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The equations of Jefimenko, Panofsky, and Phillips

1. Solution to the inhomogeneous wave equation

For electromagnetic waves in vacuum (propagating at the speed of light c), the four-
vector potential in the Lorenz gauge satisfies

�Aµ(x) =
4π

c
Jµ(x) , (1)

where gaussian units are being employed, Aµ = (Φ ; ~A), and � ≡ ∂µ∂
µ. This is an

inhomogeneous wave equation with a source term of Jµ = (cρ ; ~J). The solution to the
inhomogeneous wave equation is derived in the class handout entitled Solution of the

Inhomogeneous Wave Equation via the Green Function and is given by:

~A(~x, t) =
1

c

∫

d3x′

[

~J(~x ′, t′
]

ret

|~x− ~x ′|
, (2)

Φ(~x, t) =
1

c

∫

d3x′

[

ρ(~x ′, t′
]

ret

|~x− ~x ′|
, (3)

where we have employed the notation
[

f(~x ′, t′)
]

ret
≡ f

(

~x ′, t′ = t− |~x− ~x ′|/c
)

, (4)

and t′ ≡ t− |~x− ~x ′|/c is the retarded time.
Using the vector and scalar potentials, one can obtain the electric and magnetic fields,

~E = −~∇Φ−
1

c

∂ ~A

∂t
, ~B = ~∇× ~A . (5)

Using these relations, it follows from eq. (1) that the electric and magnetic fields also
satisfy inhomogeneous wave equations:

�~E = −4π

(

~∇ρ+
1

c2
∂ ~J

∂t

)

, (6)

� ~B =
4π

c
~∇× ~J . (7)

The solutions to eqs. (6) and (7) are then given by

~E(~x, t) = −

∫

d3x′

|~x− ~x ′|

[

~∇
′

ρ(~x ′, t′) +
1

c2
∂J(~x ′, t′)

∂t′

]

ret

, (8)

~B(~x, t) =
1

c

∫

d3x′

|~x− ~x ′|

[

~∇
′

× ~J(~x ′, t′)

]

ret

, (9)

where ~∇
′

corresponds to differentiation with respect to ~x ′.
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2. Applications of the chain rule

In order to analyze the consequences of eqs. (8) and (9), it is critical to note that

~∇
′
[

f(x′, t′)
]

ret
6=
[

~∇
′

f(x′, t′)
]

ret
. (10)

In particular, ~∇
′
[

f(x′, t′)
]

ret
must be evaluated at fixed t, since after applying the “ret”

instruction to the evaluation of f(x′, t′), which sets t′ = t−|~x−~x ′|/c, the resulting expres-

sion
[

f(x′, t′)
]

ret
is a function of ~x ′ and t. In contrast,

[

~∇
′

f(x′, t′)
]

ret
must be evaluated

at fixed t′ since the “ret” instruction is applied after computing ~∇
′

f(x′, t′). To relate the
two quantities in eq. (10), one must employ the chain rule of partial differentiation.

The specific chain rules that we will require are given below. Suppose that we have a
function w = f (~x ′, t′), where t′ is a function of ~x ′ and t.

(

∂w

∂x′

i

)

t

=

(

∂w

∂x′

i

)

t′
+

(

∂w

∂t′

)

~x ′

(

∂t′

∂x′

i

)

t

, (11)

(

∂w

∂t

)

~x ′

=

(

∂w

∂t′

)

~x ′

(

∂t′

∂t

)

~x ′

, (12)

where the variable that is being held fixed is indicated explicitly by the subscript indicated
by each partial derivative.

In the case of w = ρ, we can employ eq. (11) to obtain

(

~∇
′

ρ
)

t
=
(

~∇
′

ρ
)

t′
+

(

∂ρ

∂t′

)

~x ′

(

~∇
′

t′
)

t
(13)

Since t′ = t− |~x− ~x ′|/c, one can rewrite eq. (13) as

~∇
′

[ρ]ret =
[

~∇
′

ρ
]

ret
+

[

∂ρ

∂t′

]

ret

~∇
′

(

−
|~x− ~x ′|

c

)

. (14)

It is convenient to define

~R = ~x− ~x ′ and R = |~R| = |~x− ~x ′| . (15)

Note that when acting on a function f(R), one can employ the chain rule to obtain

~∇~x ′f(R) = −~∇~xf(R) = −~∇ ~R
f(R) = −R̂

∂f

∂R
, (16)

where R̂ ≡ ~R/R, and we have employed the notation ~∇~x ′ ≡ ~∇
′

. Hence, it follows that

~∇
′

(

−
|~x− ~x ′|

c

)

=
R̂

c
. (17)

Hence, eqs. (14) and (17) yield

[

~∇
′

ρ
]

ret
= ~∇

′
[

ρ
]

ret
−

R̂

c

[

∂ρ

∂t′

]

ret

. (18)

2



By a similar computation involving ~J , we obtain

[

~∇
′

× ~J
]

ret
= ~∇

′

× [ ~J
]

ret
+

1

c

[

∂ ~J

∂t′

]

ret

× R̂ , (19)

after reversing the order of the two vectors in the last cross product (which flips the sign
of the last term above).

