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1. [Jackson, problem 11.10]

(a) For the Lorentz boost and rotation matrices K and S show that

(ǫ̂ · S)3 = −ǫ̂ · S , (1)

(ǫ̂′ ·K)3 = ǫ̂′ ·K , (2)

where ǫ̂ and ǫ̂′ are any real unit 3-vectors.

We are given

S1 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 , S2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


 , S3 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 ,

K1 =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , K2 =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 , K3 =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 .

To prove eq. (1), we evaluate the matrix ǫ̂ · S explicitly,

ǫ̂ · S =




0 0 0 0
0 0 −ǫ3 ǫ2
0 ǫ3 0 −ǫ1
0 −ǫ2 ǫ1 0


 ,

and then compute (ǫ̂ · S)3 via matrix multiplication. Indeed,

(ǫ̂ · S)2 =




0 0 0 0
0 −ǫ22 − ǫ23 ǫ1ǫ2 ǫ1ǫ3
0 ǫ1ǫ2 −ǫ21 − ǫ23 ǫ2ǫ3
0 ǫ1ǫ3 ǫ2ǫ3 −ǫ21 − ǫ22


 ,

and

(ǫ̂ · S)3 = (ǫ̂ · S)2ǫ̂ · S = −(ǫ21 + ǫ22 + ǫ23)




0 0 0 0
0 0 −ǫ3 ǫ2
0 ǫ3 0 −ǫ1
0 −ǫ2 ǫ1 0


 = −ǫ̂ · S ,

after using the fact that ǫ̂ is a real unit 3-vector, which implies that ǫ21 + ǫ22 + ǫ23 = 1.
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To prove eq. (2), we evaluate the matrix ǫ̂ ·K explicitly,

ǫ̂ ′
·K =




0 ǫ′1 ǫ′2 ǫ′3
ǫ′1 0 0 0
ǫ′2 0 0 0
ǫ′3 0 0 0


 , (3)

and then compute (ǫ̂ ′
·K)3 via matrix multiplication. Indeed,

(ǫ̂ ′
·K)2 =




ǫ′ 21 + ǫ′ 22 + ǫ′ 23 0 0 0
0 ǫ′ 21 ǫ′1ǫ

′
2 ǫ′1ǫ

′
3

0 ǫ′1ǫ
′
2 ǫ′ 22 ǫ′2ǫ

′
3

0 ǫ′1ǫ
′
3 ǫ′2ǫ

′
3 ǫ′ 23


 ,

and

(ǫ̂ ′
·K)3 = (ǫ̂ ′

·K)2 ǫ̂ ′
·K = (ǫ′ 21 + ǫ′ 22 + ǫ′ 23 )




0 ǫ′1 ǫ′2 ǫ′3
ǫ′1 0 0 0
ǫ′2 0 0 0
ǫ′3 0 0 0


 = ǫ̂ ′

·K ,

after using the fact that ǫ̂ ′ is a real unit 3-vector.

ALTERNATIVE SOLUTION:

The following alternative solution to part (a) is noteworthy. First, observe that the first row
and column of S1, S2 and S3 are all zeros. Hence we can simply focus on the remaining 3 × 3
block. That is, we write the Si in block matrix form,

(Si)jk =


 0 0T

k

0j −ǫijk


 , (4)

where 0T is a row vector of three zeros, 0 is a column vector of three zeros, and

ǫijk =





+1 , if (ijk) is an even permutation of (123) ,

−1 , if (ijk) is an odd permutation of (123) ,

0 , otherwise ,

is the three-dimensional Levi-Civita tensor. After excluding the first row and column, jk labels
the three remaining rows and columns of the Si.

Thus, we can compute (ǫ̂ ·S)3 by pretending that the first row and column do not exist. More
explicitly,1

(ǫ̂ · S)3jk = (ǫ̂ · S)jℓ(ǫ̂ · S)ℓm(ǫ̂ · S)mk = ǫi(Si)jℓ ǫp(Sp)ℓm ǫq(Sq)mk

= −ǫiǫpǫqǫijℓ ǫpℓm ǫqmk = ǫiǫpǫqǫijℓ ǫpmℓ ǫqmk

= ǫiǫpǫq(δipδjm − δimδjp)ǫqmk = ǫqǫqjk − ǫmǫjǫqǫqmk , (5)

1In eq. (5), we employ the Einstein summation convention. In this derivation, we make use of the antisymmetry
properties of the Levi-Civita tensor and employ the identity ǫijℓǫpmℓ = δipδjm − δimδjp.

2



after noting that ǫiǫi = ǫ̂ · ǫ̂ = 1 since ǫ̂ is an arbitrary real unit vector. We now observe
that ǫmǫjǫqǫqmk = 0 since ǫmǫq is symmetric under the interchange of m and q whereas ǫqmk is
antisymmetric under the same interchange of indices. Thus, eq. (5) yields

(ǫ̂ · S)3jk = ǫqǫqjk = −ǫq(Sq)jk = −(ǫ̂ · S)jk ,

which establishes eq. (1).
To establish eq. (2), we rewrite ǫ̂ ′

·K given by eq. (3) in block matrix form [analogous to the
form of the Si in eq. (4)],

(ǫ̂ ′
·K)jk =


 0 ǫ′k

ǫ′j 0jk


 , (6)

where 0jk stands for the matrix elements of the 3× 3 zero matrix. In particular, j labels the row
and k labels the column. Then,

(ǫ̂ ′
·K)3jk =



 0 ǫ′ℓ

ǫ′j 0jℓ







 0 ǫ′i

ǫ′ℓ 0ℓi







 0 ǫ′k

ǫ′i 0ik



 =



 ǫ̂ ′
· ǫ̂ ′ 0i

0T

j ǫ′jǫ
′
i







 0 ǫ′k

ǫ′i 0ik





=


 1 0i

0T

j ǫ′jǫ
′
i




 0 ǫ′k

ǫ′i 0ik


 =


 0 ǫ′k

ǫ′j ǫ̂
′
· ǫ̂ ′ 0jk


 =


 0 ǫ′k

ǫ′j 0jk


 = (ǫ̂ ′

·K)jk ,

after using the fact that ǫ̂′ is real unit vector. Once again, eq. (2) is established.

(b) Use the result of part (a) to show that:

exp
(
−ζ β̂ ·K

)
= I − β̂ ·K sinh ζ + (β̂ ·K)2 [cosh ζ − 1] ,

where I is the 4 × 4 identity matrix.

We employ the series expansion for the exponential (which defines the matrix exponential),

exp
(
−ζ β̂ ·K

)
=

∞∑

n=0

(−ζ)n

n!
(β̂ ·K)n . (7)

In part (a), we established the following result: (β̂ ·K)3 = β̂ ·K. Hence, it follows that

(β̂ ·K)2n = (β̂ ·K)2 , (β̂ ·K)2n+1 = β̂ ·K , for n = 1, 2, 3, . . . .

Thus, we can rewrite the series given in eq. (7) as

exp
(
−ζ β̂ ·K

)
= I − β̂ ·K

∑

n odd
n≥1

ζn

n!
+ (β̂ ·K)2

∑

n even
n≥2

ζn

n!
, (8)
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after using the fact that (β̂ ·K)0 = I is the 4 × 4 identity matrix. Using,

∞∑

n=0

ζ2n+1

(2n+ 1)!
= sinh ζ ,

∞∑

n=0

ζ2n

(2n)!
= cosh ζ ,

and noting that the last summation in eq. (8) starts at n = 2, we end up with

exp
(
−ζ β̂ ·K

)
= I − β̂ ·K sinh ζ + (β̂ ·K)2 [cosh ζ − 1] , (9)

which is the desired result.

REMARKS:

To understand the significance of eq. (9), let us write it explicitly in matrix form. It is
convenient to use the block matrix form of eq. (6), where j labels the row and k labels the
column,

I =


 1 0T

k

0j δjk


 , (β̂ ·K)jk =


 0 β̂k

β̂j 0jk


 , (β̂ ·K)2jk =


 1 0T

k

0j β̂jβ̂k


 .

(10)
Then, eq. (9) yields

exp
(
−ζ β̂ ·K

)
=



 cosh ζ −β̂k sinh ζ

−β̂j sinh ζ δjk + β̂jβ̂k(cosh ζ − 1)



 .

