Physics 214 Solution Set 1 Winter 2026

1. The energy and the linear momentum of a distribution of electromagnetic fields in vacuum
is given (in SI units) by

U= %O/d?’x (E*+ *B?), (1)
ﬁ:eo/d3xﬁx§, (2)

where the integration is over all space. Consider an expansion of the electric field in terms of
plane waves:
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where EO(E, A) is a complex amplitude and c.c. stands for “complex conjugate” of the pre-
ceding term. The polarization vector satisfies:

ex(—F) = &(F). (4)

(a) Show that P can be written as

~
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Note that all time dependence has canceled out. Explain.

Consider the Coulomb gauge, where V-A = 0 [cf. eq. (6.21) of Jackson]. In the absence of
external sources (p = J = 0), we also have ® = 0 [cf. eq. (6.23) of Jackson]. Using eq. (6.9)
of Jackson, the electric and magnetic fields are given by,

L.

E=-—-. B=VxA4 (6)

In class, we showed that one can expand E(a‘c’, t) in plane waves,

- >k /7N i(k-B—w kTN —i(ReT—w

where w = ke (with k = |k|) and
(k) =Y ax(k)ér(K). (7)

A

The sum over A is taken over two orthogonal polarization states, labeled by A, that satisfy:

k-ex(k)=0, and  é\(k)-& (k)= . (8)



Using eq. (6), it then follows that:
Eo(k) =ikcd(k),  By(k) =ik x a(

where k = k/k and

That is, E(Z,t) is given by eq. (3) and
d*k —» -
E / Nk xé(k)e iR~ “Jt)+cc] . (10)

Inserting eqs. (3) and (10) into eq. (2) [taking care to employ different dummy variables
in the sums and integrals|, and expanding out the resulting expression, we obtain:
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where w = ke and w’ = K'c. In our notation, k = |k| and k' = |k/|.
We may now perform the integral over &, using
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and then use the delta function to facilitate the integration over k. Then eq. (11) reduces to
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where we have used eq. (4) to write:!

- =

ev(B)P(k+K)=év(—k)&*(k+k) =&, (k)8 (k+

Recall that for any well-behaved function f(k, k') we have f(k, k )53 (E+k)
the presence of the delta function. For example, w/'d3(k + k') = k¢33 (k+ k') =
since |+ k| = k.

= y )
ked3(k+ k) =ws(k+ k),



We can now make use of the vector identity,
(k) x [k x & (k)] = k[ex(k)-& (k)] — &, (k)[k-&\(k)] = ko , (15)

while employing the properties of the polarization vector given in eq. (8). Using eq. (15) allows
us to perform the sum over X in eq. (13), which yields

—

Bk P . . . . . . .
p=2 Z/ {—Eo(k, N Eo(—k, Ne 2" — Er(k, \)Ej(—k, \)e*™ + 2| Ey(k, )\)|2} .
(16)
Noting that w = kc where k = |k| and k = k/k, it follows that

/ Pl Bo(F \) Eo(—F, Ne2ket — 0
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since the integrand is an odd function under k— —k. _That is, if we denote the integrand by
F(k) =k Eo(k, \)Eo(—k, \)e 2k then f(k) = —f(—k). It follows that

/f( k) dk = — /f k) dk = — /f Yd3k =0, (17)

after making a change of integration variables k — —k and noting that the absolute value of
the determinant of the corresponding Jacobian matrix is one. In the final step above, we used
the fact that a quantity that is equal to its negative must be zero. Hence, eq. (16) yields

P= 2602/“ k| Eo(k, V)2, (18)

which confirms the result of eq. (5).

Note that P given in eq. (18) is explicitly time-independent. This is simply an expression
of the conservation of momentum, d.P /dt = 0. This is a consequence of eq. (6.122) of Jackson.
Since p = J =0 for a free electromagnetic field, we have ﬁmoch = 0, in which case

S

dt dt
<>
where T is the Maxwell stress tensor. The unit vector 7 is the outward normal to the surface .S,

where S is the surface of infinity. For any finite energy field configuration, the stress tensor
vanishes at the surface of infinity and we recover dP/dt = 0 as expected.

(b) Obtain the corresponding expression for the total energy U. Employing the photon
interpretation for each mode (k, ) of the electromagnetic field, justify the statement that
photons are massless.

The total energy is given (in SI units) by
U:%/d3x(1§2+c21§2). (19)
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We first compute

E2 d3 —
/ * (2m)6
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+ [EO(E, NE: (R N) éx(k)- & (k) eiFF)-& gmito—et 4 C.cl } :

where the computation is similar to that of part (a). Integrating over & and using eq. (14) as
we did in part (a), it follows that

3
/E2d3x = ZZ/%{EO(I@,)\)EO(I@,X) éx(k)-&, (k) e 2t L By (k, N\ E; (R, X) é\(k)- €5 (k) —l—c.c.}.
AN
Summing over A\ using eq. (8), we obtain

/E2d3 Z/ &k Eo(k, N Eo(k, \) —2m+cc]+22/dk (B, N[ (20)

Next, we compute [ 2B2d3z. The only difference in the computation compared to the
one above is that €(k) is replaced by k X &,(k) and &y (k') is replaced by &' x éy (k). Thus,
instead of obtaining the factor &,(k)-éx (k') 63(k + El) after the integration over &, we now
have [cf. footnote 1]:

~ - —/ ~ - —

[k x e\(k)]-[k x ex(K) 8 k+k)=

after using egs. (14) and (8 ) Similarly, instead of obtaining the factor é,(k)-&5 (k') 6*(k —k )
after the integration over &, we now have:

ke x &\(F)]-[k' x &, (K] 8°(F — K) = &\(k)-&,, (k) 8*(F — ).

