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Properties of the differential operator ~L

The differential operator ~L is defined as

~L ≡ −i~x× ~∇ = i

(

θ̂
1

sin θ

∂

∂φ
− φ̂

∂

∂θ

)

, (1)

where we have written out the explicit form in spherical coordinates (where θ is the polar
angle and φ is the azimuthal angle) with respect to the spherical basis. In particular, if
~x = rn̂, where r = |~x|, then n̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ. In these notes, we
will employ the more common notation where n̂ = r̂.

It is sometimes useful to convert between the Cartesian basis and the spherical basis.
For example,

x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sin φ , (2)

ŷ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ , (3)

ẑ = r̂ cos θ − θ̂ sin θ . (4)

Inverting these results yields

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ , (5)

θ̂ = x̂ cos θ cos φ+ ŷ cos θ sinφ− ẑ sin θ , (6)

φ̂ = −x̂ sinφ+ ŷ cosφ . (7)

The differential operator ~L plays a critical role in Debye’s decomposition theorem.1

Theorem. Let ~F be a divergenceless vector field, ~∇ · ~F = 0 (also called a solenoidal
field). Then, there exist scalar functions ψ and χ (called the Debye potentials) such that

~F = ~Lψ + (~∇× ~L)χ , (8)

where the Debye potentials are unique up to an arbitrary radial function. That is, ~F is
unchanged under the transformations,

ψ(~x) → ψ(~x) + f(r) , χ(~x) → χ(~x) + g(r) , (9)

for arbitrary radial functions g(r) and g(r).

If in addition, ~F (~x) satisfies the Helmholtz equation, (~∇
2
+ k2))~F (~x) = 0, then one

can adjust the radial functions f(r) and g(r) such that

(~∇
2
+ k2)ψ(~x) = (~∇

2
+ k2)χ(~x) = 0 . (10)

1See, e.g., Dietman Petrascheck and Franz Schwabl, Electrodynamics (Springer Nature, Berlin, Ger-
many, 2025) p. 151. A proof of the first part of this theorem is given in C. G. Gray and B. Nickel, Debye

potential representation of vector fields, American Journal of Physics 46, 735–736 (1978).
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In these notes, I will collect many useful results and identities related to the differential
operator ~L. First, we record the following representations:

~L = i

(

θ̂
1

sin θ

∂

∂φ
− φ̂

∂

∂θ

)

, (11)

Lz = −i

(

x
∂

∂y
− y

∂

∂x

)

= −i
∂

∂φ
, (12)

L± ≡ Lx ± iLy = e±iφ

(

±
∂

∂θ
+ i cot θ

∂

∂φ

)

, (13)

~L
2 = L2

x + L2

y + L2

z = −
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

−
1

sin2 θ

∂2

∂φ2
, (14)

−i~x× ~L = r

(

θ̂
∂

∂θ
+

φ̂

sin θ

∂

∂φ

)

, (15)

−i ~∇× ~L =
r̂

r
~L

2
+ θ̂

(

1

r

∂

∂θ
+

∂2

∂r∂θ

)

+
φ̂

sin θ

(

1

r

∂

∂φ
+

∂2

∂r∂φ

)

. (16)

The operators ~L and ~L
2 are purely angular operators. Moreover, as a consequence of

eqs. (11), (14) and (16), it follows that for any radial function f(r),

~Lf(r) = ~L
2
f(r) = ~∇× ~L f(r) = 0 . (17)

Next, we record the following useful operator identities:2

~x · ~L = 0, (18)

~∇ · ~L = 0, (19)

~∇ · (~∇× ~L) = 0, (20)

~L ~L
2 = ~L

2~L, (21)

~L ~∇
2 = ~∇

2~L, (22)

~∇ =
~x

r

∂

∂r
−

i

r2
~x× ~L, (23)

~∇
2 =

∂2

∂r2
+

2

r

∂

∂r
−

~L
2

r2
, (24)

~∇× ~L = −i~x ~∇
2 + i~∇

(

1 + r
∂

∂r

)

, (25)

~x · (~∇× ~L) = i~L
2
, (26)

~x× (~∇× ~L) = −~L

(

1 + r
∂

∂r

)

, (27)

~∇× (~∇× ~L) = −~∇
2~L, (28)

~L · (~∇× ~L) = 0. (29)

2See, e.g., Appendix F of C.G. Gray, American Multipole expansions of electromagnetic fields using

Debye potentials, Journal of Physics 46, 169–179 (1978).
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In particular, the differential operators Li and Lj do not commute. Instead, they satisfy
the following commutation relations,

[

Li , Lj

]

≡ LiLj − LjLi = iǫijkLk , (30)

with an implicit sum over the repeated index k, where L1 ≡ Lx, L2 ≡ Ly, and L3 ≡ Lz.
Eq. (30) is equivalent to the equation ǫijkLiLj = iLk, which can be rewritten in vector
notation as