In class, we identified ζ = tanh−1 β as the rapidity, which satisfies

γ =
1√

1 − β2
= cosh ζ , βγ = sinh ζ .

Hence, after writing ~β = β β̂ = (β1 , β2 , β3), it follows that

exp
(
−ζ β̂ ·K

)
=




γ −γβk

−γβj δjk + (γ − 1)
βjβk
β2


 , (11)

which we recognize as the boost matrix defined in eq. (11.98) of Jackson.

AN ALTERNATIVE METHOD FOR COMPUTING exp
(
−ζ β̂ ·K

)
:

If ζ = 0, then exp
(
−ζ β̂ ·K

)
= I. Henceforth, we suppose that ζ 6= 0. Using eq. (3),

M ≡ −ζ β̂ ·K =




0 −ζβ1/β −ζβ2/β −ζβ3/β
−ζβ1/β 0 0 0
−ζβ2/β 0 0 0
−ζβ3/β 0 0 0


 , (12)

4



In order to compute f(M) = expM , we shall employ the following formula of matrix algebra.
Denote the m distinct eigenvalues of the n× n matrix M by λi (noting that m ≤ n), and define
the following polynomial,2

p(x) = (x− λ1)(x− λ2) · · · (x− λm) . (13)

Then, M is diagonalizable if and only if p(M) = 0n, where 0n is the n× n zero matrix.3 In this
case, any function of M is given by 4

f(M) =

m∑

i=1

f(λi)




m∏

j=1
j 6=i

M − λjIn

λi − λj


 , (14)

where In is the n× n identify matrix and m is the number of distinct eigenvalues.5

We first compute the eigenvalues of M , which are roots of the characteristic polynomial,

det(M − λI4) = λ4 +
ζβ1
β

det




−ζβ1/β 0 0
−ζβ2/β −λ 0
−ζβ3/β 0 −λ



− ζβ2
β

det




−ζβ1/β −λ 0
−ζβ2/β 0 0
−ζβ3/β 0 −λ





− ζβ3
β

det



−ζβ1/β −λ 0
−ζβ2/β 0 −λ
−ζβ3/β 0 0


 = λ2(λ2 − ζ2) , (15)

after using β2 = β2
1 + β2

2 + β2
3 . Thus, the three distinct eigenvalues of M are λi = 0, ζ , −ζ .

We can check that M is diagonalizable by evaluating:

p(M) = M(M − ζI4)(M + ζI4)

=




0 −ζβ1/β −ζβ2/β −ζβ3/β
−ζβ1/β 0 0 0
−ζβ2/β 0 0 0
−ζβ3/β 0 0 0







−ζ −ζβ1/β −ζβ2/β −ζβ3/β
−ζβ1/β −ζ 0 0
−ζβ2/β 0 −ζ 0
−ζβ3/β 0 0 −ζ




×




ζ −ζβ1/β −ζβ2/β ζβ3/β
−ζβ1/β ζ 0 0
−ζβ2/β 0 ζ 0
−ζβ3/β 0 0 ζ


 . (16)

2Since the n eigenvalues of M are roots of the characteristic polynomial of M , and some of these roots can
have multiplicity greater than one, it follows that the number of distinct eigenvalues m ≤ n.

3A very nice proof of this result can be found in Section 8.3.2 of James B. Carrell, Groups, Matrices, and Vector

Spaces–A Group Theoretic Approach to Linear Algebra (Springer Science+Business Media LLC, New York, NY,
2017).

4For example, see eqs. (7.36) and (7.3.11) of Carl D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM,
Philadelphia, PA, 2000) or Chapter V, Section 2.2 of F.R. Gantmacher, Theory of Matrices–Volume I (Chelsea
Publishing Company, New York, NY, 1959).

5If the n × n matrix M is not diagonalizable then p(M) 6= 0n, in which case the formula for f(M) is more
complicated than the one given in eq. (14). A generalization of the formula for f(M) when M is not diagonalizable
can be found in the references cited in footnote 4 above (although the more general formula is not needed here).
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After multiplying the first two matrices on the right-hand side of eq. (16), we are left with

p(M) = ζ3




1 β1/β β2/β β3/β
β1/β β2

1/β
2 β1β2/β

2 β1β3/β
2

β2/β β1β2/β
2 β2

2/β
2 β2β3/β

2

β3/β β1β3/β
2 β2β3/β

2 β2
3/β

2







1 −β1/β −β2/β β3/β
−β1/β 1 0 0
−β2/β 0 1 0
−β3/β 0 0 1


.

(17)
Carrying out the final matrix multiplication above yields:

p(M) = 04 , (18)

where 04 is the 4 × 4 zero matrix. This computation again confirms that M is diagonalizable, in
which case the formula for f(M) given in eq. (14) is applicable.

We now apply eq. (14) to f(M) = expM . It then follows that

expM = − 1

ζ2
(M − ζI4)(M + ζI4) + eζ

1

2ζ2
M(M + ζI4) + e−ζ 1

2ζ2
M(M − ζI4)

= I4 +

(
sinh ζ

ζ

)
M +

(
cosh ζ − 1

ζ2

)
M2 . (19)

Inserting M = −ζ β̂ · K, we recover the result of eq. (9). Note that in the limit of ζ → 0, we
obtain expM = I4, as expected.

REMARK: The method employed above can be generalized to the computation of the most gen-
eral proper orthochronous Lorentz transformation (which combines boosts and three-dimensional
proper rotations). This computation is explicitly carried out in Howard E. Haber, Explicit form
for the most general Lorentz transformation revisited, Symmetry 2024, 16, 1155 [arXiv:2312.12969
[physics.class-ph]].

2. [Jackson, problem 11.13] An infinitely long straight wire of negligible cross-sectional area is
at rest and has a uniform linear charge density q0 in the inertial frame K ′. The frame K ′ (and
the wire) move with velocity ~v parallel to the direction of the wire with respect to the laboratory
frame K.

(a) Write down the electric and magnetic fields in cylindrical coordinates in the rest frame of
the wire. Using the Lorentz transformation properties of the fields, find the components of the
electric and magnetic fields in the laboratory.

In the rest frame of the wire (i.e. frame K ′), choose the z-axis to point along the wire. Then, to
compute the electric field, we draw a cylinder of length L and radius r′, whose symmetry axis
coincides with the z-axis. Applying Gauss’ law in gaussian units,

∮

S

~E ′
· n̂ da = 4πQ , (20)
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where Q is the total charge enclosed inside the cylinder. In cylindrical coordinates (r′, φ′, z′),6 the

symmetry of the problem implies that ~E ′(r′, φ′, z′) = E ′(r′)r̂′, where E ′(r′) depends only on the
radial distance from the symmetry axis. Choosing the surface S to be the surface of the cylinder,
we have n̂ = r̂′, and so eq. (20) reduces to

2πr′LE ′(r′) = 4πQ .

Defining the linear charge density (i.e. charge per unit length) by q0 = Q/L, we conclude that7

~E ′(r′) =
2q0
r′

r̂′ . (21)

Since there are no moving charges in the rest frame of the wire, it follows that ~B ′ = 0 .
The transformation laws for the electric and magnetic field between reference frames K and

K ′ are given by8

~E = γ
[
~E ′ − ~β × ~B ′

]
− γ2

γ + 1
~β(~β · ~E ′) ,

~B = γ
[
~B ′ + ~β × ~E ′

]
− γ2

γ + 1
~β(~β · ~B ′) .

For this problem, ~β = β ẑ. Using the results of part (a), and noting that r = r′ (since the radial
direction is perpendicular to the direction of the velocity of frame K ′ with respect to K), it follows
that

~E =
2γq0
r

r̂ , ~B =
2γβq0
r

φ̂ , (22)

where we have used ẑ · r̂ = 0 and ẑ × r̂ = φ̂.

(b) What are the charge and current densities associated with the wire in its rest frame? In
the laboratory?

In reference frame K ′ there are no moving charges, so that ~J ′ = 0. The corresponding charge
density is

ρ′(r′) =
q0

2πr′
δ(r′) . (23)

To check this, let us integrate over a cylinder of length L and arbitrary nonzero radius, whose
symmetry axis coincides with the z-axis. Then,

∫
ρ′(r′) dV =

∫
ρ′(r′) r′ dr′ dφ dz′ = q0

∫
dr′δ(r′)dz′ = q0L = Q .