Hence, it follows that:
= d3k ~ ~ . 3k -
2P2 73, —2iwt 2
/c B2 d%z = _;/W [Eo(k,A)Eo(kz,A)e +c.c.} +2;/ (27T)3|E0(k:,)\)| .
Adding egs. (20) and (21) yields

U= 260;/%%(%, Nk (22)

Note that U given in eq. (22) is explicitly time-independent. This is simply an expression
of the conservation of momentum, dU/dt = 0. This is a consequence of eq. (6.111) of Jackson.
Since p = J = 0 for a free electromagnetic field, we have P = 0, in which case

dU  Usea 7{ . a
_— = = — d . S p—
it dt b da-5 =0,
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where § is the Poynting vector. For any finite energy field configuration, the Poynting vector
vanishes at the surface of infinity and we recover dU/dt = 0 as expected.

Finally, consider a fixed wave number vector kg, for which Ey(k,\) = Eo(\) 83(k — ko).
Then, egs. (18) and (22) yield

U=26> [Eo(N], ﬁ:ko—Z\EO(A)P:?U.
A

That is, U = Pc. Comparing this result to the relativistic relation between the energy and
momentum of a particle, £ = /p?c? + m?¢*, we conclude that photons are massless.

2. [Jackson, problem 7.12] The time dependence of electrical disturbances in good conductors
is governed by the frequency-dependent conductivity given in Jackson eq. (7.58). Consider
longitudinal electric fields in a conductor,? using Ohm’s law, the continuity equation, and the
differential form of Coulomb’s law.

(a) Show that the time-Fourier-transformed charge density satisfies the equation

[0(w) — iweo| p(&,w) = 0.

In this problem, we assume that the electric perm1tt1v1ty is that of the vacuum. Flrst we
perform a Fourier transform of the current vector J the electric displacement vector D and
the current density p,

J(Z w) = —/ (&, t)e’“t dt, (23)
27 J o
s 1 * = = wt
D& w)=— D(&,t)e™" dt, (24)
27 J o
— 1 > = wt
p(a:,w) = 0 p(w>t)e dt. (25)
21 J_
Taking the divergence of eq. (23) yields
V.- J(Zw :—/ CJ(E et dt = — / L™t dt
(%, w) 5] (Z,1) o 5
Tw & -
= T, t)e™ dt = iwp(T,w), 26
| e@ pl@ ) (20)
where we have used the continuity equation in the second step above,
— — T t
V-J(f,t)+%:o. (27)

Inside a real imperfect conductor (i.e, with conductivity o # o), a small longitudinal electric field exists,
parallel to the current density vector J, which drives the charges according to Ohm’s Law, and allows for
plasma oscillations of the free charges within the conducting medium.



After an integration by parts (where the surface term vanishes under the assumption that
there is no charge density at infinity), eq. (25) has been employed to obtain the final result.
Next, we apply Ohm’s Law for harmonic currents and electric fields,?

—

J(Z,w) =o(w)E(&,w) =

D(&,w), (28)

where we have used D = e E. Taking the divergence of eq. (28) yields

V. J(&w) = UEW)V-D(iz’,w) - “i‘”)\/?/ V. D(&, 1) dt
0 0 T J -0

o o(w)

AL [ g e, 2

—

after making use of the differential form of Coulomb’s law, V-D(Z,t) = p(&,t). Setting
egs. (26) and (29) equal, we obtain

[0(w) — iweo| p(Z,w) =0, (30)

as requested.

(b) Using the representation o(w) = 0o/(1 — iwT), where 09 = w7 and 7 is a damping
time, show that in the approximation w,7 > 1, any initial disturbance will oscillate with the
plasma frequency and decay in amplitude with a decay constant A = 1/(27). Note that if you
use o(w) ~ d(0) = ¢ in part (a), you will find no oscillations and extremely rapid damping
with the (wrong) decay constant A\, = 0o/¢o.

Under the assumption that an electrical disturbance of (positive) frequency w is present, i.e.,
E(t) = Eoe ™', it follows from the differential form of Coulomb’s law that p(Z,w) # 0.
Hence, eq. (30) yields

o(w) = iweg . (31)

Inserting o(w) = eow?7/(1 — iwT) into the above equation, we obtain a quadratic equation
for w,

W+ iw — wfﬁ‘ =0. (32)

—7 4+, /4w§7'2 —1 23
27 ' (33)

In the approximation w,™ > 1, eq. (33) simplifies to

@)

3For time-independent currents and electric fields in a homogeneous and isotropic conducting medium,
Ohm’s Law states that J(&) = o E(&). However, if the currents and electric fields are harmonic with angular
frequency w, then the conducting medium cannot respond instantaneously to the time-varying electric field.
In order to satisfy the requirements of causality, the conductivity ¢ must be a function of w. In this case,
Ohm'’s Law is given by eq. (28), under suitable assumptions on the functional form of o(w).

Solving for w, one obtains:

w =

w:wp—%[ljt(?




where we have chosen the plus sign in eq. (33), since the frequency w is positive. After
dropping the term of O(1/(w,7)) in eq. (34), the electrical disturbance is given by

E(t) = Ege ™™ | where A= (27)7L. (35)

That is, the disturbance oscillates with the plasma frequency w,, and the amplitude, EO e M,

is damped out with a decay constant A = (27)7L.

Note that if you use o(w) ~ ¢(0) = o¢ in part (a), then eq. (30) yields w = —ioy/e€p.
Inserting this result into E(t) = Eye~™" would then yield E(t) = Eqe !, where A\, = 09/co.
One would then wrongly conclude that the electric field disturbance does not oscillate and the
amplitude is rapidly damped out with the wrong decay constant.

3. [Jackson, problem 7.22]. Use the Kramers-Kronig relations to calculate the real part of
e(w), given the imaginary part of e(w) for positive w as?
(a) Ime(w) /€0 = A[O(w — w1) — O(w — wy)], wy > wp > 0,

Ayw

(b) Ime(w) /e = (2 — 2 + 2

7>0andw0>%fy.

In each case, sketch the behavior of Ime(w) and the results for Ree(w) as functions of w.
Comment on the reasons for similarities or differences of your results as compared with the
curves in Fig. 7.8 of Jackson. In part (a), the step function is defined as ©(z) = 1 for x > 0
and O(z) =0 for z < 0.