3. The Jefimenko equations

Starting with eq. (8), we make use of eq. (18) to obtain:

~E(~x, t) = −

∫

d3x′

|~x− ~x ′|

{

~∇
′

[ρ]ret +
1

c2

{

∂ ~J

∂t′

]

ret

−
R̂

c

[

∂ρ

∂t′

]

ret

}

. (20)

In regard to the first term inside the braces in eq. (20), we can integrate by parts. The sur-
face term at infinity can be discarded under the assumption that ρ(~x ′, t′) and is localized
(and thus the integral over the surface at infinity vanishes). Using eq. (16),

~∇
′ 1

|~x− ~x ′|
= −R̂

∂

∂R

(

1

R

)

=
R̂

R2
(21)

After the integration by parts, we obtain

~E(~x, t) =

∫

d3x′

{

R̂

R2
[ρ(~x ′, t′)]ret +

R̂

cR

[

∂ρ(~x ′, t′)

∂t′

]

ret

−
1

c2R

[

∂ ~J(~x ′, t′)

∂t′

]

ret

}

. (22)

Likewise, starting with eq. (9), we make use of eq. (19) to obtain:

~B(~x, t) =
1

c

∫

d3x′

|~x− ~x ′|

{

~∇
′

× [ ~J
]

ret
+

1

c

[

∂ ~J

∂t′

]

ret

× R̂

}

. (23)

In regard to the first term inside the braces in eq. (23), we can again integrate by parts.
The surface term at infinity can once again be discarded under the assumption that
~J(~x ′, t′) and is localized. After employing eq. (16), we end up with1

~B(~x, t) =
1

c

∫

d3x′

{

[

~J(~x ′, t′)
]

ret
×

R̂

R2
+

[

∂ ~J(~x ′, t′)

∂t′

]

ret

×
R̂

cR

}

. (24)

Eqs. (22) and (24) are known as the Jefimenko equations.2 Note that these two
equations [which are given in SI units in eqs. (6.55) and (6.56) of Jackson] are the time-
dependent generalizations of the Coulomb and Biot-Savart laws, respectively.

1Eq. (24), in SI units, was obtained (prior to Jefimenko) using a Fourier transform technique in
eq. (14-34) of Wolfgang K.H. Panofsky and Melba Phillips, Classical Electricity and Magnetism, 2nd
edition (Addison-Wesley Publishing Company, Inc., Reading, MA, USA, 1962).

2See eqs. (15-7.5) and (15-7.6) in Oleg D. Jefimenko, Electricity and Magnetism, 2nd edition (Electric
Scienetific Company, Star City, WV, USA, 1989).
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4. Rewriting the Jefimenko equation for ~E following Panofsky and Phillips

We shall now perform further manipulations on eq. (22) which is reproduced below
for the convenience of the reader:

~E(~x, t) =

∫

d3x′

{

R̂

R2
[ρ(~x ′, t′)]ret +

R̂

cR

[

∂ρ(~x ′, t′)

∂t′

]

ret

−
1

c2R

[

∂ ~J(~x ′, t′)

∂t′

]

ret

}

. (25)

The analog of eq. (18) is

[

~∇
′

· ~J
]

ret
= ~∇

′

·
[

~J
]

ret
−

R̂

c
·

[

∂ ~J

∂t′

]

ret

. (26)

Using the continuity equation,

~∇
′

· ~J(~x ′, t′) +
∂ρ(~x ′, t′)

∂t′
= 0 , (27)

it then follows that

[

∂ρ(~x ′, t′)

∂t′

]

ret

= −~∇
′

·
[

~J
]

ret
+

R̂

c
·

[

∂ ~J

∂t′

]

ret

. (28)

Inserting eq. (28) back into the second term on the right-hand side of eq. (25) yields

∫

d3x′
R̂

cR

[

∂ρ(~x ′, t′)

∂t′

]

ret

= −
1

c

∫

d3x′
1

R
~∇

′

·
[

~J
]

ret
R̂+

1

c2

∫

d3x′
1

R

(

[

∂ ~J

∂t′

]

ret

· R̂

)

R̂ .

(29)

Focusing on the ith component of the first term on the right hand side of eq. (29),

−
1

c

∫

d3x′
Ri

R2
~∇

′

·
[

~J
]

ret
=

1

c

∫

d3x′
[

~J
]

ret
· ~∇

′

(

Ri

R2

)

, (30)

after an integration by parts (and discarding the surface term at infinity). Noting that

∂ ′

j

(

Ri

R2

)

= −∂j

(

Ri

R2

)

= −∂Rj

(

Ri

R2

)

= −
δij
R2

− RiR̂j
∂

∂R

(

1

R2

)

=
2R̂iR̂j − δij

R2
, (31)

after writing R̂i ≡ Ri/R, it follows that

−
1

c

∫

d3x′
1

R
~∇

′

·
[

~J
]

ret
R̂ =

1

c

∫

d3x′

2
(

[

~J
]

ret
·R̂
)

R̂−
[

~J
]

ret

R2

=
1

c

∫

d3x′

(

[

~J
]

ret
·R̂
)

R̂ +
(

[

~J
]

ret
× R̂

)

× R̂

R2
, (32)

after making use of the well-known triple vector product identity.
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Hence, eq. (29) yields

∫

d3x′
R̂

cR

[

∂ρ(~x ′, t′)

∂t′

]

ret

=
1

c

∫

d3x′

(

[

~J
]

ret
·R̂
)

R̂+
(

[

~J
]

ret
× R̂

)

× R̂

R2

+
1

c2

∫

d3x′
1

R

(

[

∂ ~J

∂t′

]

ret

· R̂

)

R̂ . (33)

Inserting this result back into eq. (25), we obtain

~E(~x, t) =

∫

d3x′







R̂

R2
[ρ(~x ′, t′)]ret +

(

[

~J
]

ret
·R̂
)

R̂ +
(

[

~J
]

ret
× R̂

)

× R̂

cR2

+
1

c2R

(

[

∂ ~J

∂t′

]

ret

· R̂

)

R̂−
1

c2R

[

∂ ~J(~x ′, t′)

∂t′

]

ret

}

. (34)

Finally, we note that the second line of eq. (34) can be rewritten as a triple cross product.
We therefore arrive at our final result:

~E(~x, t) =

∫

d3x′







R̂

R2
[ρ(~x ′, t′)]ret +

(

[

~J
]

ret
·R̂
)

R̂ +
(

[

~J
]

ret
× R̂

)

× R̂

cR2

+
1

c2R

(

[

∂ ~J

∂t′

]

ret

× R̂

)

× R̂

}

. (35)

Eq. (35) was first obtained by Panofsky and Philips using a Fourier transform technique.3

5. The radiation fields

Consider the far (radiation) zone, corresponding to d, λ ≪ r, where d is the length
scale over which the charge and current sources are nonzero, λ ≡ 2π/k is the wavelength
of the emitted radiation, and r ≡ |~x| is the distance from the origin (where the sources
are located) to the distant observer. In this parameter regime, one can neglect terms in
the expressions for the electromagnetic fields that approach zero faster than O(1/r) as
r → ∞. Thus, the radiation fields correspond to the terms in eqs. (24) and (35) that
scale as 1/R, whereas the terms that scale as 1/R2 can usually be discarded. Thus,

~Erad(~x, t) =
1

c2

∫

d3x′

|~x− ~x ′|

(

[

∂ ~J (~x ′, t′)

∂t′

]

ret

× R̂

)

× R̂ (36)

~Brad(~x, t) =
1

c2

∫

d3x′

|~x− ~x ′|

[

∂ ~J (~x ′, t′)

∂t′

]

ret

× R̂ . (37)

3Eq. (35) can be found (using SI units) in eq. (14-42) of Wolfgang K.H. Panofsky and Melba Phillips,
Classical Electricity and Magnetism, 2nd edition (Addison-Wesley Publishing Company, Inc., Reading,
MA, USA, 1962). See also: Kirk T. McDonald, The Relation Between Expressions for Time-Dependent

Electromagnetic Fields Given by Jefimenko and by Panofsky and Phillips, Am. J. Phys. 65, 1074–1076
(1997) and https://kirkmcd.princeton.edu/examples/jefimenko.pdf.
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In the limit of large |~x|, we can approximate

R̂ =
~x− ~x ′

|~x− ~x ′|
= n̂+O

(

1

r

)

, (38)

where n̂ ≡ ~x/|~x|. Hence,

~Brad(~x, t) = −
1

c2r
n̂×

∫

d3x′

[

∂ ~J (~x ′, t′)

∂t′

]

ret

+O

(

1

r2

)

. (39)

Note that the minus sign in eq. (39) arises after reversing the order of the two vectors in
the cross product. Finally, we make use of eq. (12), which implies that

[

∂ ~J (~x ′, t′)

∂t′

]

ret

=
∂

∂t

[

~J(~x ′, t′)
]

ret
, (40)

since ∂t′/∂t = 1. Moreover, we can expand the expression for t′ in the limit of large |~x|
as follows:

|~x− ~x ′| =
[

r2 + r′2 − 2~x · ~x ′
]1/2

= r

[

1 +
r′2 − 2~x · ~x ′

r2

]1/2

= r

[

1−
n̂ · ~x ′

r
+O

(

1

r2

)]

= r − n̂ · ~x ′ +O

(

1

r

)

, (41)

where r′ ≡ |~x ′|. Hence,

t′ = t−
r

c
+

n̂ · ~x ′

c
+O

(

1

r

)

. (42)

It is convenient to introduce the notation

~J (~x, t) ≡

∫

d3x′ ~J
(

~x ′, t−
r

c
+

n̂ · ~x ′

c

)

. (43)

The final forms for the radiation fields are then given by:

~Brad(~x, t) = −
1

c2r
n̂×

∂ ~J (~x, t)

∂t
+O

(

1

r2

)

, (44)

~Erad(~x, t) = ~Brad(~x, t)× n̂+O

(

1

r2

)

. (45)

Eqs. (44) and (45) can be used to compute the total power radiated out to a distant
observer:4

P =

∮

~S · n̂ da , where da = r2dΩ, (46)

and ~S is the Poynting vector,

~S =
c

4π
~Erad × ~Brad . (47)

4Note that the contributions of terms of O(1/r2) in the electromagnetic fields to the radiated power

vanish as r → ∞, thereby justifying discarding such terms in defining the radiation fields ~Erad and ~Brad.
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In eq. (47), ~Erad and ~Brad are real physical electromagnetic fields. In this case, the more
useful observable is the time-averaged power, which is obtained by averaging over a cycle,

〈P 〉 =
1

T

∫ T

0

P (t) dt , (48)

where the period T = 2π/ω. Note that

~S · n̂ =
c

4π

[

(

~Brad(~x, t)× n̂
)

× ~Brad(~x, t)
]

·n̂ =
c

4π

[

| ~Brad|
2 −

(

n̂ · ~Brad

)2]
. (49)

In light of eq. (44), n̂ · ~Brad = 0. Hence,

~S · n̂ =
c

4π
| ~Brad|

2 . (50)

Inserting the result for ~Brad from eq. (44),

~S ·n̂ r2 =
1

4πc3

∣

∣

∣

∣

∣

n̂×
∂ ~J (~x, t)

∂t

∣

∣

∣

∣

∣

2

. (51)

We therefore end up with

dP

dΩ
=

1

4πc3







(

∂ ~J (~x, t)

∂t

)2

−

(

n̂·
∂ ~J (~x, t)

dt

)2






. (52)

For example, if the sources are harmonically varying, then we define complex charge
and current densities,

ρ(~x, t) = ρ(~x)e−iωt , ~J(~x, t) = ~J(~x)e−iωt . (53)

In this case, eq. (43) yields

~J (~x, t) = ei(kr−ωt)