6We denote the radial coordinate of cylindrical coordinates in frame K ′ to be r′ rather than the more traditional
ρ′, since we reserve the letter ρ for charge density.

7The direction of the unit vectors r̂, φ̂ and ẑ are the same in frames K and K ′, so no extra primed-superscript
is required on these quantities.

8Eq. (11.149) of Jackson provides the equations to transform the fields from reference frame K to reference

frame K ′. To transform the fields from K ′ to K, simply change the sign of ~β.
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Since Jµ = (cρ ; ~J) is a four-vector, the relevant transformation law between frames K and K ′

are:

cρ = γ(cρ′ + ~β · ~J ′) , (24)

~J = ~J ′ +
γ − 1

β2
(~β · ~J ′)~β + γ~βcρ′ . (25)

Plugging in ~J ′ = 0 and the result of eq. (23), and noting that ~β = β ẑ and r′ = r, it follows that9

ρ(r) =
γq0
2πr

δ(r) , ~J =
γβc q0
2πr

ẑ δ(r) = ρ(r)vẑ = ρ(r)~v , (26)

after using v ≡ β c.

(c) From the laboratory charge and current densities, calculate directly the electric and mag-
netic fields in the laboratory. Compare with the results of part (a).

This is an electrostatics and magnetostatics problem, so we can use Gauss’ law to compute ~E

and Ampère’s law to compute ~B. The computation of ~E is identical to the one given in part (a)
with q0 replaced by γq0. Hence, it immediately follows from eq. (21) that

~E(r) =
2γq0
r

r̂ ,

in agreement with eq. (22). Ampère’s law in gaussian units is
∮

C

~B · d~ℓ =
4πI

c
,

where I is the current enclosed in the loop C. With ~J given by eq. (26),

I =

∫

A

~J · n̂ da =

∫
ρ(r)v r dr dφ = γq0v ,

after noting that n̂ = ẑ points along the direction of the current flow and da = rdrdφ is the
infinitesimal area element perpendicular to the current flow. Using the symmetry of the problem,
~B = B(r)φ̂. Thus, evaluating Ampère’s law with a contour C given by a circle centered at r = 0

that lies in a plane perpendicular to the current flow, d~ℓ = rdφ~φ and

2πrB(r) =
4πI

c
=

4πγq0v

c
,

which yields

~B(r) =
2γβq0v

r
φ̂ ,

after using v = βc, in agreement with eq. (22).

9We can interpret q ≡ γq0 as the linear charge density as observed in reference frame K. This is not unexpected
due to the phenomenon of length contraction.

8



3. [Jackson, problem 11.15] In a certain reference frame, a static uniform electric field E0 is
parallel to the x-axis, and a static uniform magnetic field B0 = 2E0 lies in the x–y plane, making
an angle θ with respect to the x-axis. Determine the relative velocity of a reference frame in
which the electric and magnetic fields are parallel. What are the fields in this frame for θ ≪ 1
and θ → 1

2
π?

In frame K, we have
~E = E0 x̂ , ~B = Bx x̂ +By ŷ , (27)

with
~E · ~B = |~E| | ~B| cos θ = E0B0 cos θ = 2E2

0 cos θ , (28)

after writing |~E| = E0 and | ~B| = B0 = 2E0. It follows that

Bx = 2E0 cos θ , By = 2E0 sin θ . (29)

The electric and magnetic fields are parallel in a reference frame K ′ which is moving at a
velocity ~v ≡ c~β with respect to reference frame K. That is, the fields in K ′ satisfy,

~E ′
× ~B ′ = 0 . (30)

The electric and magnetic fields in frame K ′ are related to the corresponding fields in frame K
by eq. (11.149) of Jackson,

~E ′ = γ(~E + ~β × ~B) − γ2

γ + 1
~β(~β · ~E) , (31)

~B ′ = γ( ~B − ~β × ~E) − γ2

γ + 1
~β(~β · ~B) . (32)

These relations can be rewritten in the following form,

~E ′
‖ = ~E‖ , ~B ′

‖ = ~B‖ , (33)

~E ′
⊥ = γ

(
~E⊥ + ~β × ~B⊥

)
, ~B ′

⊥ = γ
(
~B⊥ − ~β × ~E⊥

)
. (34)

In eqs. (33) and (34), fields with a ‖ subscript are parallel to ~β and fields with a ⊥ subscript are

perpendicular to ~β. For example, ~β × ~E‖ = 0 and ~β · ~E⊥ = 0, which implies that

~E‖ =
(~β · ~E)~β

β2
and ~E⊥ = ~E − (~β · ~E)~β

β2
=

~β × (~E × ~β)

β2
.

The form of eqs. (33) and (34) suggests that the relative velocity ~v should point in the z-

direction. That is, ~β = β ẑ, in which case ~E‖ = Ezẑ and ~B‖ = Bzẑ. Since Ez = Bz = 0, it
follows from eq. (33) that E ′

z = B′
z = 0. Using eq. (34), the transverse fields are given by

E ′
x = γ(Ex − βBy) = γE0(1 − 2β sin θ) , E ′

y = γ(Ey + βBx) = 2βγE0 cos θ , (35)

B′
x = γ(Bx + βEy) = 2γE0 cos θ , B′

y = γ(Ey + βBx) = γE0(2 sin θ − β) , (36)
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after using eqs. (27)–(29). Moreover, eq. (30) implies that E ′
xB

′
y − E ′

yB
′
x = (~E ′

× ~B ′)z = 0 .
Inserting the results for the primed fields in this last equation, it then follows that

γ2E2
0(1 − 2β sin θ)(2 sin θ − β) − 4βγ2E2

0 cos2 θ = 0 .

Multiplying out the factors above and writing cos2 θ = 1− sin2 θ, the above equation simplifies to

2β2 sin θ − 5β + 2 sin θ = 0 . (37)

This is a quadratic equation in β which is easily solved. The larger of the two roots is greater
than 1, which we reject since 0 ≤ β ≤ 1 (i.e., 0 ≤ v ≤ c). The smaller of the two roots is
non-negative and less than 1. Thus, we conclude that

β =
v

c
=

5 −
√

25 − 16 sin2 θ

4 sin θ
. (38)

The two limiting cases are easily analyzed. In the case of θ ≪ 1, we can work to first order
in θ. From eq. (38) we find that β ≃ 2

5
θ. Since θ ≪ 1 it follows that β ≪ 1, in which case

γ = (1 − β2)−1/2 ≃ 1 + O(β2) .

Since we are working to first order in θ, we also must work to first order in β. In particular we
can neglect terms such as βθ. Hence, in this limiting case, eqs. (35) and (36) yield

~E ′ = 1
2
~B ′ = E0(x̂ + 2βŷ) , for β ≃ 2

5
θ ≪ 1 , (39)

where we have neglected terms that are second order (or higher) in β. Finally, in the limit of
θ → 1

2
π, eq. (38) yields β = 1

2
. Then γ = 2/

√
3, and eqs. (35) and (36) yield

~E ′ = 0 , ~B ′ =
√

3E0ŷ , for θ = 1
2
π . (40)

REMARK 1:

Recall that in class, we showed that the quantity F µνF̃µν = 1
2
ǫµναβF

µνF αβ = −4~E · ~B is a

Lorentz invariant. This means that if ~E and ~B are perpendicular in one frame, then they must
be perpendicular in all frames. Thus, if θ = 1

2
π in frame K and θ = 0 in frame K ′, then it must

be true that either the electric field or the magnetic field (or both) vanish in frame K ′, since the
only vector that is both perpendicular and parallel to a given fixed nonzero vector is the zero
vector. This is indeed the case here, as can be seen in eq. (40).

REMARK 2:

It is easy to show that eq. (38) implies that 0 ≤ β ≤ 1
2
. If we multiply the numerator and

denominator of eq. (38) by 5 +
√

25 − 16 sin2 θ, we obtain,

β =
4 sin θ

5 +
√

25 − 16 sin2 θ
.