The Kramers-Kronig relation for computing Ree(w)/ey given Ime(w)/ey has been given in
eq. (7.119) of Jackson:

Ree(w)/eo = 1+ %P/oo tme(w/eo (36)

w —w

—00

An alternative form of eq. (36) can be obtained by breaking up the integration region into
two regimes: (i) —oo < w’ < 0 and (ii) 0 < w’ < co. In the first regime, one can change the
integration variable via w’ — —w’. In light of the fact that Ime(—w’) = — Ime(w’), one can
combine the resulting two integrals to obtain eq. (7.120) of Jackson,

Ree(w)/ep =1+ gP/ W Im () /eo dw'. (37)
™ Jo

2 — 2
(a) Ime(w) /e is given by:

0, forw > wy,
Ime(w')/eg = A, forw; <w < wo, (38)
0, for0<w<uw,

4As noted by Jackson, one can extend these results to negative frequencies by imposing Re e(—w) = Re e(w)
and Ime(—w) = — Ime(w).



under the assumption that wy > w; > 0 and A is a constant independent of w. Plugging this
result into eq. (37) yields:

2)\ wo 'doo! by w3 dw'?
Ree(w)/60:1+—P/ wiw:le—P/ e
™ w ™ w

02— 2 s W2 w2
1 1
If w? > w? or 0 < w? < w}, then the denominator of the integrand is never zero over the
range of integration. In this case, we can drop the principal value symbol P and carry out
the integration. It then follows that

R ()/ —1—1——)\1 % i f 2> 2 2< 2 (39)
ece\W)/ €y = n or w Wy O W W .
0 % 2| 2 1

On the other hand, if w? < w? < w3, then the denominator of the integrand will vanish when
w' = w. In this case, we must use the definition of the principal value prescription to obtain:

2

A W W “ dw'
Ree(w)/eo—lJr;il_r)I(l){/w% mJF/werE 02— 2

2 2
:Hénm{m(%)ﬂn(u)}
T e—0 W — wy €

A w2 — w?
:1+;1H (m) , for wf<w2<w§. (40)

Comparing the results of egs. (39) and (40), it follows that the result of eq. (39) is correct for
all values of w. That is,

2 2

2

AR for 0 <w < 0. (41)
wl_w

Ree(w)/eg =1+ iln
m

A sketch of the behavior of Im e€(w)/¢q [left panel] and Re e(w)/€p [right panel] as a function
of w is exhibited in Figure 1 below. As expected, Ree(w)/eg — 1 as w — oco. However, this

Im e(w)/€g
Re €(w)/eg

1.0 —_—
0.8
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Figure 1: A sketch of the behavior of Im e(w)/eo [left panel] and Ree(w)/eo [right panel] as a function of w.
The representative values of A = 1, w; = 8, and w2 = 12 have been chosen for illustrative purposes. Note that
Ree(w)/eg diverges logarithmically as w — w; and as w — wa.



example is somewhat unrealistic since Ree(w)/eq diverges (albeit logarithmically) as w — wy
or as w — wy. This behavior can be attributed to the discontinuity in Ime(w)/ey at w = wy
and at w = w,. In a more realistic model, this discontinuity would be smoothed out, which
would then remove the corresponding divergent behavior of Ree(w)/€y at w = w; and at
w = wq. The end result would look more like the resonant behavior exhibited in Figure 7.8 of
Jackson.

(b) Ime(w)/€p is given by:

AYw
PrEp L
Since eq. (42) satisfies Ime(—w') = —Ime(w’), it follows that eq. (42) can be used for both

positive and negative frequencies. In this case, it is more convenient to employ eq. (36), which
yields:

Ime(w)/ep = (42)

Ay / o W' duw'
Ree(w)/eg =1+ —P 43
w)/eo T ) (W —w)[(wd — w'?)? + 42w?] (43)
To evaluate eq. (43), we first employ the method of partial fractions to write:
W' _ Yo'
(W — w22+ 722 (W — W2 + i) (wE — w2 — iyw)
B A B
W Wi wE— W' — iy
AW - W' — i) 4+ B(wh — w'? 4 i)
(w2 — W2 + i) (Wi — w'2 — i)
(w2 —w'?)(A+ B) —iyw'(A— B)
= 5 . (44)
(W2 — w'2)2 £ 22
Hence, we can conclude that the following two polynomials must be identical,
W' = (wy —w?)(A+ B) —inw'(A— B), (45)
which yields two equations for A and B,
A+B=0, A—B=1. (46)
These two equations are easily solved, and we get
A=-B= %z (47)

It then follows that:

' i 1 1
(W —w?2)2+ 722 2 | W} —w?2+iw Wi —w?— i




after making use of the identity Im z = (z — z*)/(2¢), which is valid for any complex number z.
Hence, we can write:

T () )

where the roots of the quadratic equation w'? — w2 — iyw’ = 0, denoted by wx, are given by

wy = 31y £ /wi — 372 (50)

Using eq. (49), we find that eq. (43) can be written in the following form:

Ree(w)/eo = 1+ Im {% P/ (51)

_: (W = w)(w iwc;+)(w —w-) } '

The principal value is required because the integrand above is singular when W' = w.
To evaluate this integral, we shall employ eq. (65) of the class handout entitled Generalized
Functions for Physics:

p Oof(x)d:c’:hml{/oo f(z)dx +/°° f(z)dx }’ (52)

oo T — Xy =0 2 w0 & — Tg + 1€ w0 T — Ty — 1€

where ¢ is a positive infinitesimal quantity. It then follows that

A [ dw'’ 1 1
=1+Imq—
Ree(w)/eo * m{27r /_oo (W —wi)(w —w-) (w’—w+z'5 * w’—w—i5>} 69

where it is understood that the limit ¢ — 0 is taken at the end of the computation.