∫

d3x′ ~J(~x ′)e−ikn̂·~x ′

, (54)

where k ≡ ω/c.
Moreover, the electric and magnetic fields are also harmonically varying complex fields,

~Erad(~x, t) = ~Erad(~x)e
−iωt , ~Brad(~x, t) = ~Brad(~x)e

−iωt . (55)

The corresponding physical fields are Re ~Erad and Re ~Brad, respectively. In this case, the
power is computed by employing the complex Poynting vector

~S(~x) =
c

8π
~Erad(~x)× ~B

∗

rad(~x) . (56)

One advantage of this procedure is that the total power radiated out to a distant observer,

〈P 〉 = r2 Re

∮

~S(~x) · n̂ dΩ . (57)

is automatically averaged over a cycle. Consequently, in the case of harmonically varying
sources, eq. (52) is replaced by

〈

dP

dΩ

〉

=
1

8πc3

{
∣

∣

∣

∣

∣

∂ ~J (~x, t)

∂t

∣

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∣

n̂·
∂ ~J (~x, t)

dt

∣

∣

∣

∣

∣

2}

, (58)

where |z|2 ≡ z∗z for any complex number z.
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6. The O(1/r2) behavior of n̂· ~E(~x, t) and n̂· ~B(~x, t)

The radiated angular momentum per unit time in gaussian units is given by

~τ = −
r3

4π

∫

[

(n̂× ~E)(n̂ · ~E) + (n̂× ~B)(n̂ · ~B)
]

dΩ , (59)

where ~E(~x, t) and ~B(~x, t) are the real physical electromagnetic fields. In light of the

expressions given in eqs. (44) and (45), it follows that n̂ · ~Brad = n̂ · ~Erad = 0 at O(1/r).

In contrast, n̂× ~Erad and n̂× ~Brad are both nonzero at O(1/r). In order to obtain a finite
nonzero angular momentum radiated to a far distant observer (in the limit of r → ∞), we

will need to determine the O(1/r2) behavior of n̂ · ~E(~x, t) and n̂ · ~B(~x, t). This is the one
case where eqs. (44) and (45) are not sufficient to obtain a result that can be measured
by a distant observer. In particular, we will need to also consider the O(1/r2) terms that
were discarded in defining the radiation fields exhibited in eqs. (36) and (37). The goal

of this section is to provide the O(1/r2) expressions for n̂ · ~E(~x, t) and n̂ · ~B(~x, t).
First, by using eq. (24), it follows that

~B(~x, t) =
1

c2

∫

d3x′

|~x− ~x ′|

[

∂ ~J (~x ′, t′)

∂t′

]

ret

× R̂−
1

cr2
n̂×

∫

d3x′
[

~J(~x ′, t′)
]

ret
+O

(

1

r3

)

.

(60)
Taking the dot product of eq. (60) with n̂, we obtain

n̂ · ~B(~x, t) =
1

c2
n̂ ·

∫

d3x′

|~x− ~x ′|

[

∂ ~J (~x ′, t′)

∂t′

]

ret

× R̂+O

(

1

r3

)

. (61)

We now make use of eq. (41) to write

R̂ =
~x− ~x ′

|~x− ~x ′|
=

~x

r − n̂ · ~x ′
−

~x ′

r
+O

(

1

r2

)

= n̂

(

1 +
n̂ · ~x ′

r

)

−
~x ′

r
+O

(

1

r2

)

= n̂+
n̂
(

n̂ · ~x ′
)

− ~x ′

r
+O

(

1

r2

)

. (62)

Hence, it follows that

n̂ · ~B(~x, t) =
1

r2c2
n̂ ·

∫

d3x′ ~x ′ ×

[

∂ ~J (~x ′, t′)

∂t′

]

ret

+O

(

1

r3

)

. (63)

We can then write eq. (63) more explicitly as

n̂ · ~B(~x, t) =
1

r2c2
∂

∂t
n̂ ·

∫

d3x′ ~x ′ × ~J
(

~x ′, t−
r

c
+

n̂ · ~x ′

c

)

+O

(

1

r3

)

. (64)

Next, we employ eq. (35) to obtain

~E(~x, t) =
1

cr2

∫

d3x′

{

cn̂ [ρ(~x ′, t′)]ret +
(

[

~J
]

ret
·n̂
)

n̂+
(

[

~J
]

ret
× n̂

)

× n̂
}

+
1

c2

∫

d3x′

|~x− ~x ′|

(

[

∂ ~J

∂t′

]

ret

× R̂

)

× R̂+O

(

1

r3

)

. (65)
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After using the identity

n̂ ·

{(

[

∂ ~J

∂t′

]

ret

× R̂

)

× R̂

}

=
(

R̂ · n̂
)

R̂ ·

[

∂ ~J

∂t′

]

ret

− n̂ ·

[

∂ ~J

∂t′

]

ret

, (66)

and making use of eq. (62), we end up with

n̂·~E(~x, t) =
1

c2r2

∫

d3x′

{

c2
[

ρ(~x ′, t′)
]

ret
+cn̂·

[

~J
]

ret
+(n̂·~x ′)n̂·

[

∂ ~J

∂t′

]

ret

−~x ′·

[

∂ ~J

∂t′

]

ret

}

+O

(

1

r3

)

.

(67)
We can then write eq. (67) more explicitly as

n̂ · ~E(~x, t) =
1

r2

∫

d3x′ ρ
(

~x ′, t−
r

c
+

n̂ · ~x ′

c

)

+
1

cr2

∫

d3x′ n̂ · ~J
(

~x ′, t−
r

c
+

n̂ · ~x ′

c

)

+
1

c2r2
∂

∂t

∫

d3x′

{

(

n̂ · ~x ′
)

n̂· ~J
(

~x ′, t−
r

c
+

n̂ · ~x ′

c

)

− ~x ′ · ~J
(

~x ′, t−
r

c
+

n̂ · ~x ′

c

)

}

+O

(

1

r3

)

.

