € # 0, these integrals are all well-defined. Moreover, one can check that
they are indeed solutions to eq. (11), where the limit of € — 0 is taken after evaluating
the corresponding integrals. Thus, we have actually found four possible solutions to
eq. (11). Indeed, one can take arbitrary linear combinations of the above four solutions
and then normalize the corresponding combination to find an infinite number of solutions
to eq. (11).

The condition of causality is

G(z) =0 for all t < 0. (21)

This condition arises since in eq. (11), we see that the source term (i.e., the delta function)
is zero until x = (¢t ; &) = 0. Thus, no signal can be generated until ¢ > 0. This condition
uniquely selects the so-called retarded Green function,
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where the limit € — 0 should be applied after evaluating the integral above. Let us verify
this claim. Suppose that o = ¢t < 0. Then zy = —|xy|. We can perform the integral
over xy by analyzing the integrand in the complex ko plane. Because |rg| < 0, we can
close the contour in the upper half complex lane with a semicircle of radius R, which we
denote by (' in the figure below. By taking R — oo, we see that along the semicircular
path Cl,

e—zkoxo _ el(Reko-ﬁ-ZImk‘o)‘xo‘ — 61‘1‘0‘Rek06—‘1‘0‘1mk‘0 N O as R — 00, (23)

since Imky > 0 in the upper half complex plane. That is, in the limit of R — oo,
there is no contribution to the integral along the semicircle C as a result of eq. (23). In
particular, the integral given in eq. (22) is equal to the integral over the closed integration
path exhibited in the figure below.
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Since there are no poles inside the closed contour, it follows (by Cauchy’s theorem)
that limpg_,o [1(R, €) = 0. Hence, we conclude that

Gr(x) = lir%ll(oo, €) =0, for zy <O0. (24)

Next, we consider the case of g = ¢t > 0. Then xy = |xy|. We can again perform the
integral over xy by analyzing the integrand in the complex kg plane. Because |z > 0,
we can close the contour in the lower half complex plane with a semicircle of radius R,
which we denote by C5 in the figure below. By taking R — oo, we see that along the
semicircular path Cj,

e—zkoxo — 6—2(R0k0+zlmko)|mo| — e—z\xo\Rekoe|mo|Imko 5 0as R— 0, (25)

since Im kg < 0 in the lower half complex plane. That is, in the limit of R — oo, there
is no contribution from the integration along the semicircle Cy to the integral as a result
of eq. (25). In particular, the integral given in eq. (22) is equal to the integral over the
closed integration path exhibited in the figure below.

Im ]{?0

A

R

> Re k‘()

k+.i5
Cy

R 6—ik0mo
I =
2(R,€) /_R+/02 dko (ko — K + i€)(ko + K + i€)




We now employ the theory of residues to evaluate the integral over the closed integra-
tion path exhibited above. Two poles are present inside the closed contour, and thus we
pick up contribution from the two residues at the poles, respectively. Since the integration
path shown above is clockwise, an extra minus sign appears in the residue theorem. Thus,
in the limit of € — 0,

%dk e—ikowo o 1 [e—mmo inmo} 2 S'l’l( T ) (26)
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Returning to eq. (22), we have
O(r) = i Gr(x) = - O(xq) [ d¥ = ST0) (27)
xTr) = el_r}é R\T) = 2—71_2 Zo (& T .
where we have introduced the step function,
1 fi >0
Ow) =< = T (28)
0, for zy < 0,

which automatically takes care of the two cases treated above. Writing d®k = 2 dr d cos 8 d¢,
the integration over ¢ is immediate and gives 2m. Hence,
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where we have introduced r = |&|. Note that ©(x¢)d(x¢ + ) = 0, since the step function
requires xo > 0 but the argument of the delta function never vanishes in this case. Finally,
we note that ©(xy)d(zg — 1) = d(xg — ), since the delta function is nonzero only in the
case of g = r > 0, in which case ©(z) = 1. We have therefore obtained our final result
for the Green function of the D’Alembertian operator that is consistent with causality:

0(xo — |Z])
.
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G(x) = (30)



We can now insert eq. (30) back into eq. (9) to obtain the particular solution to the
inhomogeneous wave equation,

o0 5 _ N V-~ =/

U, (z) = / P’ / aa, 280 ‘fo JCT APy (31)
e X —
The integration over z{ is trivial due to the delta function. We end up with
> | — &'
b = [ e E2EDY »
@) = [ = (e . (32)
It is convenient to introduce the following notation:

= 2

@, = 1(« =~ E2 T (33)

Using this notation, the particular solution to the inhomogeneous wave equation is given
by [cf. eq. (6.47) of Jackson]:

t
\Ifl(f, t) = /d?’l’, YT (34)
|Z

The time variable ¢’ is called the retarded time. Its name derives from the fact that
when the emission of radiation by charge and current density sources occurs, the radiated
electromagnetic fields observed by an observer at the spacetime point (ct; &) is due to
the sources located at &’ at and earlier (or retarded) time ¢’ =t — |& — &’|/c, allowing
for the (causal) transmission of the radiated field from the source to the observer (which
propagates at the speed of light ¢).
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