We can now evaluate the integrals in eq. (53) using the Cauchy residue theorem by closing
the contour in the lower half complex plane with a semicircular arc of radius R — oo. This
step is justified since for w’ = Re', the integrand vanishes on the semicircular arc as R — oo.
By assumption, v > 0 and wy > %7. Then, the only pole that lies inside the closed contour
is at w' = w — ie. Since the integration path along the closed contour is in the clockwise
direction, we must multiply the residue at the pole by —2mi. Hence,

Ree(w)/ep = 1 + Im {%(—27”') : }

(W—wi)(w—w)

_. _. 2_2 .
:1—|—)\Im{ ! }:1+)\Im{ iw “’OHW)}, (54)

3 2, 2 2)2 1 ~2,,2
w? — Wi —iyw (W? — wi)? + 72w

after setting ¢ = 0. Taking the imaginary part of the above expression yields

AMw? — wd)

Ree(w)/eo =1 — (W? — W)+ 72w? (55)
Note that egs. (42) and (55) imply that
A
€w)/eo =1+ — (56)

2 _ iomy
W — w* — 1wy
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Figure 2: A sketch of the behavior of Ime(w)/¢q [left panel] and Ree(w)/ep [right panel] as a function of w.
The representative values of A = 10, wg = 10, and v = 1 have been chosen for illustrative purposes.

which coincides with eq. (7.51) of Jackson if we identify A = Ne?f/(eym) with a single binding
frequency for all molecules.

A sketch of the behavior of Im e(w)/¢q [left panel] and Re e(w)/€q [right panel] as a function
of w is exhibited in Figure 2 above. Again, we note that Ree(w)/ey — 1 as w — oo. This case
exhibits the typical resonant behavior seen in Figure 7.8 of Jackson.

EXTRA CREDIT: An alternative derivation of Re e(w) /e

In solving part (b) of this problem, suppose we were to employ eq. (37). Then,
2\ P / W' dw’
T o (W?—w?) [(Wg —w'2)2 4 7%)’2} )

To evaluate this integral, we use the method of partial fractions to rewrite the integrand in
eq. (57) as follows:

(57)

Ree(w)/eg =1+

w'? A Buw'?+C
(W2 — w?) [(wg —w'2)2 7%}’2] T 02— o2 (wg —W'2)2 22
B Af(wd - 24+ 7% 4+ (Bw'? + C) (w'? — w?) (58)
- (w’2 — w?) [(w% —w'?)2 + 7%)’2} ’
It then follows that
Aws +Cw?* =0,
A —2wi) +C — Bw* =1,
A+B=0. (59)
The solutions to these equations are easily derived:
w? wa
A=-B= C= 0 : 60
=R+ (7 =B + 7% (60)
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Hence, we have derived the identity:

W2 1 { w2 wi — W' }

= +
(w’2 _ w2) [(MS _ w’2)2 + fyzwxz} (w2 _ W8)2 + 7%}2

w2 — w2 (wg _ w/2)2 + ’72(,0/2
(61)

Plugging this result into eq. (57) yields:

2\ yw? > dw! * [(wg/w?) — w'?]dw’
Re E(W)/EQ =1+ - D) 72w2} [P/Ov m +/0 . (62)

(@ =P+ (W =

Note that we can drop the principal value symbol in the second integral on the right hand
side of eq. (62) since its denominator never vanishes over the range of integration.
Using the definition of the principal value prescription,

o dw/ . wW—E& dw/ o0 dw/
P/o w/z_wzzll_%{/o w/2—w2+/w+ew/2—w2}’ (63)

where € is a positive infinitesimal quantity. Consulting any decent integral table yields the

following indefinite integral:
dw’ 1
IR e
Thus, it follows that

[e] / —
P/ /2dw -~ lim {_i {ln <2w a) I (2w+5)}}
g wW®—w e—0 2w € €

1 2w —¢
el—I>r(lJ{ 2w n(2w—|—£)} 0 (65)

w—+ W

(64)

w—w

Hence, eq. (62) reduces to:

2\ yw? * [(w/w?) — w'?]dw’
=1 .
Recfor =1+ e | (€6)
To evaluate the remaining integral, we shall make use of the following two results:®
o dz T
= , for a + |bc| > 0, 67
/0 bt + 2ax% +  24/2|c|\/a + |bc| lbc (67)
> 22 dx 7r
= , for a + |bc| > 0. 68
/0 bt + 2ax% + ¢ 24/2|bl\/a + |bc| foc (98)

°Eqs. (67) and (68) are derived in Chapter 7 of George Boros and Victor H. Moll, Irresistible Integrals:
Symbolics, Analysis and Experiments in the Evaluation of Integrals (Cambridge University Press, Cambridge,
UK, 2004). The condition a + |bc| > 0 ensures that b%z* + 2az% 4+ ¢2 > 0 for 0 < z < co. Eq. (67) is also
provided by formula 857.11 on p. 214 of Herbert B. Dwight, Table of Integrals and Other Mathematical Data
(Macmillan Publishing Co., Inc., New York, 1961). Then, eq. (68) can be obtained from eq. (67) by performing
a change of the integration variable, z — 1/z.
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It then follows that:

[l i x84y )

(W2 — W'2)2 + ~2w'2 ﬂ w2
Plugging this result back into eq. (66), we obtain our final result:
AMw? — wd)

Ree(w)/eg =1 — (w? — wg)z + 202

(70)

in agreement with the result obtained in eq. (55).
Now that you have seen both derivations of Ree(w)/€g, you can decide for yourself which
is simpler.

Derivation of eqs. (67) and (68):

Egs. (67) and (68) were obtained from the references provided in footnote 5. But these
results are not difficult to derive as we now show. First, we define

o dz
1= . 71
/0 xt 4 2ax? + 2 (71)

Next, we factor the denominator:

a4+ 20’ + 2= (2P +a— Va2 —2)(2* +a+ Va2 — 2)
= (:c2+%[\/a+|c|—\/a—\c\]z)(x2+%[\/a+|c|+\/a—|c|]2). (72)

Assuming that a > —|c|, it follows that z* + 2az? + ¢ > 0 for all real values of z, which
guarantees that the integral Z is well-defined. One can now apply the method of partial
fractions to obtain:

1 1 1 1
24+ 2022 + 2 24 — &2 x2+%[\/a+|c|—\/a—\c\]2 _x2+%[\/a+\c\+\/a—‘0”2 .

