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The radial Green function

In egs. (6.36)—(6.40), Jackson derives an expression for the Green function, Gy (&, Z’)
that satisfies,

(V2 + ) Gi(8,Z") = —6° (& — &), (1)

where I have omitted an overall factor of 47 following eqs. (9.93)—(9.95) of Jackson. After
imposing the boundary condition corresponding to outgoing waves, Jackson obtains,*
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We can expand this expression in spherical harmonics,
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where r = |&|, ' = |Z’], Q2 = (0,¢) and Q' = (¢',¢'), where § and ¢ [¢' and ¢'] are the
polar and azimuthal angles of the vector & [&€’] with respect to a fixed coordinate system.
In this note, I will derive an expression for the radial Green function, g,(r,7’).2 The k — 0
limit of eq. (3), which is given by eq. (3.70) of Jackson will serve as a check of our result
(see Appendix B).

The first observation is that the left hand side of eq. (3) is invariant under the inter-
change of & <+ &’. Hence,
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However, recall the addition theorem for spherical harmonics [Jackson eq. (3.62)],

Pyfeos) = %HZYM Vi ). (5)

where v is the angle between & and &’. Since Py(cos~) is a real function, it follows that
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Consequently, egs. (4) and (6) yield,

> [oe(rr") = ge(r', )] Y Y (2)Yem(2) = 0. (7)
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!For completeness, a derivation of eq. (2) is given in Appendix A of these notes.
2A better notation for the radial Green function would be g,(f) (r,7") to emphasize the dependence on k.

However, I will stick with the notation that Jackson uses.



After employing eq. (5) and noting that the Legendre polynomials constitute a linearly
independent set of functions, it follows that
ge(r,r) = go(r', 7). (8)

The second observation is that we can obtain a differential equation for g,(r,7’) by
inserting eq. (3) into eq. (1). Recall that in spherical coordinates,
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where L? is a differential operator with the property that L2 Yy, () = €€ 4 1)Yu ().
Hence, it follows that

(V2 + k) go(r, ') Yo () = (— +S—+k - f—j) ge(r; 7)Y (€2)
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It follows that g,(r,r") must satisfy the equation,
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which defines the radial Green function. To show that eq. (11) is equivalent to egs. (1)—(3),

(V2 + I)GH(E, &) = (V2 + K5 Y Y gelrr) Y () Yam(9)

(=0 m=—/

= 3= 1) 3 V)Y (Q) = — (e — )50~ )

2
- @ - ), (12
after using the completeness relation of the spherical harmonics [cf. eq. (3.56) of Jackson]:?

an VWim(Q) = 5(Q =), (13)
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and the expression for the three dimensional delta function in spherical coordinates.

3To derive eq. (13), consider the expansion of an arbitrary function of the angles Q = (6, ) in terms
of the spherical harmonics, f(Q) = >, c/mYm(2). To obtain the coefficients c¢y,, we employ the
orthonormality relation [eq. (3.55) of Jackson]:

/ Y ()Y () dQ = G40 S -

It then follows that
/ F(QHYy,. (Q)dY .
Plugging this result back into the expansion of f(£2), one obtains an identity if eq. (13) is satisfied.
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We now proceed to solve the differential equation [eq. (11)] for g,(r, 7). First we consider
the case of r # r’. Then,
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which we recognize as the equation for spherical Bessel functions. In the analysis that
follows, we will need to know the small argument and large argument behaviors of the
spherical Bessel functions. In the limit as x — 0,

‘ zt (20— 1)1
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where (204 1)!! = (20 +1)(2¢ —1)---5-3-1 [for nonnegative integers ] and (—1)!! = 1. In

the limit of x — oo,

jolw) = L sin (@ — 1en) [1 +0 (lﬂ o ngle) = — L cos (x — Len) {1 +0 <1)} (16)
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The spherical Hankel functions are defined by
WY (2) = jo(x) + ing(z) W (x) = jo(x) — ing(a) = [A"(2)]". (17)