(68)

In the case of harmonically varying sources, we have ~E(~x, t) = ~E(~x)e−iωt and ~B(~x, t) =
~B(~x)e−iωt. In this case, eqs. (64) and (68) take the following forms:

n̂ · ~B(~x, t) = −
ik

cr2
ei(kr−ωt) n̂ ·

∫

d3x′ ~x ′ × ~J(~x ′)e−ikn̂·~x ′

+O

(

1

r3

)

, (69)

n̂ · ~E(~x, t) = −
ik

cr2
ei(kr−ωt)

∫

d3x′

[

(

n̂ · ~x ′
)

n̂ · ~J(~x ′)− ~x ′ · ~J(~x ′)
]

e−ikn̂·~x ′

+
1

cr2
ei(kr−ωt)

∫

d3x′
[

cρ(~x ′) + n̂ · ~J(~x ′)
]

e−ikn̂·~x ′

+O

(

1

r3

)

, (70)

after putting ω = ck. One can obtain the radiated angular momentum per unit time
using the complex vectors ~E(~x) and ~B(~x) by modifying eq. (59) appropriately,5

〈~τ 〉 = −
r3

8π
Re

∫

[

(n̂× ~E
∗

)(n̂ · ~E) + (n̂× ~B)(n̂ · ~B
∗

)
]

dΩ , (71)

As in the case of eq. (57), the radiated angular momentum per unit time is automatically
averaged over a cycle in eq. (71).

The multipole expansion corresponds to an expansion of the exponential e−ikn̂·~x ′

. At
lowest order, if we set e−ikn̂·~x ′

= 1 in eq. (69), it then follows that

n̂ · ~B(~x, t) = −
2ik

r2
ei(kr−ωt) n̂ · ~m+O

(

1

r3

)

, (72)

where

~m ≡
1

2c

∫

d3x′ ~x ′ × ~J(~x ′) +O

(

1

r3

)

, (73)

is the complex magnetic dipole moment vector in gaussian units [and ~m(t) = ~m e−iωt].

5An alternative form for 〈~τ 〉 given in eq. (100), which provides a motivation for the choice of the
complex conjugated fields in eq. (71), is presented at the end of this section.
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In evaluating the electric field, we first note the following identities:

Ji(~x
′) = ∂ ′

k

[

x′

iJk(~x
′)
]

− x′

i
~∇

′

· ~J(~x ′) , (74)

x′

iJj(~x
′) + x′

jJi(~x
′) = ∂ ′

k

[

x′

ix
′

jJk(~x
′)
]

− x′

ix
′

j
~∇

′

· ~J(~x ′) . (75)

Next, we make use of the continuity equation [eq. (27)] for harmonically varying charge
and current densities [eq. (53)] to obtain

~∇
′

· ~J(~x ′) = iωρ(~x ′) . (76)

It then follows that
∫

d3x′ ~J(~x ′) = −ick~p , (77)

after putting ω = ck and dropping the surface term at infinity (which vanishes for localized
currents), where

~p ≡

∫

d3x′ ~x ′ ρ(~x ′) , (78)

is the complex electric dipole moment vector [and ~p(t) = ~p e−iωt]. Similarly,
∫

d3x′
[

x′

iJj(~x
′) + x′

jJi(~x
′)
]

= −ick

∫

d3x′ x′

ix
′

j ρ(~x
′) . (79)

Hence, after setting e−ikn̂·~x ′

= 1 in eq. (70) it follows that

−ik

∫

d3x′

[

(

n̂ · ~x ′
)

n̂ · ~J(~x ′)− ~x ′ · ~J(~x ′)
]

= 1
2
ik(δij − n̂in̂j)

∫

d3x′
[

x′

iJj(~x
′) + x′

jJi(~x
′)
]

= 1
2
ck2(δij − n̂in̂j)

∫

d3x′ x′

ix
′

j ρ(~x
′) , (80)

with an implicit double sum over the repeated indices i and j, respectively.
To make further progress, we now demonstrate that for harmonically varying charge

and current densities [eq. (53)], the conservation of charge implies that for ω 6= 0,
∫

d3x′ ρ(~x ′) = 0 . (81)

The continuity equation [eq. (27)] implies that

0 =

∫

d3x′ ~∇
′

· ~J(~x ′, t) = −
∂

∂t

∫

d3x′ ρ(~x ′, t) , (82)

since the surface term at infinity vanishes for localized currents. That is, electric charge
is conserved. Furthermore, in light of eq. (76), it follows that

0 =

∫

d3x′ ~∇
′

· ~J(~x ′) = iω

∫

d3x′ ρ(~x ′) . (83)

Thus, if ω 6= 0, we can conclude that
∫

d3x′ ρ(~x ′) = 0 . (84)
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We can now examine the consequence of setting e−ikn̂·~x ′

= 1 in the second line of eq. (70).
The term proportional to ρ(~x ′) vanishes as a result of eq. (84). Using eq. (77), it follows
that

∫

d3x′ n̂ · ~J(~x ′) = −ickn̂ · ~p . (85)

However, we have not been totally consistent in the multipole expansion. In particular,
there will be additional terms proportional to ~p and

∫

d3x′ x′

ix
′

j ρ(~x
′) arising from the

second term of the expansion of e−ikn̂·~x ′

in the second line of eq. (70). Finally, there
will be one additional contribution proportional to

∫

d3x′ x′

ix
′

j ρ(~x
′) arising from the third

term of the expansion of e−ikn̂·~x ′

. These contributions are easily evaluated.
First, after using eq. (78),
∫

d3x′ρ(~x ′)
[

−ikn̂·~x ′ − 1
2
k2
(

n̂·~x ′
)2]