(73)
Inserting this result into eq. (71), and employing the well know result (for real numbers A),

[ wtm=ae ()] -
o Y2H+AZ A A, 2147

(74)

it follows that
7_ T 1 _ 1 B T (75)
2V2vVa? =2 | \Ja+ || —+a—|c] +a+]|]+a—] 2v2|e|v/a + |e|’

under the assumption of a + |¢| > 0, as previously noted.
Using eq. (75), we can now evaluate eq. (67):

o D2at+2ax?+c2 b2 )y 2t + (2a/0%)x? + (c2/1?) 2v/2|bc]| b% + ’%‘

for a + |be| > 0, (76)

m
© 2V2|e[/a+ |be]
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which establishes eq. (67). Next, we make a change of variables z = y~! in eq. (76) to obtain

00 2

y~dy ™
= , for a + |bc| > 0. 7
/0 Ayt +2ay* + 0% 2y/2]c|y/a + |bc] o (77)

Relabeling y — 2 and interchanging b <+ ¢ then yields:

> r?dx m
= , for a + |bc| > 0, 78
/0 b2t + 2ax% + ¢ 24/2|b|\/a + |bc| lbc (7%)

which establishes eq. (68).

4. [Jackson, problem 7.27] The angular momentum of a distribution of electromagnetic fields
in vacuum (in SI units) is given by
1

—»_ 3 N — —

where the integration is over all space.

(a) For fields produced a finite time in the past (and so localized to a finite region of space)
show that, provided the magnetic field is eliminated in favor of the vector potential A, the
angular momentum can be written in the form

3
= ]_ — — —
L=— | &z |Ex A EE £ x V)A,| . 80
e x[ +€:1 (& VA, (80)

The first term above is sometimes identified with the “spin” of the photon and the second with

the “orbital” angular momentum because of the presence of the angular momentum operator
L,, = —i(Z x V).

The magnetic field can be written in terms of the vector potential, B=VxA. Hence, we
need to evaluate & X [E X (V x A)]. Using the Einstein summation convention, where there is
an implicit summation over a pair of identical indices, we can write (@ X l_;), = €;,0;bx, where
the indices take on the values i, j,k = 1,2,3 and there is an implicit sum over the repeated

indices 7 and k. The Levi-Civita tensor is defined as

+1, if (7,7, k) is an even permutation of (1,2, 3),
€k =< —1, if (4,4, k) is an odd permutation of (1,2, 3),
0, otherwise.

Thus, we obtain

— — - -,

{:i"x [EX (6 Xj)]}l = €ijkT; [EX (6)(14)]]€ = Eijkl’jekngg(6XA)m = e,-jka?jeknggemqupAq ,
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where & = (21, 22, x3) and V,, = 0/0z,. We now employ the following e-identity,
€ktm€Empq = 6kp54q - 5kq(sép .
Hence, it follows that

{.’EX [E X (6 X K)]}Z = Eijkil}ng((Skpégq —(Skqégp)vaq = EijkLL’ngvag — EijkLL’ngVgAk . (81)

We recognize €2, £,V Ay = Ey(€ X e)iAg which corresponds to the second term in eq. (80).
To obtain the first term in eq. (80) will require an integration by parts. That is, we first write:

e,-jkijngAk = €ijk [Vz(l’ngAk) — Aka(ZL']Ek)] s
which is an identity that follows from the rule for differentiating products. Next, we note that
EijkAng({L’ng) = EijkAk [[L’j(V@Eg) + Eg(V@ZL’j)] = EijkAkEg(ng = EijkAkEj = (E X j), s

where we used V,x; = 0x;/0x; = 0y; and V,E, = V-E = 0 (in vacuum). Thus, eq. (81)
yields the vector identity,

{Z X [EXx (VX A}, =E(Fx V) A+ (E x A); — ;3. Vol(a; EAy) (82)

where there is an implicit sum over the repeated index ¢. An alternative proof of eq. (82) is
given at the end of the solution to part (a) of this problem [see egs. (85)—(88)].

When we integrate over all of space, we can use the divergence theorem [given in the inside
cover of Jackson’s textbook]:

/ iz €k Ve(rjEpAy) = 7{ dae;jpnex; Ey Ay = f da ﬁE(a‘:’ X A); =0, (83)
1% S S

where ny is the outward normal at the surface of infinity S. Since the fields are assumed to be
localized to a finite region of space, the integral above vanishes. Hence, inserting the results
of egs. (82) and (83) into eq. (79) [after putting B = V X A] immediately yields

3
/d%:zx (Exﬁ):/d% [E’XA#ZEZ(:Ex V)4,

(=1

Therefore, eq. (80) is proven.
REMARK: The identification of

—_ ]_ — —_

Lyn=— [ @’z E X A, (84)
HoC

as the spin angular momentum is problematical, as eq. (84) is not invariant under gauge

transformations. In fact, a gauge-invariant expression for the spin angular momentum can be

constructed that reduces to eq. (84) in the radiation (Coulomb) gauge.b

6See e.g., Iwo Bialynicki-Birula and Zofia Bialynicki-Birula, Journal of Optics 13, 064014 (2011) and
references therein.
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Vector identities revisited

Using the well-known vector identity, A x (B x C) = B(A-C)—C(A-B), it follows that
Ex(VxA)=EVA —(E-V)A, (85)

where there is an implicit sum over i, and we have been careful with the location of the
differential operator V which is only acting on the vector A. It follows that

X [EX(VXA)|=E@xV)A4 -Zx (E-V)A. (86)

Next, we observe that summing over the repeated index ¢ yields,

Vi(E; & X A) = (& x A)(V-E)+ E-V(& x A)
= E_'§(:i:’ X _‘) = Eivi(Ejkgl’]Ak) E; Ejkg((sz]Ak + l’]v Ak)
—ExA+Ex (E-V)A, (87)

—

after using V-E = 0 (in vacuum) and V,z; = §;;. Combining eqgs. (86) and (87) yields

i’

—

X [EX(VXA)|=E@EXV)A4+EXA—V,(E&xA), (88)

which coincides with eq. (82).