Hence, it follows that as z — oo,
. 6” 1 . e—i:c 1
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We shall solve eq. (14) by treating the cases of r < 7’ and r > 1’ separately. First, if
r < r'then go(r,r") = A(r")je(kr), where we reject the solution proportional to ng(kr) under
the requirement that a physical solution must be nonsingular as r — 0. Second, if r > 1/,
we shall impose the condition that the solution behave as an outgoing spherical wave as
r — o0o. Hence, we conclude that if r > 7’ then g,(r,r’") = B(r’)hél)(kr), since the solution
proportional to A®) (kr) behaves like an incoming spherical wave as r — oo [cf. eq. (18)].
Combining these two results using eq. (8), which asserts that g,(r,r’) is symmetric under
the interchange of » — r/, we can conclude that

go(r, ") = Cjo(kr )hSY (krs),  for r #7, (19)

where r— = min{r,7’'} and r~ = max{r,7’}. The constant C' is independent of r and 7’
and can be determined by integrating eq. (11) from r = 7" — € to r = 1’ + ¢, where € is a
positive infinitesimal quantity. It then follows that
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In light of eq. (19), g,(r,r’) is continuous at r = /. Thus as € — 0, eq. (20) reduces to,

0ge(r,7") ~ 9gu(r,1") _ 1 ‘ (21)
or r=r/+e or r=r/—e r'?
Plugging in eq. (19) and taking the limit as € — 0 yields an equation for the constant C,
‘ dh$? (kr) W, o ( Gelkr) 1
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Eq. (22) is an identity that must hold for all values of 7 and k. Consequently, the
easiest way to evaluate C' is to consider the small kr’ behavior of eq. (22). In this case,
we can employ the small argument expressions given in eq. (16) and the definition of the
spherical Hankel function [eq. (17)] to obtain,

. . (k"f’)z (1) . —Z(QE — 1)”
Hence, eq. (22) yields,
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That is, C' = ik. Thus, the radial Green function is,

go(r, ") = ikjo(kr )hSD (krs) . (25)

Another Derivation of the radial Green function

A slightly fancier technique for deriving eq. (25) starts with the completeness relation
of the spherical Bessel functions,

/0 " ek e )2 dk = S0l =11, (26)
where j,(kr) satisfies,
(5 + 2 4= 0 o) = it (27)
This suggests that one can solve eq. (11) by writing
ge(r,r') = /000 Ge(K')Ry(K v k' dk' . (28)
Plugging the above expression for g,(r,r’) into eq. (11) and making use of eq. (26) yields,
/0 TR — K2 (K ) Rk ) R = —g /0 iR R dE (29)



Hence, it follows that R,(k’,r’) solves an algebraic equation,

2
(K = K*)Ro(k,1') = ==je(k'r). (30)
Solving for R,(k',r") yields,
2]2(]6’7”)
Kok = — 208 1
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Inserting this result back into eq. (28), we end up with:
2 (% JeK'r)je(K'T") 1o
alr,r) =2 /0 s an (32)
Noting that
Je(—x) = (=1)e() , (33)

we see that the integrand in eq. (32) is an even function of £’. Hence, an equivalent form
for eq. (32) is

l /OO j[(k/r)jg(klrl) k/2 dk/

T k2 — k2 (34)
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Unfortunately, eq. (34) is not well defined due to the singularities at k' = £k along the
path of integration.

However, as in Appendix A, one can deform the contour around the singular points, or
equivalently we can give k an infinitesimal imaginary part. The choice of the deformation
depends on the desired boundary conditions for the problem. As noted earlier, we require
that g(r,7’) should be nonsingular as r- — 0 and should behave as an outgoing spherical
wave as 7~ — 00. These requirements uniquely specify the required deformation of the
contour. As we shall demonstrate below by an explicit computation, the deformation that
yields the correct boundary conditions is,*
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where ¢ is a positive infinitesimal quantity that will be taken to zero at the end of the
computation. Since jy(kr) is analytic in the complex &’ plane, the only singularities of the
integrand occur when &'? = k2 +ie. That is, the integrand possesses two poles at k' = k-+ie
and k' = —k — ie (after absorbing a factor of 2 in the infinitesimal quantity ). Note that
although £’ is integrated over the entire real axis in eq. (35), the quantity k = w/c remains
a real positive quantity.

4Eq. (35) is also obtained in Charles J. Joachain, Quantum Collision Theory (North-Holland Publishing
Company, Amsterdam, The Netherlands, 1975) pp. 122-123 [although my derivation of eq. (35) is more
direct]. The subsequent analysis presented below follows the same steps presented by Joachain. Note that
the radial Green function in Joachain’s book is defined with the opposite sign to the one employed in these
notes since Joachain omits the minus sign in eq. (1).