10



Since the polar angle lies in the range 0 ≤ θ ≤ π or equivalently 0 ≤ sin θ ≤ 1, it follows
immediately that β ≥ 0 (where β = 0 corresponds to sin θ = 0 as expected). Finally, it is easy to
verify that

4 sin θ

5 +
√

25 − 16 sin2 θ
≤ 1

2
. (41)

Since the denominator on the left hand side above is positive, we can rewrite eq. (41) as

4 sin θ ≤ 1
2

(
5 +

√
25 − 16 sin2 θ

)
. (42)

This inequality is manifestly true for sin θ = 0. For sin θ > 0, eq. (42) can be rearranged into the
following form

8 sin θ − 5 ≤
√

25 − 16 sin2 θ . (43)

Squaring both sides and simplifying the resulting expression then yields sin θ (sin θ − 1) ≤ 0.
Dividing both sides of the equation by sin θ (which is assumed positive) yields 0 ≤ sin θ ≤ 1,
which is valid for all polar angles θ. Hence, eq. (41) is established. The inequality becomes an
equality if sin θ = 1, in which case β = 1

2
.

REMARK 3: Non-uniqueness of the solution

In our analysis above, we found one solution to the problem. However, it is easy to see that
there are an infinite number of solutions. That is, there are an infinite number of Lorentz boost
matrices such that

F ′µν = Λ(~β)µαΛ(~β)νβF
αβ , (44)

where F αβ is the electromagnetic field strength tensor made up of the ~E and ~B fields given in
eqs. (27) and (29), F ′µν is the electromagnetic field strength tensor made up of the ~E ′ and ~B ′

fields such that ~E ′
× ~B ′ = 0, and Λ(~β) is the Lorentz boost matrix in the direction of ~β given

in eq. (11). We have already found one such boost matrix, namely Λ(βẑ), where β is given by

eq. (38). This boost matrix produces the ~E ′ and ~B ′ fields given in eqs. (35) and (36). Since ~E ′

and ~B ′ are parallel in the primed reference frame, we can write

~E ′ = E ′n̂ , ~B ′ = B′n̂ , (45)

where n̂ is the common direction of ~E ′ and ~B ′. Using eq. (35), one obtains an explicit form for
n̂ that is given by,

n̂ =
(1 − 2β sin θ)x̂ + 2β cos θ ŷ√

1 − 4β sin θ + 4β2
=

(sin θ − 2β)~E + β cos θ ~B

E0 sin θ
√

1 − 4β sin θ + 4β2
, (46)

where β is given by eq. (38). We used eqs. (27)–(29) to obtain the final expression above.
If one applies the following Lorentz transformation to reference frame K,

Λ = Λ(β ′n̂)Λ(βẑ) , (47)

then in the resulting reference frame K ′′ the ~E ′ and ~B ′ fields are also parallel, for any choice of β ′.
This result follows from eq. (33), which states that the components of the electric and magnetic
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field that are parallel to the boost direction are unaffected by the Lorentz transformation. Having
found the reference frame K ′ after applying Λ(βẑ) where ~E ′ and ~B ′ are parallel and point in the
n̂ direction, one can perform an arbitrary boost in the direction parallel to n̂ without modifying
~E ′ and ~B ′ further.

One can evaluate the right hand side of eq. (47) explicitly. Here, I will make use of Pawe l
Klimas, Lecture Notes on Classical Electrodynamics, which has been posted to the Physics 214
webpage. Using eqs. (1.73) and (1.78) of Klimas’ notes,

Λ(β ′n̂)Λ(βẑ) = OΛ(~β ′′) , (48)

where O is a Lorentz transformation corresponding to a pure rotation10 and

~β ′′ =
1

1 + ββ ′n̂ · ẑ

[
β ′n̂

γ
+

(
1 +

γββ ′

γ + 1
n̂ · ẑ

)
βẑ

]
, (49)

where γ ≡ (1 − β2)−1/2. In light of eq. (46), it follows that n̂ · ẑ = 0, and eq. (49) simplifies to11

~β ′′ = β ′(1 − β2)1/2 n̂ + βẑ . (50)

Note that the parallel electric and magnetic field remain parallel if one transforms the reference
frame by a pure rotation. Thus, we can neglect the pure rotation O in eq. (47) to conclude that

starting from reference frame K, the application of the boost Λ(~β ′′) to produce reference frame

K ′′ yields ~E ′′ and ~B ′′ fields that are parallel.
To summarize, the complete answer to the problem posed by Jackson (although probably not

what Jackson meant to ask) is that any boost of the form Λ
(
β ′(1 − β2)1/2 n̂ + βẑ

)
, where β and

n̂ are fixed by eqs. (38) and (46), respectively, will yield a reference frame K ′′ such that the ~E ′′

and ~B ′′ fields are parallel, for any choice of the parameter β ′, where 0 ≤ β ′ ≤ 1.

REMARK 4:

An alternative solution to Jackson, Problem 11.15 is provided in an Appendix at the end of
this Solution Set.

4. [Jackson, problem 11.18] The electric and magnetic fields of a particle of charge q moving
in a straight line with speed v = βc, given by eq. (11.52) of Jackson, become more and more
concentrated as β → 1, as indicated in Fig. 11.9 on p. 561 of Jackson. Choose axes so that
the charge moves along the z axis in the positive direction, passing the origin at t = 0. Let the
spatial coordinates of the observation point be (x, y, z) and define the transverse vector ~r⊥, with
components x and y. Consider the fields and the source in the limit of β = 1.

10The rotation O is called the Wigner rotation. As explained below eq. (50), the parallel electric and magnetic
fields remain parallel under a pure rotation, and thus we will not require an explicit expression for the Wigner
rotation in this problem.

11If we define β′′ ≡ |~β ′′|, then β′′ 2 = β′ 2(1 − β2) + β2. One can then check that 0 ≤ β2, β′ 2 ≤ 1 implies that
0 ≤ β′′ 2 ≤ 1, as required by special relativity.
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q

(x, y, z)

~R

~vt

~r

x

z

ψ

Figure 1: A charge q moving at constant velocity ~v in the z-direction as seen from reference frame
K. The angle ψ is defined so that v̂ · R̂ = cosψ.

(a) Show that the fields can be written as

~E = 2q
~r⊥

r2⊥
δ(ct− z) , ~B = 2q

v̂ × ~r⊥

r2⊥
δ(ct− z) , (51)

where v̂ is a unit vector in the direction of the particle’s velocity.

We begin with eq. (11.154) on p. 560 of Jackson,

~E =
q ~R

R3γ2(1 − β2 sin2 ψ)3/2
, (52)

where ψ is the angle between the vectors ~v and ~R. I have modified Jackson’s notation by
employing the symbol ~R for the vector that points from the charge q to the observation point ~r =
(x, y, z) in reference frame K.12 Eq. (52) was also derived in class along with the corresponding
result for the magnetic field,

~B =
q(~v × ~R)

cR3γ2(1 − β2 sin2 ψ)3/2
. (53)

The reference frame K is exhibited in Fig. 1. It is evident from this figure that

~R = ~r − ~vt . (54)

The velocity vector is taken to lie along the z-direction. That is, ~v = vẑ.
It is convenient to introduce the notation where

~r⊥ = xx̂ + yŷ , ~r‖ = z~z , (55)

so that ~r⊥ ·~v = 0 and ~r‖×~v = 0. Likewise, we can resolve the vector ~R into components parallel
and perpendicular to the velocity vector,

~R = ~R‖ + ~R⊥ ,

12Jackson denotes the vector that points from the charge q to the observation point (x, y, z) by ~r. However,
I prefer to employ ~r to represent the vector that points from the origin of reference frame K to the observation
point, as shown in Fig. 1.
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where
~R‖ ≡ R‖ẑ = (z − vt)ẑ , ~R⊥ = ~r⊥ . (56)

after making use of eq. (54). In particular, note that | ~R⊥| ≡ R⊥ = R sinψ. It follows that

R3(1 − β2 sin2 ψ)3/2 = (R2 − β2R2 sin2 ψ)3/2 = (R2
⊥ +R2

‖ − β2R2
⊥)3/2

= [R2
‖ +R2

⊥(1 − β2)]3/2 = (R2
‖ +R2

⊥/γ
2)3/2 . (57)

Note that in obtaining eq. (57) we used R2 = R2
⊥ + R2

‖ and γ ≡ (1 − β2)−1/2. Moreover, since

~R⊥ = ~r⊥ [cf. eq. (56)], we may replace R⊥ with r⊥ ≡ |~r⊥| = (x2 + y2)1/2 in the above formulae.
Eqs. (52), (56) and (57) then yield

~E =
γq
[
~r⊥ + (z − vt)ẑ

]

(γ2R2
‖ + r2⊥)3/2

. (58)

Likewise, eqs.(53), (56) and (57) yield

~B =
γq(~v × ~r⊥)

c(γ2R2
‖ + r2⊥)3/2

. (59)

Consider the limit of β → 1. In this limit, γ → ∞, and we see that

lim
γ→∞

γ

(γ2R2
‖ + r2⊥)3/2

=

{
0 , if R‖ 6= 0 ,

∞ , if R‖ = 0 .