(b) Consider an expansion of the vector potential in the radiation (Coulomb) gauge in
terms of plane waves,

d*k I
Z/ AK)ay(k)eF Tt e | (89)

The vectors € ,\(l_c’) are conveniently chosen as the positive and negative helicity polarization
vectors”

R . .
L = :Fﬁ GEXIP (90)
where €; and &, are the real orthogonal vectors in the plane whose positive normal is in the
direction of k. Show that the time average of the first (spin) term of L can be written as

Lo = 2 [ S 55F [l B~ o (BIF] (o1)

HoC

Can the term “spin” angular momentum be justified from this expression? Calculate the
energy of the field in terms of the plane wave expansion of A and compare.

7Jackson omits the overall factor of F in the definition of é4. I prefer to maintain this phase convention,
but you are free to choose any convention that suits you.
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In the Coulomb gauge, the electric field is (in SI units):
. Bk e
E(Z t) = Z/ éx(k)ay(k)e'® =) _cc | | (92)

where w = ck and k = \kz\ Note that due to the overall factor of i, we must subtract the
complex conjugate inside the square brackets in order to ensure that E(&,t) is a real field.
Inserting egs. (89) and (92) into eq. (84) and expanding out the integrand, we obtain:

Lo = cz GZZ/ wdkd'K dx {[GAUZ)><e»<E’>]aA<E>aA/<E’>ei<k+k>-fe—z'<w+w>t

where w = k¢ and W' = Kc.
We may now perform the integral over &, using eq. (12), and then use the delta function
to integrate over k. The end result is®

Ton= oz % / dk{ (R) x &, (R) ax(F)a3, (R) — [&(F) x & (B)]a; (E)ax ()

,U002

Hea(k) x & (—k)]ax(R)ay (—Fk) e — [& (k) x &, (~k)]a; (k)a3 (~F) 62’”} - (93)

However, the last two terms above vanish when 1ntegrated over k since the corresponding
integrands are odd functions of k. For example, under k — —k,

Z Z 6>\ )X Ex( k)]a,\(k)ax( e—2lwt — Z Z éx(—k) X GA/(E)]a)\(—E)aX<E) 2wt
— ZZ k) x é\(K)|ay (—k)ax(k) e 2"

= —ZZ éx( E Xé,\/(—k)]aA(E)a/\,(_E) g2t
NBY

where we interchanged A and )\ in the penultimate step (which is justified since these are
dummy labels that are being summed over), and used the antisymmetry of the cross product

8Indeed, Jackson only asks that we show that the time-average of Espin is given by eq. (96). In such a
calculation, the last two terms in eq. (93) are immediately set to zero when taking the time-average since the
time-averaged values

. 1 (7T )
(eFZwty = — / et gr =0, when w # 0,
T Jo
where T' = 27 /w is the time for one oscillation cycle. The case of w = 0 corresponds to k= 0, in which case
the last two terms in eq. (93), when summed over A and X', are each manifestly equal to zero, since eq. (90)
implies that éx(k) X é€x(k) = 0 for A = £ (and the cross-terms vanish). However, our result above is more
general since no time-averaging is required to obtain the final result quoted in eq. (91).
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in the final step. Note that w = |E\c does not change sign when k— —k.
Likewise,

Z Z éx(k) x &, (k)ax(k)a3 (k) — [€,(K) x éx (k)]a; (K)ax (k)
= QZZ (k) x &, (k))ax(k)al (k) ,

after interchanging A and )\ and using the antisymmetry of the cross product.
Hence, eq. (93) simplifies to

Lo =" 02 ZZ / “dgk éx(k) x &, (k)]ax(K)a3 (K) . (94)

Using the definition of the polarization vectors given in eq. (90), it is straightforward to verify
that? B . X
éx(k) x &,(k) = —iNkdoyy, for A, N ==+, (95)

This result allows us to sum over A in eq. (94). Both terms in eq. (94) contribute equally and

the end result is: ) -,
— . —» — 2
Eoin = [ G F Al B = la- (B} (96)

after using w = kc and k = kk. Note that LSpln is time-independent and thus conserved. This
is a stronger condltlon than the conservation of angular momentum, which only requires that
the sum L = Lorbltal + LSpm is conserved. Eq. (96) implies that the spin angular momentum
of the electromagnetic field is separately a constant of the motion. If we interpret each mode
(E, A) as a photon, then the two possible photon spin states (in a spherical basis) correspond
to positive and negative helicity, i.e. states of definite spin angular momentum in which Espin
points in a direction parallel or antiparallel to the direction of propagation k, respectively.

It is instructive to consider the energy of the electromagnetic fields, which was obtained
in problem 1. In particular, eq. (22) yields

dk: i

(k)I*, (97)

where we have used eq. (9) to write Eo(k:, A) = iway(k). Consider a fixed mode of positive
helicity (ko, A = +1). Then, ay(k) = a(ko)d* (k: ko)dx 41, in which case eq. (97) yields

2eqwi = 9
= — k
(271_)3‘@)\( 0)‘ )
and
Lo = — - Folas(Ro)[? = 0 fyfay (Ro)
L= . a —
spin LioC (277')3 0|\ (271')3 01X\ O )
9To prove eq. (95), use the fact that & X é; = —&; X & = kand & X é = é; X & = 0.
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after using eopo = 1/¢* and ko = (wp/c)ko. That is,

Lopin = A v ko,  for A=+1. (98)
Wo

For a fixed mode of negative helicity (Ko, A = —1), we again obtain eq. (98) with A = —1. For
a single photon of frequency wy, quantum mechanics states that U = hwy, and eq. (98) yields

Espin = j:hi;:Oa

corresponding to a spin-one particle of helicity 1, with its spin parallel or antiparallel to the
direction of propagation k.