To perform the integral exhibited in eq. (35), we shall use the following relation,
jelw) = 5[ (@) + 1P (@)] = 5[0 (@) + (1)1 (=a)] (36)
Then, if r < 7/, the we can write
_ 1 /°° ek TR (W) K2R /°° Je(k'r) g (—k'r") K K
C2m ) ) (K — K —ie) (K + Kk +ie) o (K =k —ide) (K +k—+e) [
(37)

We can now extend the integration contour to the complex k’-plane. Because r < r’ it fol-
lows from eqs. (18) and (36) that jg(k’r)hél)(k’r’) is exponentially damped in the upper half

ge (Tv T/)

complex k’-plane and j, (k' r)hél)(—k’ ') is exponentially damped in the lower half complex
k'-plane as |k’| — oo. Thus, in the first integral in eq. (37), we may close the contour in
the upper half complex k’-plane. The resulting closed contour C' is counterclockwise and
contains only one pole inside C' at k' = k + ie. Hence, we may use the residue theorem of
complex analysis to obtain

]{ Ge(Kr )R (k) k2 di
o (K —k—ie)(K + k +ie)

Likewise, in the second integral in eq. (37), we may close the contour in the lower half
complex k’-plane. The resulting closed contour C” is clockwise and contains only one pole
inside C" at k' = —k — ie. Hence, we may use the residue theorem of complex analysis to
obtain

= mikjo(kr)hS" (kr') . (38)
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after remembering to include the extra minus sign due to the clockwise contour. Finally,
after employing eq. (33) and noting that (—1)% = 1, we see that eq. (37) yields,

ge(r,r') = ikjg(kr)hgl)(kr') , forr <. (40)
If » > 7/, then we can write,
1 { /°° he (Rr)je(Kr') K2k 1 /00 B (— k') jo(Kr') K2 k! } |
21 | Jooo (K — k —ide) (K + k + ie) oo (K —k—ie)(K'+k —+¢)
(41)
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Because r > 1/, it follows from eqgs. (18) and (36) that hél)(k’r)jg(k’r’) is exponentially
damped in the upper half complex k’-plane and hEl)(—k" 7)70(k'r") is exponentially damped
in the lower half complex k’-plane as |k'| — co. A similar analysis as above then yields,

ge(r,r') = ikhél)(kr)jg(kr') , forr > (42)
We can combine the results of egs. (40) and (42) to obtain,
ge(r,r') = ikjg(k&)hél)(k‘m) ,  where r- = min{r,7'} and r-~ = max{r,r'}.  (43)

Thus, we have successfully reproduced eq. (25).
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APPENDIX A: The Green function of the Helmholtz equation

In this Appendix, we shall provide an explicit derivation of eq. (2), which is a solution to
eq. (1) subject to the boundary condition of outgoing waves. Using translational invariance,
it follows that G(&, Z’) = G(Z — Z’). We can turn the differential equation [eq. (1)] into
an algebraic equation by employing the Fourier transform,

/ i3 G() 7T (44)

Gil®) = (271r)3

Acting on both sides of this equation with (62 + k%) and making use of the integral
representation of the delta function,

@) = o [ daet, (45)

we end up with the algebraic equation, (k2 — ¢)G(q) = —1. Hence,

@) = (46)
where ¢ = |q]. Plugging this result back into eq. (44) yields
1 , cTE
. ‘ 4

Writing d®q = ¢? dqdQ = ¢* dgdcos0de = 2mq* dgdcos® (one can freely integrate over ¢
since there is no ¢ dependence in the integrand above) and @& = ¢r cosf where r = |Z|
and 6 is the angle between ¢ and &, it follows that

1 o] q2 dq /1 ) ; 1 /oo q2 dq 1 ‘ y
G () = iqreos® _ _~ L iqr
k() (2r)2 /0 2—k ) € ) Pk (e e )

1 /°° gsin(qr)dg 1 /°° gsin(qr) dq
0 _
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where we used the fact that the integrand above is an even function of ¢ to extend the
limits of integration from (0, 00) to (—o0,00). The integral in eq. (48) is undefined due
to the singularity at ¢ = +k along the path of integration. However, we can implement
the boundary condition corresponding to outgoing waves by deforming the contour or
equivalently by adding an infinitesimal imaginary part to k& as follows,

Gul(@) = 1 /_OO gsin(qr) dq (49)

dn2r | ¢ — k% —ig’

(48)

[e.9]

where ¢ is a positive infinitesimal quantity that will be taken to zero at the end of the
calculation. Factoring the denominator yields,

¢ — K —ic=(q—k—ie)(q+ k +ie), (50)

after absorbing a factor of two into the definition of € on the right hand side above. Note
that k = w/c is a real positive quantity.