= −ikn̂ · ~p− 1
2
k2n̂in̂j

∫

d3x′ x′

ix
′

jρ(~x
′) . (86)

Second, in light of eq. (79),
∫

d3x′ n̂ · ~J(~x ′)
[

−ikn̂·~x ′
]

= −1
2
ikn̂in̂j

∫

d3x′
[

x′

iJj(~x
′) + x′

jJi(~x
′)
]

= −1
2
ck2n̂in̂j

∫

d3x′ x′

ix
′

j ρ(~x
′) . (87)

Collecting all of the results obtained above,

n̂ · ~E(~x, t) = −ei(kr−ωt)

{

2ik

r2
n̂ · ~p+

k2

2r2
(3n̂in̂j − δij)

∫

d3x′ x′

ix
′

j ρ(~x
′)

}

. (88)

The last term above can be expressed in terms of the complex electric quadrupole moment
tensor,

Qij =

∫

d3x′
[

3x′

ix
′

j − δij |~x
′|2
]

ρ(~x ′) , (89)

and Qij(t) = Qij e
−iωt. Note that Qij is a traceless symmetric tensor, i.e., Qij = Qji and

∑

i,j δijQij = 0. It is convenient to introduce a vector ~Q, whose components are given by

Qi =
∑

j

Qijn̂j . (90)

Then, our final results for leading multipole contributions to n̂ · ~B(~x ′, t) and n̂ · ~E(~x ′, t)
at O(1/r2) are:

n̂ · ~B(~x, t) = −
2ik

r2
ei(kr−ωt) n̂ · ~m+O

(

1

r3

)

, (91)

n̂ · ~E(~x, t) = −
2ik

r2
ei(kr−ωt)

[

n̂ · ~p− 1
4
ik n̂ · ~Q

]

+O

(

1

r3

)

. (92)

The next set of multipoles in the multipole expansion would be the magnetic quadrupole
and the electric octopole, which are expected to be of equal importance (unless one of
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them vanishes). These terms can be identified by including higher order terms (beyond
those already treated above) in the expansion of the exponential e−ikn̂·~x ′

. The computa-
tion of the electric octopole contribution is extremely tedious, and will not be given here.
However, the computation of the magnetic quadrupole contribution is straightforward, as
it simply corresponds to the second term in the expansion of the exponential in eq. (69).

In particular,

−ik n̂ ·

∫

d3x′ ~x ′ × ~J(~x ′) n̂ · ~x ′ = −ik n̂in̂j

∫

d3x′

{

x′

i

[

~x ′ × ~J(~x ′)
]

j

= −1
2
ik n̂in̂j

∫

d3x′

{

x′

i

[

~x ′ × ~J(~x ′)
]

j
+ x′

j

[

~x ′ × ~J(~x ′)
]

i

}

= −1
2
ickn̂in̂jMij , (93)

with an implicit double sum over the repeated indices i and j, respectively, where the
complex magnetic quadrupole moment tensor is defined in gaussian units as

Mij =
1

c

∫

d3x′

{

x′

i

[

~x ′ × ~J(~x ′)
]

j
+ x′

j

[

~x ′ × ~J(~x ′)
]

i

}

. (94)

Note that Mij is a traceless symmetric tensor, i.e., Mij = Mji and
∑

i,j δijMij = 0. It is

convenient to introduce a vector ~M , whose components are given by

Mi =
∑

j

Mijn̂j . (95)

Hence, the contributions to n̂ · ~B(~x, t) arising from the magnetic dipole and magnetic
quadrupole is given by

n̂ · ~B(~x, t) = −
2ik

r2
ei(kr−ωt)

[

n̂ · ~m− 1
4
ik n̂ · ~M

]

+O

(

1

r3

)

. (96)

Comparing this result with that of eq. (92), we see that the structure of eqs. (92) and (96)
are identical after swapping the corresponding dipole moment vectors and quadrupole
moment tensors.

One remarkable feature of eqs. (69) and (70) is that the multipole expansion of

n̂· ~E(~x, t) contains only electric multipoles, whereas the multipole expansion of n̂· ~B(~x, t)
contains only magnetic multipoles. This should be contrasted with the multipole ex-
pansions of ~E(~x, t) and ~B(~x, t), which receive contributions from both the electric and
magnetic multipoles.

Remarks on the quadrupole tensor normalization convention

I have seen the magnetic quadrupole tensor defined by some authors with an over-
all factor of 1/2 as compared to eq. (94). If you adopt this convention, then you lose
the symmetry between Qij and Mij. Other authors choose to define both the electric
quadrupole tensor [eq. (89)] and magnetic quadrupole tensor [eq. (94)] by multiplying the
corresponding definitions by an overall factor of 1/3. Such a choice does not upset the
symmetry between expressions containing Qij and Mij .
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An alternative form6 for the radiated angular momentum per unit time ~τ

In light of eq. (45),

~E(~x, t) = ~B(~x, t)× n̂+O

(

1

r2

)

. (97)

Since n̂ · ~B(~x, t) = O(1/r2), it follows that

~E × n̂ =
(

~B × n̂
)

× n̂+O

(

1

r2

)

= − ~B +
(

n̂ · ~B
)

~B +O

(

1

r2

)

= − ~B +O

(

1

r2

)

. (98)

Inserting the results of eqs. (97) and (98) into the integrand of eq. (71), we obtain

(

n̂× ~E
∗

)(n̂ · ~E) + (n̂× ~B)(n̂ · ~B
∗

) = ~B
∗

(n̂ · ~E)− ~E (n̂ · ~B
∗

) +O

(

1

r4

)