5. (a) Assume that the vector potential in the Lorenz gauge is given by:
A(&, ) = Aoz, y) (& £ i)', (99)

where Ag(z,y) is a very slowly varying function of position. “Slowly varying” means that the
second spatial derivatives of Ag(x,y) can be neglected; however, one must not neglect first
derivatives of Ag(x,y). Derive the approximate forms for the electric and magnetic fields given
in Jackson, problem 7.28,

. . (OF, E -
E(z,y,2,t) ~ | Eo(z,y)(& +i9) + % (% + zﬁa—;) z} giks—it (100)

B(x,y, 2,t) ~ Fiype E(z,y,2,1), (101)

where &, § and £ are unit vectors in the x, y and z directions, respectively.

The Lorenz gauge condition (in ST units) in an isotropic nonconducting medium characterized
by electric permittivity € and magnetic permeability j is'”

- o
V-A+,u68——0,

ot
where the phase velocity of the wave [eq. (7.5) of Jackson] is v = w/k = 1/,/p€. Using eq. (99),
I 0Ao | 040\ ks in 0P
A= (222422 ihz—iwt _ 7"
v ( ox ' dy ) ‘ H ot
Integrating, we get
- i [0Ay | OA0\ ipsine
OF, 1) = — + ihz—iw 102
@, ?) ,uew(&x Zay)e ’ (102)

where we have dropped the integration “constant” that is independent of time, as such a term
would not correspond to the propagation of the circularly polarized wave.

0Tn vacuum, v = ¢ and pe = pgep = 1/c, and we recover the usual form of the Lorenz gauge condition.
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The electric and magnetic fields are given by
B--vo-24  F_¥xA
ot
Plugging in egs. (99) and (102),

6(2[) ~ k 8A0 + ’LaAO 3 6ikz—iwt 7
pew \ Oz Ay

where we have dropped second spacial derivatives of Ay and

A -
8@7 = —iwA(& £ ig)er Tt
If we define Ey(z,y) = iwAo(z, y) and make use of w = k/,/ft€, we end up with,"
— [ OF, OF, .
E(z,y,z,t) ~ | Eo(z,y)(& +ig) + % (a—; + za—;) z} gihziwt (103)
Next, we evaluate
T U Z
Blay,ot) = VxA=det | = 22
(xvyaza ) =VXA=de o dy Oz
Aoeikz—iwt :l:iAoeikz—iwt 0
A A o
= Fi (& £ ig)ikAo(z,y) — (% + z’aa—;) z} gihziet
— 3iyE Ble,y 51), (104)

after using Eo(x,y) = iwAo(x,y) = ikAo(x,y)/ /1€

REMARK: According to eq. (104), the complex B vector is proportional to the complex E
vector. Nevertheless, it is easy to check that Re E and Re B are orthogonal vectors [i.e.,
(Re E)-(Re B) = 0], as expected for the physical E and B fields of an electromagnetic wave.

1 An alternative solution to Jackson, problem (7.28) is to propose an electric field of the form,
E(x,y, 2,t) ~ [Eo(z,y)(& £i9) + Fo(x, y) 2] et

This corresponds to a wave that has a finite extent in the transverse directions but is not a simple plane
wave. Since the amplitude modulation is slowly varying, one would expect that its form is dominated by the
transverse part, but a small longitudinal part can also be present as indicated in the form above. If one now
imposes V-E = p/e =0 (as there is no free charge density present), then one easily derives

[ OE O0FE,
Fo(z,y) = % (8—500 ila—yo> ,

in an approximation where the second order spatial derivatives are neglected. One can the compute the B
field of the circularly polarized wave by using the Maxwell equation V x E + 9B /dt = 0.
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(b) [Jackson, problem 7.29] For the circularly polarized wave given by egs. (100) and (101),
with Fy(z,y) a real function of = and y, calculate the time-averaged component of the angular
momentum parallel to the direction of propagation. Show that the ratio of this component of
angular momentum to the energy of the wave in vacuum is,

L

= = 4wt

U
Interpret this result in terms of quanta of radiation (photons). Show that for a cylindrically
symmetric, finite plane wave, the transverse components of angular momentum vanish.

The angular momentum density of the electromagnetic field is given by [cf. problem 6.10 on
p. 288 of Jackson)].
L=FXg=pxZx (ExXH). (105)

Eq. (105) was obtained under the assumption that E and H are real physical fields. Using
the vector identity,

EX(EXH=EX-H)-HZFE),
the z component of the angular momentum density (denoted below by L3) is given by

Ls = pe(z(E.H, — E,H,) +y(E.H,— E,H.)] . (106)

Note that the E and B fields obtained in eqs. (103) and (104) are complez fields. The
corresponding real physical fields are obtained by taking the real part of the complex fields.
Since Jackson specifies that Ey(z,y) is a real function of x and y, the corresponding real
physical fields are given by

E, = Eycos(kz — wt) E, = FEysin(kz — wt), (107)
o 7 an . an
E. = . [ e sin(kz — wt) £ o cos(kz wt)} (108)
H, — j:\/EEO sin(kz — wt) H, = Eycos(kz — wt), (109)
v
H, = %\/g [i% cos(kz — wt) — aa—io sin(kz — wt)] : (110)

after using B = ,uﬁ . To avoid notational clutter, we have omitted the symbol Re on the
left-hand sides of egs. (107)-(110). That is, Re E = (E,, Ey, E,) and H = (H,, H,, H,) now
denote the real physical electric and magnetic fields. Inserting the above results into eq. (106)
yields

_ == E— 4 yEy—| = 7— — +y— | ES. 111
L3 T VHe {I 0 B +y an] :FQk\/M(x&x—i_y@y) 0 (111)
As previously noted, k = /u€w in the medium. Thus, we can rewrite eq. (111) as
€ 0 0
Ls=F— 2—+y=— | Ej. 112
1=y (o +ugy ) B (12)



It is noteworthy that in obtaining eq. (111), the time-dependence has dropped out. Thus, there
is no need to time-average the result (even though Jackson only asks for the time-averaged
angular momentum).