This implies that

lim
γ→∞

γ

(γ2R2
‖ + r2⊥)3/2

= Kδ(R‖) , (60)

for some constant K. Note that in light of eq. (56),

lim
γ→∞

R‖ = z − ct ,

since γ → ∞ in the limit of v → c. To determine K, we integrate eq. (60) from −∞ to ∞,
since R‖ can be any real number (either positive, negative or zero) depending on the value of the
time t. Thus, employing the substitution u = γR‖,

K =

∫ ∞

−∞

γ dR‖

(γ2R2
‖ + r2⊥)3/2

=

∫ ∞

−∞

du

(u2 + r2⊥)3/2
=

u

r2⊥(u2 + r2⊥)1/2

∣∣∣∣
∞

−∞

=
2

r2⊥
. (61)

Hence, we conclude that

lim
γ→∞

γ

(γ2R2
‖ + r2⊥)3/2

=
2

r2⊥
δ(z − ct) . (62)

Note that in the limit of v → c, we can insert the result of eq. (62) back into eq. (58), and
make use of the well-known property of the delta function,

(z − ct)δ(z − ct) = 0 , (63)
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to obtain

lim
v→c

Ez =
2q

r2⊥
(z − ct)δ(z − ct) = 0 . (64)

It therefore follows that

lim
v→c

~E = 2q
~r⊥

r2⊥
δ(z − ct) . (65)

Likewise, in light of the observation that limv→c ~v/c = v̂, when we insert the result of eq. (62)
back into eq. (59), we end up with

lim
v→c

~B = 2q
v̂× ~r⊥

r2⊥
δ(z − ct) . (66)

Since the delta function is an even function of its argument, we can write δ(z− ct) = δ(ct− z) in
eqs. (65) and (66), and eq. (51) is verified.

An alternate solution to part (a)

I cannot resist sharing an alternate solution suggested by one of the Physics 214 students
(with additional modifications to the original analysis added below).

Starting from eq. (58) and defining a new variable w ≡ z − vt, consider the following Fourier

transform of ~E⊥(~r⊥, w),

~E⊥(~r⊥, k) =

∫ ∞

−∞

~E⊥(~r⊥, w)e−ikw dw = γq~r⊥

∫ ∞

−∞

dw

(γ2w2 + r2⊥)3/2
e−ikw . (67)

We can change the integration variable w → γw to obtain,

~E⊥(~r⊥, k) = q~r⊥

∫ ∞

−∞

dw

(w2 + r2⊥)3/2
e−ikw/γ . (68)

If we formally take the limit v → c, or equivalently γ → ∞, then e−ikw/γ → 1. This limit needs
justification, since for finite but very large γ, it is not clear that one can ignore higher order terms.
I will attempt to justify this step at the end. Meanwhile, if we go ahead and take the formal limit
of e−ikw/γ → 1, then

lim
γ→∞

~E⊥(~r⊥, k) = q~r⊥

∫ ∞

−∞

dw

(w2 + r2⊥)3/2
=

2q~r⊥

r2⊥
. (69)

If we now compute the inverse Fourier integral to determine the γ → ∞ limit of E⊥(~r⊥, w), then

lim
γ→∞

~E⊥(~r⊥, w) = lim
γ→∞

1

2π

∫ ∞

−∞

~E⊥(~r⊥, k) eikw =
2q~r⊥

r2⊥

1

2π

∫ ∞

−∞

eikwdk =
2q~r⊥

r2⊥
δ(w) . (70)

Since limγ→∞w = limv→c w = z − ct, we end up with

lim
v→c

~E⊥(~r⊥, w) =
2q~r⊥

r2⊥
δ(z − ct) . (71)
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In essence, the somewhat mathematical dubious steps above have effectively provided a method
for determining the coefficient of the delta function in eq. (71). Indeed, this is not surprising, as the
integration carried out in eq. (69) is precisely the same integration that was used in determining
the constant K in eq. (61).

However, we still must determine limγ→∞Ez(~r⊥, w). Following the steps that yielded eq. (67),

Ez(~r⊥, k) =

∫ ∞

−∞

Ez(~r⊥, w)e−ikw dw = γq

∫ ∞

−∞

w dw

(γ2w2 + r2⊥)3/2
e−ikw . (72)

This time, if we change the integration variable w → γw, then

Ez(~r⊥, k) =
q

γ

∫ ∞

−∞

w dw

(w2 + r2⊥)3/2
e−ikw/γ , (73)

Hence, in the limit of γ → ∞, it follows that

lim
γ→∞

Ez(~r⊥, k) = 0 . (74)

The inverse Fourier transform then yields,

lim
γ→∞

Ez(~r⊥, w) = lim
γ→∞

1

2π

∫ ∞

−∞

Ez(~r⊥, k) eikw = 0 . (75)

Finally, let’s try to justify the γ → ∞ limit taken below eq. (68). First, we break up the
integral in eq. (68) from −∞ to 0 and then from 0 to ∞. In the first integral, we change variables
w → −w. We can now combine the sum of the resulting two integrals into

~E⊥(~r⊥, k) = 2q~r⊥

∫ ∞

0

cos
(
kw/γ)dw

(w2 + r2⊥)3/2
. (76)

We first note formula 3.754 no. 2 on p. 439 of I.S. Gradschteyn and I.M. Ryzhik, Table of Integrals,
Series, and Products (8th edition), edited by Daniel Zwillinger (Academic Press, Waltham, MA,
2015), henceforth to be denoted by G&R,

K0(ab) =

∫ ∞

0

cos(ax) dx√
x2 + b2

, for a > 0 and Re b > 0 , (77)

where K0 is the modified Bessel function of the 2nd kind. Taking the derivative of this formula
using G&R formula 8.486 no. 18 on p. 938,

d

dz
K0(z) = −K1(z) , (78)

we obtain

K1(ab) =
b

a

∫ ∞

0

cos(ax) dx

(x2 + b2)3/2
, for a > 0 and Re b > 0 , (79)

Identifying x→ w, a→ k/γ and b→ r⊥, it follows that

~E⊥(~r⊥, k) =
2kq~r⊥

γr⊥
K1

(
kr⊥
γ

)
. (80)
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In the limit of γ → ∞, we need to make use of the small argument approximation of K1(z).
G&R formulae 8.445–8.446 on p. 928 provides the necessary expansions. However, for me, it is
easier to first write down the small argument expansion of K0(z), and then differentiate using
eq. (78) to get the small argument expansion of K1(z). G&R formula 8.447 gives

K0(z) =

∞∑

k=0

z2k

22k(k!)2

[
− ln

(z
2

)
− γE +

k∑

j=1

1

j

]
, (81)

after making use of G&R, formula 8.365 nos. 1 and 4 on p. 913, where γE = 0.5772156649 . . . is

the Euler-Mascheroni constant, and by convention
∑k

j=1 is assigned the value zero when k = 0
(corresponding to the case of the “empty sum”). Using eqs. (78) and (81), one obtains

K1(z) =
1

z
+
z

2

[
ln
(z

2

)
+ γE − 1

2

]
+ O(z3 ln z) . (82)

Inserting this expansion into eq. (80),

~E⊥(~r⊥, k) =
2q~r⊥

r2⊥
+ O

(
ln γ

γ2

)
, (83)

which justifies the γ → ∞ limit quoted in eq. (69). It is still not clear that one can mathematically

justify obtaining ~E⊥(~r⊥, w) as we did in eq. (70) for very large but finite γ (due, in part, to the
presence of terms that go as ln γ), although the leading term at large γ does yield the correct
result in the sense of distributions.