= −n̂×
(

~E × ~B
∗
)

+O

(

1

r4

)

, (99)

after noting that n̂ · ~B(~x, t) = O(1/r2) and n̂ · ~E(~x, t) = O(1/r2).
Finally, after writing n̂ = ~x/r and inserting eq. (99) back into eq. (71), we end up

with

〈~τ 〉 =
r2

8π
Re

∫

~x×
(

~E × ~B
∗
)

dΩ+O

(

1

r

)

. (100)

Eq. (100) provides an alternative expression for the rate of angular momentum transport
and is equivalent to eq. (71) in the limit of r → ∞.7 Note that the location of the complex
conjugated fields in eq. (71) was chosen in order that one would obtain eq. (100) with the
~B field complex conjugated. In this way, the integrand of 〈~τ 〉 is closely related to the

complex Poynting vector, ~S = c (~E × ~B
∗

)/(8π).
The infinitesimal area element is da = r2 dΩ, so eq. (100) can be rewritten as

d~τ

da
=

1

8π
Re~x× (~E × ~B

∗

) . (101)

Since ~τ = d~L/dt, we interpret d~τ/da as the angular momentum flux that is transported
from the sources out to the observer located a long distance away. Eq. (101) should be
compared with the expression for the angular momentum of a distribution of electro-
magnetic fields in vacuum given in problem 7.27 of Jackson (after conversion to gaussian
units),

~L ≡

∫

~Ld3x =
1

4πc

∫

d3x~x× (~E × ~B) , (102)

where ~L is the angular momentum density of a distribution of electromagnetic fields

6This added note was inspired by the treatment in Emil Jan Konopinski, Electromagnetic Fields and

Relativistic Particles (McGraw Hill Inc., New York, 1981). In particular, see the discussion on p. 226,
including the very enlightening footnote at the bottom of that page.

7In this limit, ~τ approaches a constant value which is equal to the rate of angular momentum trans-
ported to the surface at infinity by the radiation.
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in vacuum. Eq. (102) is applicable to the real fields. The corresponding result for the
time-averaged angular momentum density of a distribution of harmonically varying elec-
tromagnetic fields is obtained by replacing ~B with ~B

∗

and multiplying the prefactor by
1/2. That is, the time-averaged angular momentum density of a distribution of harmoni-
cally varying electromagnetic fields is given by

~L=
1

8πc
Re~x× (~E × ~B

∗

) . (103)

We conclude that

d~τ

da
=

1

8π
Re~x× (~E × ~B

∗

) = c ~L+O

(

1

r3

)

. (104)

That is, the angular momentum flux in the radiation zone is equal to c times the angular
momentum density, although this identification is correct only at the lowest nontrivial
order in the inverse distance expansion.

7. Radiation from harmonically varying sources by way of the vector potential

The traditional method employed by most textbooks in treating radiation from har-
monically varying charge and current densities is to solve first for the vector potential
using eq. (2). The disadvantage of this method is that after computing ~A(~x, t), one must
then perform a second computation to obtain the electric and magnetic fields. By using
the Jefimenko equations and the improvement made by Panofsky and Phillips, one can
obtain the electric and magnetic fields directly without the need to perform the interme-
diate step of determining ~A(~x, t). For completeness, in this section I will rederive the
results obtained by Jackson for the expressions for the electric and magnetic fields up to
and including terms of O(1/r2) in the approximation where multipoles beyond electric
dipole, magnetic dipole, and electric quadrupole are neglected.8

Starting from eq. (2) and assuming that

~J(~x ′, t′) = ~J(~x ′)e−iωt′ = ~J(~x ′)ei(kR−ωt) , (105)

it follows that ~A(~x, t) = ~A(~x)e−iωt, where

~A(~x) =
1

c

∫

d3x′ ~J(~x ′)
eikR

R
. (106)

In the limit of large r ≡ |~x|,

R = |~x− ~x ′| = r − n̂ · ~x ′ +
|~x ′|2 − (n̂ · ~x ′)2

2r
+O

(

1

r2

)

. (107)

8Jackson does not provide the electric quadrupole fields at O(1/r2), so the results obtained below in
this case are new.
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It suffices to make the following approximations in evaluating eq. (106):

1

R
=

1

r
+

n̂ · ~x ′

r2
+O

(

1

r3

)

, (108)

eikR = eikre−ikn̂·~x ′

{

1 +
ik

2r

∣

∣n̂× ~x ′

∣

∣

2
+O

(

1

r2

)}

. (109)

The end result is

~A(~x) =
eikr

cr

∫

d3x′ ~J(~x ′)e−ikn̂·~x ′

{

1 +
1

r

[

n̂ · ~x ′ + 1
2
ik
∣

∣n̂× ~x ′

∣

∣

2
]

}

+O

(

1

r3

)

. (110)

Performing the multipole expansion by Taylor expanding the exponential e−ikn̂·~x ′

, and
keeping only the electric and magnetic dipole and electric quadrupole, we can neglect all
terms in the integrand that involve a quadratic (or a higher power) of ~x ′. Hence, we can
approximate the scalar potential as follows

~A(~x) =
eikr

cr

∫

d3x′ ~J(~x ′)

{

1 + n̂ · ~x ′

(

1

r
− ik

)}

+O

(

1

r3

)

. (111)

in agreement with eq. (9.30) of Jackson (after converting to gaussian units).
In light of the identity

x′

iJj(~x
′)− x′

jJi(~x
′) = ǫijk

(

~x ′ × ~J
)

k
, (112)

one can make use of eqs. (74)–(76) and to obtain

Ji(~x
′) = ∂ ′

k

[

x′

iJk(~x
′)
]

− ickx′

i ρ(~x
′) , (113)

x′

iJj(~x
′) = 1

2
∂ ′

k

[

x′

ix
′

jJk(~x
′)
]

− 1
2
ickx′

ix
′

j ρ(~x
′) + 1

2
ǫijk
(

~x ′ × ~J
)

k
, (114)

after putting ω = ck. Hence, it follows that

~A(~x) =
eikr

r

{

−ik~p −

(

1

r
− ik

)[

~n× ~m+ 1
6
ik ~Q+ 1

6
ikn̂

∫

d3x′|~x ′|2ρ(~x ′)

]}

, (115)

where the components of ~Q are Qijn̂j [cf. eq. (90)], where there is an implicit sum over
the repeated index j.