~L× ~L = i~L . (31)

Eqs. (18)–(31) should be understood as operator equations that act on a function f(~x).
The following additional identities are also noteworthy:

~L · ~F = −i~x · (~∇× ~F ), (32)

~L · (~∇× ~F ) = i

[

~∇
2
(

~x · ~F
)

+

(

2 + r
∂

∂r

)

~∇ · ~F

]

. (33)

Finally, we note that the spherical harmonics, Yℓm(θ, φ) are simultaneous eigenfunc-

tions of ~L 2 and Lz,

~L
2
Yℓm(θ, φ) = ℓ(ℓ+ 1)Yℓm(θ, φ) , (34)

LzYℓm(θ, φ) = mYℓm(θ, φ) , (35)

where ℓ = 0, 1, 2, 3, . . ., and m = −ℓ,−ℓ + 1, . . . , ℓ − 1, ℓ. In addition, the operators L±

[cf. eq. (13), when acting on the spherical harmonics, yield

L+Yℓm(θ, φ) =
√

(ℓ−m)(ℓ+m+ 1) Yℓ,m+1(θ, φ) , (36)

L−Yℓm(θ, φ) =
√

(ℓ+m)(ℓ−m+ 1)Yℓ,m−1(θ, φ) , (37)

which is why the L± are called raising and lowering operators.
Returning to the Debye’s decomposition theorem, we note that the solenoidal field ~F

is unchanged under the transformations specified by eq. (9) as a consequence of eq. (17).

Moreover, with ~F given by eq. (8), we may use eqs. (18), (26) and (29) to obtain:

~x · ~F (~x) = i~L
2
χ(~x) , (38)

~L · ~F (~x) = ~L
2
ψ(~x) , (39)

Using eq. (32), it follows that eq. (39) is equivalent to

~x · (~∇× ~F ) = i~L
2
ψ(~x) . (40)

Expanding ψ(~x) and χ(~x) in spherical harmonics, one can then solve for the Debye
potentials. Note that the expansion in spherical harmonics starts at ℓ = 1, since the ℓ = 0
term is constant and thus is annihilated by the operator ~L 2.

Now, suppose that the solenoidal field ~F (~x) also satisfies the Helmholtz equation,

(~∇ 2 + k2)~F (~x) = 0 . (41)
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Then, it follows that

~∇
2
(

~x · ~F
)

= ~x ·
(

~∇
2 ~F
)

+ 2~∇ · ~F = −k2~x · ~F , (42)

after using ~∇ · ~F = 0 and making use of eq. (41). Hence, we obtain

(~∇ 2 + k2)~x · ~F = 0 . (43)

It then follows from eqs. (22) and (38) that

(~∇ 2 + k2)~L 2
χ(~x) = ~L

2(~∇ 2 + k2)χ(~x) = 0 . (44)

In light of eq. (17), we can conclude that

(~∇ 2 + k2)χ(~x) = h(r) , (45)

for some radial function h(r). If we now transform χ(~x) → χ′(~x) = χ(~x) + g(r) as
specified in eq. (9) and choose g(r) such that

(~∇ 2 + k2)g(r) = −h(r) , (46)

then it follows that

(~∇ 2 + k2)χ′(~x) = (~∇ 2 + k2)
[

χ(~x) + g(r)
]

= h(r)− h(r) = 0 . (47)

In fact, we can always find a function g(r) such that eq. (46) is satisfied. By employing
the Green function of the inhomogeneous Helmholtz equation [cf. eqs. (6.35) and (6.36)
of Jackson], it follows that3

g(r) =
1

4π

∫

eik|~x−~x ′|

|~x− ~x ′|
h(r′)d3x′ . (48)

A computation similar to that of eq. (42) yields

~∇
2
[

~x · (~∇× ~F )
]

= −k2
[

~x · (~∇× ~F )
]

. (49)

In light of eqs. (22) and (40), it follows that

(~∇ 2 + k2)~L 2
ψ(~x) = ~L

2(~∇ 2 + k2)ψ(~x) = 0 . (50)

Using eq. (17), we can conclude that (~∇ 2 + k2)ψ(~x) is a radial function. A similar
argument to the one given below eq. (45) implies that we can use the freedom to transform
ψ(~x) → ψ′(~x) = ψ(~x) + f(r) as indicated in eq. (9) to yield

(~∇ 2 + k2)ψ′(~x) = 0 . (51)

Thus the second part of the theorem indicated by eq. (10) is proven.

3For further details on the Green function of the inhomogeneous Helmholtz equation, see the class
handout entitled: The radial Green function. In particular, the Green function satisfies:

(~∇ 2 + k
2)

[

eik|~x−~x ′|

4π|~x− ~x ′|

]

= −δ
3(~x− ~x ′).

Inserting eq. (48) on the right hand side of eq. (46) and using the above result, we see that eq. (46) is
satisfied.
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