(b) Show by substitution into the Maxwell equations that these fields are consistent with the
4-vector source density

Jα = qcvαδ(2)(~r⊥)δ(ct− z) ,

where the 4-vector vα = (1 ; v̂).

The four-vector current is given by Jµ = (cρ ; ~J). Hence, using the Maxwell equations in gaussian
units,

~∇· ~E = 4πρ =
4πJ0

c
.

Using eqs. (65) and (66) and noting that Ez = 0, it follows that

J0 =
c

4π
~∇· ~E =

c

4π

(
~∇⊥ ·

~E +
∂Ez

∂z

)
=
qc

2π
δ(z − ct)~∇⊥ ·

(
~r⊥

r2⊥

)
, (84)

where
~∇⊥ ≡ x̂ ∂/∂x + ŷ ∂/∂y . (85)

For ~r⊥ ≡ x x̂ + y ŷ 6= 0, an elementary computation yields

~∇⊥ ·

(
~r⊥

r2⊥

)
=

∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)
=

y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2
= 0 . (86)
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To determine the behavior at ~r⊥ = 0, we consider the two-dimensional analogue of the divergence
theorem, ∫

A

dxdy ~∇⊥ ·

(
~r⊥

r2⊥

)
=

∮

C

r⊥dφ
~r⊥

r2⊥
·r̂⊥ =

∫ 2π

0

dφ = 2π , (87)

where A is a circular disk and C is the circular boundary of the disk. Note that r̂⊥ = ~r⊥/r⊥ is
the outward normal to the circular boundary.

Eqs. (86) and (87) imply that

~∇⊥ ·

(
~r⊥

r2⊥

)
= 2πδ(2)(~r⊥) , (88)

where δ(2)(~r⊥) is a two-dimensional delta function. Inserting this result into eq. (84), we end up
with

J0 = qcδ(2)(~r⊥)δ(z − ct) . (89)

Next, we employ the Maxwell equation,

~∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J , (90)

to evaluate ~J . First, we compute

v̂ × ~r⊥ = ẑ × (xx̂ + yŷ) = xŷ − yx̂ , (91)

where we have used the fact that ~v points in the z direction. It then follows that

~∇×

[
v̂ × ~r⊥

r2⊥
δ(z − ct)

]
= det




x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z
−y

x2 + y2
δ(z − ct)

x

x2 + y2
δ(z − ct) 0



. (92)

Evaluating the determinant and making use of eqs. (55), (85) and (88) yields,

~∇×

[
v̂ × ~r⊥

r2⊥
δ(z − ct)

]
= −xx̂ + yŷ

x2 + y2
δ′(z − ct) +

{
∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)}
δ(z − ct)

= −~r⊥

r2⊥
δ′(z − ct) + ẑ ~∇⊥ ·

(
~r⊥

r2⊥

)
δ(z − ct)

= −~r⊥

r2⊥
δ′(z − ct) + 2πẑ δ(2)(~r⊥)δ(z − ct) . (93)

The prime refers to differentiation with respect to z. Finally, we compute

∂

∂t

(
~r⊥

r2⊥
δ(z − ct)

)
= −c ∂

∂z

(
~r⊥

r2⊥
δ(z − ct)

)
= −c~r⊥

r2⊥
δ′(z − ct) . (94)
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Inserting eqs. (65) and (66) into eq. (90) and using eqs. (93) and (94), we obtain

~J =
qc

2π
~∇×

[
v̂ × ~r⊥

r2⊥
δ(z − ct)

]
− q

2π

∂

∂t

(
~r⊥

r2⊥
δ(z − ct)

)

=
qc

2π

{
−~r⊥

r2⊥
δ′(z − ct) + 2πẑ δ(2)(~r⊥)δ(z − ct) +

~r⊥

r2⊥
δ′(z − ct)

}

= qcv̂ δ(2)(~r⊥)δ(z − ct) , (95)

after using the fact that v̂ = ẑ. Combining eqs. (89) and (95), we can write

Jα = qcvαδ(2)(~r⊥)δ(z − ct) ,

where the four-vector vα = (1 ; v̂).

(c) Show that the fields of part (a) are derivable from either of the following 4-vector potentials:

A0 = Az = −2qδ(ct− z) ln(λr⊥) , ~A⊥ = 0 , (96)

or
A0 = Az = 0 , ~A⊥ = −2qΘ(ct− z)~∇⊥ ln(λr⊥) , (97)

where λ is an irrelevant parameter setting the scale of the logarithm. Show that the two potentials
differ by a gauge transformation and find the corresponding gauge function χ.

The four-vector potential is Aµ = (Φ ; ~A). Given the four-vector potential, the electromagnetic
fields are determined by

~E = −~∇A0 − 1

c

∂ ~A

∂t
, ~B = ~∇× ~A .

Inserting the scalar and vector potentials given in eq. (96),

~E = 2q~∇
[
δ(ct− z) ln(λr⊥)

]
+

2q

c
ẑ ln(λr⊥)

∂

∂t
δ(ct− z)

= 2qδ(z − ct)

(
x̂
∂

∂x
+ ŷ

∂

∂y

)[
1
2

ln(x2 + y2) + lnλ
]

+ 2qẑ ln(λr⊥)

(
∂

∂z
+

1

c

∂

∂t

)
δ(ct− z)

= 2q
~r⊥

r2⊥
δ(z − ct) ,

after using ~r⊥ = xx̂ + yŷ and r2⊥ = x2 + y2. In particular, note that

(
∂

∂z
+

1

c

∂

∂t

)
f(ct− z) = 0 ,
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for any function of ct− z. Using eq. (96) to compute the magnetic field,

~B = ~∇× ~A = det




x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

0 0 −2q ln(λr⊥)δ(ct− z)




= −2qδ(ct− z)

{
x̂
∂

∂y
ln(λr⊥) − ŷ

∂

∂x
ln(λr⊥)

}

= −2qδ(ct− z)

{
x̂
∂

∂y

[
1
2

ln(x2 + y2) + lnλ
]
− ŷ

∂

∂x

[
1
2

ln(x2 + y2) + lnλ
]}

= −2q

r2⊥
(yx̂− xŷ)δ(ct− z) = 2q

v̂ × ~r⊥

r2⊥
δ(ct− z) ,

after employing eq. (91).
Repeating these calculations using eq. (97),

~E = −1

c

∂ ~A⊥

∂t
= 2qδ(ct− z)

(
x̂
∂

∂x
+ ŷ

∂

∂y

)[
1
2

ln(x2 + y2) + lnλ
]

= 2q
~r⊥

r2⊥
δ(ct− z) ,

after using the relation between the delta function and the step function, δ(x) =
d

dx
Θ(x). In the

computation of the magnetic field, we require the following result:

~∇⊥ ln(λr⊥) =

(
x̂
∂

∂x
+ ŷ

∂

∂y

)[
1
2

ln(x2 + y2) + lnλ
]

=
xx̂ + yŷ

x2 + y2
.

Hence, it follows that

~B = ~∇× ~A = −2q det




x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

Θ(ct− z)
x

x2 + y2
Θ(ct− z)

y

x2 + y2
0




=
yx̂− xŷ

x2 + y2
δ(ct− z) + ẑ Θ(ct− z)

{
∂

∂x

(
y

x2 + y2

)
− ∂

∂y

(
x

x2 + y2

)}

= 2q
v̂ × ~r⊥

r2⊥
δ(ct− z) ,

after employing eq. (91) and noting that

∂

∂x

(
y

x2 + y2

)
− ∂

∂y

(
x

x2 + y2

)
= − 2xy

(x2 + y2)2
+

2xy

(x2 + y2)2
= 0 .
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Finally, we demonstrate that eqs. (96) and (97) differ by a gauge transformation. Under a
gauge transformation (using gaussian units),

~A → ~A ′ = ~A + ~∇χ , A0 → A′ 0 = A0 − 1

c

∂χ

∂t
.