We can now evaluate ~B = ~∇× ~A with the help of various vector identities appearing
on the inside of the front cover of Jackson,

~∇×
[

f(r)~v
]

= ~∇f(r)× ~v =
∂f

∂r
n̂× ~v , (116)

~∇×
[

f(r)n̂× ~v
]

= ~∇f(r)× (n̂× ~v) + f(r)~∇× (n̂× ~v)

=
∂f

∂r
n̂× (n̂× ~v) + f(r)

[

(~v · ~∇)n̂− ~v(~∇ · n̂)
]

=
∂f

∂r
n̂× (n̂× ~v)−

f(r)

r

[

~v + n̂(n̂ · v̂)
]

. (117)

for any constant vector ~v and radial function f(r).
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We need one further identity:

~∇×
[

f(r)~Q
]

= ~∇f(r)× ~Q+ f(r)~∇×Q =
∂f

∂r
n̂× ~Q+ f(r)~∇×Q . (118)

Next, we evaluate:

(

~∇× ~Q
)

i
= ǫijk

∂

∂xj
Qk = ǫijk

∂

∂xj
Qkℓn̂ℓ = ǫijkQkℓ

∂

∂xj

(xℓ

r

)

= ǫijkQkℓ

(

r2δjℓ − xjxℓ

r3

)

= ǫijkQkℓ

(

δjℓ − n̂jn̂ℓ

r

)

= −
1

r
ǫijkQkn̂j =

1

r

(

n̂× ~Q
)

i
(119)

Hence, it follows that

~∇×
[

f(r)~Q
]

=

(

∂f

∂r
+

f(r)

r

)

n̂× ~Q . (120)

After making use of all the identities collected above,

~B(~x) =
k2eikr

r

[

n̂× ~p− n̂× (n̂× ~m)− 1
6
ik n̂× ~Q

]

+
ikeikr

r2
[

n̂× ~p+ ~m− 3n̂
(

n̂ · ~m
)

− 1
6
ik n̂× ~Q

]

+O

(

1

r3

)

. (121)

Note that

n̂ · ~B(~x) = −
2ikeikr

r2
n̂ · ~m+O

(

1

r3

)

, (122)

in agreement with eq. (91).

The electric field ~E(~x, t) = ~E(~x)e−iωt can be computed by using eq. (9.5) of Jackson,
which in gaussian units is given by

~E(~x) =
i

k
~∇× ~B(~x) . (123)

We will need to work out a few more vector identities. Using ~∇× n̂ = 0, it follows that

~∇×
[

n̂(n̂ · ~v)
]

= ~∇(n̂ · ~v)× n̂ = 0 , (124)

for any constant vector ~v. Thus,

~∇×
[

f(r) n̂× (n̂× ~v)
]

= −~∇×
[

f(r)~v)
]

= −
∂f

∂r
n̂× ~v , (125)

after expanding out the triple vector product and making use of eqs. (116) and (124).
Finally, we need to evaluate one more vector identity:

~∇×
[

f(r)n̂× ~Q
]

= ~∇f(r)× (n̂× ~Q) + f(r)~∇× (n̂× ~Q)

=
∂f

∂r
n̂× (n̂× ~Q) + f(r)

[

n̂(~∇ · ~Q)− ~Q(~∇ · n̂) + (~Q · ~∇)n̂− (n̂ · ~∇)~Q
]

.

(126)
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Eq. (126) can be further simplified by using the following results:

~∇ · ~Q = Qij
∂

∂xi

(xj

r

)

= Qij

(

δij − n̂in̂j

r

)

= −
n̂ · ~Q

r
, (127)

~Q(~∇ · n̂) =
2~Q

r
, (128)

(~Q · ~∇)n̂ = Qij

(

nj
∂

∂xi

)(

~x

r

)

=
~Q− n̂(n̂ · ~Q)

r
, (129)

(n̂ · ~∇)Qj = n̂i
∂

∂xi

(

Qjkn̂k

)

= n̂iQjk

(

δik − n̂in̂k

r

)

= 0 . (130)

Hence, we end up with

~∇×
[

f(r)n̂× ~Q
]

=
∂f

∂r
n̂× (n̂× ~Q)−

f(r)

r

[

~Q+ 2n̂(n̂ · ~Q)
]

. (131)

The rest of the computation involves some straightforward but tedious algebra. Using
all the relevant identities derived above and inserting eq. (121) into eq. (123), we end up
with

~E(~x) = −
k2eikr

r

[

n̂× (n̂× ~p) + n̂× ~m− 1
6
ik n̂× (n̂× ~Q)

]

+
ikeikr

r2

{

~p− 3n̂
(

n̂ · ~p
)

− n̂× ~m+ 1
6
ik
[

4n̂
(

n̂ · ~Q
)

− ~Q
]

}

+O

(

1

r3

)

. (132)

Note that

n̂ · ~E(~x) = −
2ikeikr

r2

[

n̂ · ~p− 1
4
ik n̂ · ~Q

]

+O

(

1

r3

)

, (133)

in agreement with eq. (92).
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