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Properties of the differential operator L

The differential operator L is defined as
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where we have written out the explicit form in spherical coordinates (where 6 is the polar
angle and ¢ is the azimuthal angle) with respect to the spherical basis. In particular, if
& = rn, where r = |&|, then . = &sin cos ¢ + Ysinhsin ¢ + Zcosd. In these notes, we
will employ the more common notation where n = #.

It is sometimes useful to convert between the Cartesian basis and the spherical basis.
For example,

& = Psinfcos ¢ + O cosfcosp — Psing, (2)
§ = Fsinfsing + 0 cosfsing + ¢ cos ¢, (3)
2 =1fcosf —BOsind. (4)

Inverting these results yields

T =&sinfcosd+ gsinhsing + 2 cosb, (5)
0 =& cosfcosd+ gcosfsing — £sinb, (6)
b= —&sing+Gcoso. (7)

The differential operator L plays a critical role in Debye’s decomposition theorem.!

Theorem. Let F be a divergenceless vector field, V-F=0 (also called a solenoidal
field). Then, there exist scalar functions ¢ and x (called the Debye potentials) such that

F=Ly+ (Y xDy. (8)

where the Debye potentials are unique up to an arbitrary radial function. That is, F is
unchanged under the transformations,

V(&) = (&) + f(r), X(E) = X(Z) +9(r), (9)

for arbitrary radial functions g(r) and g(r).
If in addition, F(&) satisfies the Helmholtz equation, (V> + k*))F(Z) = 0, then one
can adjust the radial functions f(r) and g(r) such that

(V2 + (&) = (V2 + ) (&) =0. (10)

1See, e.g., Dietman Petrascheck and Franz Schwabl, Electrodynamics (Springer Nature, Berlin, Ger-
many, 2025) p. 151. A proof of the first part of this theorem is given in C. G. Gray and B. Nickel, Debye
potential representation of vector fields, American Journal of Physics 46, 735-736 (1978).
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In these notes, I will collect many useful results and identities related to the differential
operator L. First, we record the following representations:
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The operators L and L? are purely angular operators. Moreover, as a consequence of
egs. (11), (14) and (16), it follows that for any radial function f(r),

Lf(r)=L°f(r)=V xLf(r)=0. (17)
Next, we record the following useful operator identities:?

Z-L=0, (18)

V.-L=0, (19)

V- (VxL) =0, (20)

LL*=L"L (21)

LV?=V’L, (22)
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VXL:_Z§3'V2+ZV<1+7"E>, (25)

& (V x L)=iL" (26)

Ex (VL) =-L 1+rﬁ), (27)

or
V x (VxL)=-V’L, (28)
L-(VxL)=0. (29)

2See, e.g., Appendix F of C.G. Gray, American Multipole expansions of electromagnetic fields using
Debye potentials, Journal of Physics 46, 169-179 (1978).
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In particular, the differential operators L; and L; do not commute. Instead, they satisfy
the following commutation relations,

[Li, L;] = L,L; — L;L; = ie;j Ly, , (30)

with an implicit sum over the repeated index k, where Ly = L,, Ly = L,, and L3 = L..
Eq. (30) is equivalent to the equation €;;,L;L; = iLy, which can be rewritten in vector
notation as

LxL=iL. (31)
Eqgs. (18)—(31) should be understood as operator equations that act on a function f(&).
The following additional identities are also noteworthy:

- F

N

—i& - (V x F), (32)

L-(VxF) z{ﬁ%f-ﬁﬂ(ﬂr%)ﬁ-zf}. (33)

Finally, we note that the spherical harmonics, Yy, (0, ¢) are simultaneous eigenfunc-
tions of L? and L.,

—

L*Yin(0,9) = £+ 1)Yim(6,9) (34)
LY (0, ¢) = mYem(0,9), (35)

where ¢ = 0,1,2,3,..., and m = —{,—(+1,..., ¢ — 1,¢. In addition, the operators L.
[cf. eq. (13), when acting on the spherical harmonics, yield

L+}/Zm(97 ¢) = \/(£ - m) (£ +m+ 1) }/f,m—l—l(e? ¢) ) (36)
L_Yum(0,6) = /(L +m)(l —m+1) Yyma(0,6), (37)

which is why the Ly are called raising and lowering operators.

Returning to the Debye’s decomposition theorem, we note that the solenoidal field F
is unchanged under the transformations specified by eq. (9) as a consequence of eq. (17).
Moreover, with F given by eq. (8), we may use egs. (18), (26) and (29) to obtain:

Z-F(&) =iL’\(Z), (38)
L.F(&)=L*(%), (39)

Using eq. (32), it follows that eq. (39) is equivalent to
Z- (VX F)=iL*)(Z). (40)

Expanding (&) and x (&) in spherical harmonics, one can then solve for the Debye
potentials. Note that the expansion in spherical harmonics starts at £ = 1, since the ¢/ = 0
term is constant and thus is annihilated by the operator L?

Now, suppose that the solenoidal field 13(:5) also satisfies the Helmholtz equation,

(V24 E)F(®) =0. (41)
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Then, it follows that

V(#-F)=&- (V’F)+2V.-F=-§%-F, (42)
after using V + F' = 0 and making use of eq. (41). Hence, we obtain
(V2 +k)E-F=0. (43)
It then follows from eqgs. (22) and (38) that
(V2 + k)L (&) = L*(V? + k) x(&) = 0. (44)

In light of eq. (17), we can conclude that
(V* 4+ 1)x(E) = h(r), (45)

for some radial function h(r). If we now transform x(&) — X'(£) = x(&) + g(r) as
specified in eq. (9) and choose g(r) such that

(V?+k%)g(r) = —h(r), (46)
then it follows that
(V2+E)X (&) = (V2 + 5 [x(&) + g(r)] = h(r) — h(r) = 0. (47)

In fact, we can always find a function g(r) such that eq. (46) is satisfied. By employing
the Green function of the inhomogeneous Helmholtz equation [cf. egs. (6.35) and (6.36)
of Jackson], it follows that?

1 6ik|£—§f/|

g(r) h(r')d*z’ . (48)

A computation similar to that of eq. (42) yields

i ) |-

V[E-(V x F)] = -k (V x F)]. (49)
In light of egs. (22) and (40), it follows that
(V24 L&) = LY (V2 + K)Y(@) =0. (50)

Using eq. (17), we can conclude that (V? + k2)¢(&) is a radial function. A similar
argument to the one given below eq. (45) implies that we can use the freedom to transform

Y(E) = /(&) = Y(&) + f(r) as indicated in eq. (9) to yield
(VZ+E)(Z) =0, (51)
Thus the second part of the theorem indicated by eq. (10) is proven.

3For further details on the Green function of the inhomogeneous Helmholtz equation, see the class
handout entitled: The radial Green function. In particular, the Green function satisfies:
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Inserting eq. (48) on the right hand side of eq. (46) and using the above result, we see that eq. (46) is
satisfied.