Denoting Aµ by eq. (96) and A′µ by eq. (97), it follows that

∂χ

∂t
= −2qcδ(ct− z) ln(λr⊥) ,

~∇⊥χ = −2qΘ(ct− z)~∇⊥ ln(λr⊥) ,

∂χ

∂z
= 2qδ(ct− z) ln(λr⊥) .

The solution to these equations can be determined by inspection,

χ(~x, t) = −2qΘ(ct− z) ln(λr⊥) ,

up to an overall additive constant.

5. [Jackson, problem 11.22] The presence in the universe of an apparently uniform “sea” of
blackbody radiation at a temperature of roughly 3K gives one mechanism for an upper limit on the
energies of photons that have traveled an appreciable distance since their creation. Photon-photon
collisions can result in the creation of a charged particle and its antiparticle (“pair creation”) if
there is sufficient energy in the center of “mass” of the two photons. The lowest threshold and
also the largest cross section occurs for an electron-positron pair.

(a) Taking the energy of a typical 3K photon to be E = 2.5×10−4 eV, calculate the energy for
an incident photon such that there is energy just sufficient to make an electron-positron pair. For
photons with energies larger than this threshold value, the cross section increases to a maximum
of the order of (e2/mc2)2 and then decreases slowly at higher energies. This interaction is one
mechanism for the disappearance of such photons as they travel cosmological distances.

Since the photon is massless, it can be described by a four-vector of the form k = E(1 ; n̂), where
E is the photon energy and n̂ is the unit vector that points along the direction of the photon
three-momentum. Note that k2 ≡ gµνk

µkν = 0, which indicates that the photon is massless.
Denote the four-momentum vectors of the two photons by

k1 = E1(1 ; n̂1) , k2 = E2(1 ; n̂2) , (98)

where the subscripts 1 and 2 above label the kinematic quantities of the two photons. We are
given E1 = 2.5 × 104 eV, and we are asked to find the minimum allowed energy E2 such that the
process γγ → e+e− is kinematically allowed. Let p1 and p2 denote the four-momentum vectors of
the electron and positron, respectively. Using the conservation of four-momentum,

k1 + k2 = p1 + p2 . (99)
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If the process γγ → e+e− is kinematically allowed, then the minimal value that (p1+p2)
2 can take

occurs when the electron and positron (each with equal mass me = 511 keV/c2 = 5.11×105 eV/c2)
are produced at rest in the center-of mass reference frame of the e+e− pair. That is, the minimal
value that (p1 + p2)

2 can take occurs when p1 = p2 = (mec
2 ; 0, 0, 0). It follows that the minimal

value of (p1 + p2)
2 is equal to 4m2

ec
4. Since (p1 + p2)

2 is Lorentz invariant (and therefore can be
evaluated in any reference frame with the same result), one can conclude that

(k1 + k2)
2 ≥ 4m2

ec
4 , (100)

after squaring both sides of eq. (99). Using eq. (98), we obtain

(E1 + E2)
2 − (E1n̂1 + E2n̂2)2 ≥ 4m2

ec
4 . (101)

Simplifying the above equation yields

E1E2(1 − cos θ) ≥ 2m2
ec

4 , (102)

where cos θ = n̂1 · n̂2. Since | cos θ| ≤ 1, the minimum value of E2 arises when cos θ = −1. In
this case, we end up with E1E2 ≥ m2

ec
4. Putting in the numbers,

E2 ≥
m2

ec
4

E1
=

(5.11 × 105 eV)2

2.5 × 10−4 eV
= 1.04 × 1015 eV = 1.04 PeV . (103)

(b) There is some evidence for a diffuse x-ray background with photons having energies of
several hundred electron volts or more. Beyond 1 keV the spectrum falls as E−n with n ≃ 1.5.
Repeat the calculation of the threshold incident energy, assuming that the energy of the photon
in the “sea” is 500 eV.

In this case, we use eq. (103) but we replace the denominator with 500 eV. The end result is

E2 ≥
m2

ec
4

E1
=

(5.11 × 105 eV)2

5 × 102 eV
= 5.22 × 108 eV = 522 MeV . (104)

6. [Jackson, problem 11.28] Revisit Problems 6.21 and 6.22 of Jackson from the viewpoint of
Lorentz transformations. An electric dipole instantaneously at rest at the origin in the frame K ′

has potentials, Φ′ = ~p · ~x ′/r′ 3 (where r′ ≡ |~x ′|), and ~A ′ = 0 (and thus only an electric field).

The frame K ′ moves with uniform velocity ~v = ~β c in the frame K.

(a) Show that in frame K to first order in β, the potentials are

Φ =
~p · ~R

R3
, ~A = ~β

~p · ~R

R3
, (105)

where ~R = ~x− ~x0(t), with ~v = d~x0/dt at time t.
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Here, we shall follow the analysis of the class handout entitled The electromagnetic fields of a

uniformly moving charge. Consider an electric dipole with dipole moment vector ~p moving at
constant velocity ~v with respect to the laboratory frame K. The rest frame of the electric dipole
will be denoted by K ′. In particular, we define the origin of K ′ to be the location of the charge.
A laboratory observer is located at the point ~x = (x, y, z), which denotes the vector that points
from the origin of the laboratory frame to the observer. As seen in the rest frame of the electric
dipole, the observer is located at the point ~x ′ = (x′, y′, z′), which denotes the vector that points
from the origin of K ′ to the observer.

At time t = 0, the electric dipole is located at the origin of the laboratory frame. After a
time t has elapsed (as measured in frame K), the electric dipole is located at the point ~vt in the
laboratory frame. It is convenient to define the axes of the K ′ coordinate system such that the K
and K ′ coordinate systems (and their origins) coincide at t = t′ = 0. As usual we define x0 ≡ ct
and x′0 ≡ ct′. The relation between (x0 ; ~x) and (x′0 ; ~x ′) is given by

x′0 = γ(x0 − ~β·~x) , (106)

~x ′ = ~x +
(γ − 1)

β2
(~β·~x)~β − γ~βx0 , (107)

where
~β ≡ ~v/c , β ≡ |~β| , γ ≡ 1√

1 − β2
.

Since the scalar potential Φ and the vector potential ~A make up a four vector Aµ = (Φ ; ~A),
the corresponding transformation laws are the same as those for xµ = (x0 ; ~x). Hence,

Φ′(~x ′) = γ
(
Φ(~x, t) − ~β· ~A(~x, t)

)
, (108)

~A
′(~x ′, t′) = ~A(~x, t) +

(γ − 1)

β2

(
~β· ~A(~x, t)

)
~β − γ~βΦ(~x, t) , (109)

We can invert these transformation laws by interchanging primed and unprimed variables and
taking ~β → −~β. Thus,

Φ(~x, t) = γ
(
Φ′(~x ′, t′) + ~β· ~A

′
(~x ′, t′)

)
, (110)

~A(~x, t) = ~A
′(~x ′, t′) +

(γ − 1)

β2

(
~β· ~A

′(~x ′, t′)
)
~β + γ~βΦ′ , (111)

Let us compare the views from reference frames K and K ′. The moving electric dipole as
seen from the laboratory frame K is shown in Fig. 2. In addition, we define ~R to be the vector
in frame K that points from the location of the electric dipole at time t to the location of the
observer. It follows that ~x0 = ~vt. Hence, we can identify:

~R = ~x− c ~β t . (112)

The rest frame K ′ of the moving electric dipole is depicted in Fig. 3. In this frame, the vector
that points from the origin of frame K to the location of the electric dipole is ~vt′, where t′ is
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~p

(x, y, z)

~R

~x0 = ~vt

~x

x

z
O

Figure 2: An electric dipole ~p moving at constant velocity ~v in the z-direction as seen from reference frameK.
The origin of the laboratory frame K is denoted by O, and ~x0 is the location of the electric dipole at time t.