Next, we compute the energy density [cf. eq. (6.106) of Jackson],

= (| EP + uHP).

As in part (a), we shall assume that Fy(x,y) is slowly varying so that we can neglect the
second spatial derivatives of Ey. That is, we may discard terms proportional to (9E,/dz)?,
(OEy/0y)?* and (OF,/0x)(0FE,/dy) as compared to terms proportional to EZ. In particular,

in evaluating |E|? and |H|2, we can drop the contributions from E, and H,. Hence,

U~ % {eEoz—i-u GES” = eEj .

Finally, we compute the total energy and the z-component of the total angular momentum,

U:/dgxu:e/dngg(x,y),
_ 3 _ - ¢ 3 2 2 2 2| _ E/ 3,. 2
_/d xﬁg—IFQW/dx[x&xonLyayEo} —ﬂ:w d’x Ei(z.y),

after integrating by parts and using the fact that Ey(z,y) vanishes when |z|, |y| — co. We
conclude that'?
Ly _ 41 (113)
U ~w’
The interpretation in terms of the photon is clear. Since a photon has an energy U = hw,
it follows that L3 = +hA for the photon. The two possible signs correspond to positive and
negative helicity.
To complete the problem, we compute the x and y components of the angular momentum
density (denoted below by £4 and Ls).

L1 = e [y(ExHy — E,H,) + 2(E,H, — EZHm)] ,
Lo = pe(z(E,H, — E,H,) + 2(E,H, — E.H,)] .

Inserting the fields given in eqs. (107)—(110), we end up with

Ly = pe [\/7E2 [Eoz%]

Lo = e [— — Elr 4 —
i

By assumption, the plane wave is cylindrically symmetric, which implies that

Ey(z,y) = Eo(—z,y), Ey(z,y) = Eo(z, —y) .

12 Although Jackson asks us to derive eq. (113) for the wave in vacuum, our calculation is equally valid for
the wave in an isotropic nonconducting medium.
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Thus,

0
3 2( 2 _
L, = ,ue\/7/d {yE x,y) :I:2k8 Ei(x ,y)} 0,

since the integrand is an odd function under x — —x, y — —y. Likewise,

_ £ 3.1 .2 z 0 _
L2—,ue\/;/dx{xE0(x,y):l:2kaE( )]—0.

Hence, we conclude that for a cylindrically symmetric finite circularly polarized electro-
magnetic wave,

L1:L2:O, and ng:l:g
w

An alternative method for obtaining eq. (111)

Since eqs. (103) and (104) provide the complezr E and B fields, it is convenient to make
use of the corresponding complex angular momentum density [which is defined in analogy
with eq. (6.132) of Jackson]:

—

L=Fxg=1luZx (ExH".

The physical angular momentum density, time-averaged over a cycle, can then be identified
as Re L. Using the vector identity,

Ex (Ex H)=E@&@-H")-H (- E),
the z component of the angular momentum density (denoted below by L3) is given by
Ly = spe[x(E.H; — E,HY) +y(E.H) — E,H})] . (114)
Using egs. (103) and (104),

7 OE, OE _
E(z,y,2,t) ~ | Ey(z,y) (& £ig) + — ? < 01'0 + za—yo> 2} eikzmiwt (115)
— 1 — —
H(z,y,51) = ~Bla,y, 2,1) = ﬂﬁ Blr.y. 1), (116)
u u

Inserting eqs. (115) and (116) into eq. (114), we obtain
Ly = +3ie\/ue[v(E.E; — E,E}) + y(E.E; — E,E7)]

= Fey/pe [z Im(E.E}) + yIm(E.E})] . (117)
An explicit computation yields
o1 LOFy 7 LOFq
Im(E.E;) = ? Re (E pe ) k:I (E 3y ) , (118)
¥\ 1 *8E0 1 *8E0
Im(E.E)) = kR (E o )j: Im(EOax). (119)
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The first term on the right-hand sides of egs. (118) and (119) can be simplified by noting that

OB 10, OB\ 10,
Re (E55) = 5 5uloP Re (552 ) = 5o ol (120)

Inserting these results back into eq. (117), we end up with

e\/ € 0 5 . OEy  OEp
Ls=F—5; {(8—+y8)\Eol :F2Im[Eo(way yax)”- (121)

Note that L3 is a manifestly real quantity, so it corresponds to the third component of the
physical angular momentum density.
Likewise, the harmonic energy density is given by [cf. eq. (6.133) of Jackson]

u=3i(cE-E"+pH-H) =LleE-E", (122)

after making use of eq. (116). Inserting egs. (115) and (116) into eq. (122), and neglecting
terms involving either the second spatial derivatives of Ejy or a product of two first spatial
derivatives of Fy (and its complex conjugate), we end up with

u = ¢e|Ep|?. (123)

Jackson specifies in this problem that the amplitude Ey(x,y) is a real function of x and y.
That is, Ej = Eo, which implies that Im[E;(z0E/dy — yOE,/0x)] = 0. Hence, it follows

that 5
€
L3 = E 124
s= 3L (e vy ) B (121)
which reproduces the result previously obtained in eq. (111). Integrating eqs. (122) and (124)
over all space to obtain the total energy and angular momentum, respectively, yields

U=+Lyw. (125)

Note that the assumption that Ey(z,y) is a real function of x and y is critical in this
problem. If Fy were a more general complex amplitude, the result would be an extra term in
L proportional to Im [Eg(2dEy/dy — ydEy/dx)], as indicated by eq. (121). This extra term
would then ruin the simple relation between U and L3 obtained in eq. (125).
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