To perform the integral given in eq. (49), we first write 2i sin gr = ¢'" —e~". Consider
first,
Imgqg
A

R 3
T e la—k—ie)(g+ k+ie) k+ ie
°
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where (' is the closed contour shown above, and the radius of the contour is taken to
infinity. Note that the integrand is exponentially damped along the semicircular part of
the contour C; and thus the contribution to the integral along the semicircular arc goes to
zero as the radius of the semicircle is taken to infinity. Inside the counterclockwise contour
C there exists a simple pole at ¢ = k + ie (since by assumption, ¢ > 0). Thus, by the
residue theorem of complex analysis,

. o . qeiqr _ s ikr
ll_I}I(l] I (k,e) = 2mi Res (7(]2 — ia) = mie"™", (51)

where Resf(q) = lim,_,,, (¢ — o) f(¢) is the residue due to a simple pole at ¢ = qo.

Next, we consider Imgq

A

k + ic
[ ]

» Req

> ge”'" dg
I, (k =
2(k;€) /_w(q—k—i€)(Q+k+i€)

Cy

where the contour C is now closed in the lower half plane. The integrand is exponentially
damped along the semicircular part of the contour Cy and thus the contribution to the
integral along the semicircular arc goes to zero as the radius of the semicircle is taken to
infinity. Inside the clockwise contour Cs there exists a simple pole at ¢ = —k — ie. Thus,
by the residue theorem of complex analysis,

' — 9 O W
21_1% Iy(k,e) = —2mi Res <q2 — ia) = —mie"", (52)
where the extra minus sign is due to the clockwise orientation of C\.
Using eqs. (51) and (52), it follows that
ikr

. 1 > gsin(qr) dq 1 . e
G = = lim | [ — 1 = .
H(&) 4dm2r /_OO ¢ — k% —1ie Sim?r el—>0[ (k) = Io(k, €)] 4y (53)
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Noting that r = |&|, we conclude that

Go(B, @) = Gu(T — &) = % . (54)
which confirms eq. (2).
REMARKS:
Eq. (49) provides an integral representation of Gy (&, '),
Gu(Z, &) = / sin(gl — &) qdq. (55)
4%2\:13 T ) o -k —ic

If we expand in terms of spherical harmonics, then [cf. eq. (3)],

00 J4
=D 9 )Y ()Y (9), (56)

{=0 m=—/

where the radial Green function is given by an integral representation exhibited in eq. (35),
which we rewrite below,

1% 50(qr)ge(qr’
_/ Jelgr)je( )qqu.

T ) oo > —Kk? —ic

g@(r7 T/) == (57)
As a result, we obtain the following interesting expansion,

sin (¢|@ — & \

Z Z Ge(ar)je(qr')Y i () Yem () (58)

Amq|Z — (=0 m=—1

Using the addition theorem for spherical harmonics given in eq. (5), it then follows that

oo

= 320+ Djelar)jelar’) Polcos 0) (59)

£=0

sin(¢|Z — &)

qlE — &’

where 6 is the angle between the vectors & and &’. As a sanity check, if one sets &' = 0
and uses j,(0) = 0y and Py(cos ) = 1, then eq. (59) yields jo(qr) = sin(qr)/(¢qr), which is
correct.

Finally, by employing the orthogonality relation satisfied by the Legendre polynomials,

2
/ Py(cos )Py (cos ) dcost = % 545 : (60)
1

we can derive an interesting integral representation for the product of two spherical Bessel
functions,

Py(cos @) dcost. (61)

1 /1 Sin(q\/r2 + /2 — 27‘7”/COS¢9)
1

. - /
T T)=3
je(ar)je(ar') 2 gVr2 +1'2 — 2rr' cos
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APPENDIX B: The k£ = 0 limit

Having found an explicit formula for the radial Green function, one can now plug eq. (25)

into eq. (3) to obtain,

zk\w z|
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It is instructive to take the k& — 0 limit of this result. Using eq. (23),

; 0
—1 r<
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(14 O(k)] .

Thus, the & — 0 limit of eq. (62) yields,
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in agreement with the result given by eq. (3.70) of Jackson.

10

(62)

(63)