~p

(x′, y′, z′)

~x ′

~vt′

x

z′

x′

O

Figure 3: An electric dipole ~p moving at constant velocity ~v in the z′-direction as seen from reference
frame K ′. The origin of the laboratory frame K is denoted by O. The x-axis of frame K is indicated by a
dashed line.

the time elapsed as measured in frame K ′ (where t = t′ = 0 marks the time when the frames K
and K ′ coincided). In particular, note that eq. (107) can be rewritten in the following equivalent
form,

~x ′ = ~R +
(γ − 1)

β2

(
~β · ~R

)
~β , (113)

after noting that ~βx0 = ~vt.
In the rest frameK ′ of the electric dipole, the scalar and vector potentials are time-independent

and are given by

Φ′(~x ′, t′) =
~p · ~x ′

r′ 3
, ~A ′(~x ′, t′) = 0 . (114)

where r′ ≡ |~x ′|. After making use of eq. (113), and using γ2 − 1 = β2γ2 to simplify the resulting
expression, we end up with

r′ 2 ≡ |~x ′|2 = R2 + γ2(~β · ~R)2 , (115)

where R ≡ | ~R|. Hence, using eqs. (107) and (114) with ~x ′ and r′ given by eqs. (113) and (115),
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respectively, we obtain:

Φ(~x, t) = γΦ′(~x ′, t′) =
γ ~p · ~R + γ(γ − 1)

(
~β · ~R

)(
~p · ~β

)
/β2

[
R2 + γ2(~β · ~R)2

]
3/2

, (116)

Likewise, setting ~A
′ = 0 in eqs. (110) and (111) yields

~A(~x, t) = ~β Φ(~x, t) . (117)

Since Jackson only asks for the expressions for Φ and ~A to first order in β, the above results
simplify greatly. In particular, γ = (1 − β2)−1/2 = 1 + O(β2). Hence, eqs. (116) and (117) yield

Φ(~x, t) =
~p · ~R

R3
+ O(β2) , ~A(~x, t) = ~β

~p · ~R

R3
+ O(β2) , (118)

where ~R ≡ ~x− c~βt, in agreement with the results quoted in eq. (105).
Note that ~p is the electric dipole moment vector in the rest frame of the electric dipole. It is

an intrinsic property of the particle (like the mass). So, there is no problem in using this quantity
in the expressions for the scalar and vector potential in the laboratory frame K.

(b) Show explicitly that the potentials in K satisfy the Lorenz condition.

The Lorenz condition,

∂µA
µ = ~∇ · ~A +

1

c

∂Φ

∂t
= 0 , (119)

is a Lorentz-invariant condition that is trivially satisfied in the reference frame K ′, where ~A ′ = 0
and Φ′ = ~p · ~x ′/r′ 3 is time independent. Thus, eq. (119) is also satisfied in reference frame K ′

since it must be satisfied in any inertial reference frame.
One can also verify explicitly that eq. (119) is satisfied in reference frame K. First, note

that ~∇ = ~∇R, where ~∇ = (∂/∂x1 , ∂/∂x2 , ∂/∂x3), and ~∇R = (∂/∂R1 , ∂/∂R2 , ∂/∂R3
)
, where

Ri = xi− cβt (i = 1, 2, 3) are the components of the vector ~R. Moreover, the time-dependence of

Φ(~x, t) is due to the time dependence of ~R = ~x− cβt [cf. eq. (116)]. Hence, using the chain rule,

1

c

∂Φ

∂t
=

1

c

∂ ~R

∂t
· ~∇RΦ = −~β· ~∇RΦ . (120)

Finally, since ~A = ~βΦ [cf. eq. (117)],

~∇ · ~A = ~∇R ·
(
~βΦ
)

= ~β· ~∇RΦ + Φ~∇R ·
~β = ~β· ~∇RΦ , (121)

since ~β is fixed (and thus independent of ~R). Adding eqs. (120) and (121) yields

~∇ · ~A +
1

c

∂Φ

∂t
= 0 , (122)

and the Lorenz condition is established (without any approximations).
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(c) Show that to first order in β, the electric field ~E in K is just the electric dipole field
(centered at ~x0), or a dipole field plus time-dependent higher multipoles, if viewed from a fixed

origin, and the magnetic field is ~B = ~β × ~E. Where is the effective magnetic dipole moment of
Jackson, Problem 6.21 or Problem 11.27 part (a)?

In reference frame K ′, the electric and magnetic fields due to an electric dipole ~p is given by:

~E
′(~x ′) = −~∇

′Φ′ − 1

c

∂ ~A
′

dt′
= −~∇

′

(
~p · ~x ′

r′ 3

)
=

3~x ′(~p · ~x ′)

r′ 5
− ~p

r′ 3
, (123)

~B
′(~x ′) = ~∇

′
× ~A

′ = 0 , (124)

under the assumption that r′ ≡ |~x ′| 6= 0.13

The electric and magnetic fields in frame K ′ are related to the corresponding fields in frame
K by eq. (11.149) of Jackson. To obtain the electric and magnetic fields in frame K in terms of

the corresponding fields in frame K ′, one simply changes ~β → −~β. That is,

~E = γ(~E ′ − ~β × ~B ′) − γ2

γ + 1
~β(~β · ~E ′) , (125)

~B = γ( ~B ′ + ~β × ~E ′) − γ2

γ + 1
~β(~β · ~B ′) . (126)

Since ~B ′ = 0, these equations simplify to

~E = γ ~E ′ − γ2

γ + 1
~β(~β · ~E ′) , (127)

~B = γ~β × ~E ′ . (128)

Noting that ~β × ~E = γ~β × ~E ′, it follows that

~B = ~β × ~E . (129)

Neglecting terms of O(β2), it follows that γ = 1 + O(β2) and

γ2β2

γ + 1
= γ − 1 = O(β2) . (130)

In this approximation, eq. (127) reduces to

~E = ~E ′ + O(β2) =
3~x ′(~p · ~x ′)

r′ 5
− ~p

r′ 3
+ O(β2) , (131)

after making use of eq. (123). Finally, we note that eqs. (113) and (115) yield, ~x ′ = ~R + O(β2)
and r′ = R + O(β2). Inserting these results into eq. (131), we end up with

~E =
3 ~R(~p · ~R)

R5
− ~p

R3
+ O(β2) , ~B = ~β × ~E . (132)

13By assuming that r′ 6= 0, we explicitly exclude the delta function singularity at ~x ′ = 0 in the expression for
~E

′(~x ′), which is exhibited in eq. (4.20) of Jackson.
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Recall that ~R ≡ ~x − ~x0, where ~x0 = ~vt. Hence, to first order in β, the electric field ~E in
K is just the electric dipole field centered at ~x0. If the electric dipole is viewed from a fixed
origin, then we must express the electric field as a function of ~x. Then, if we denote r ≡ |~x| and
r0 ≡ |~x0| = cβt, then

R = |~x− ~x0| =
[
r2 + r20 − 2rn̂ · ~x0

]1/2
= r

[
1 +

r20 − 2rn̂ · ~x0

r2

]1/2
= r − n̂ · ~x + O

(
1

r

)
. (133)

where we have introduced the unit vector n̂ ≡ ~x/r, and

R̂ ≡
~R

R
= n̂− ~x0

r
− n̂(n̂ · ~x0)

r
+ O

(
1

r2

)
. (134)

Then, eq. (132) yields

~E =
3n̂(~p · n̂) − ~p

r3
+ O

(
1

r4

)
, (135)

The O(1/r4) terms can only arise from higher multipole moments. For example, carrying out the
next term in the expansion, one finds

~E =
3n̂(~p · n̂) − ~p

r3
+

15(~x0 · n̂)(~p · n̂)n̂− 3
[
(~x0 · ~p)n̂ + (~x0 · n̂)~p + (~p · n̂)~x0

]

r4
+ O

(
1

r5

)
,

(136)
where the O(1/r4) term is recognized as an electric quadrupole field [cf. Jackson problem 6.21
part (c)]. Thus, if the electric dipole is viewed from a fixed origin, it would correspond to an
electric dipole moment plus time-dependent higher multipole terms.

A moving electric dipole moment acquires a magnetic dipole moment, but this effect is quite
subtle. It turns out that the ~B field obtained in eq. (132) has two separate sources. One source
can be attributed to a magnetic dipole moment

~m = ~p× ~β . (137)

while the second source arises from the electric polarization current that is due to the polarization
produced by a moving electric dipole. Details can be found in V. Hnizdo, Magnetic dipole moment

of a moving electric dipole, Am. J. Phys. 80, 645 (2012), with further discussion in V. Hnizdo and
Kirk T. McDonald, in a set of notes entitled, Fields and Moments of a Moving Electric Dipole.14

If ~m is given by eq. (137), then the corresponding vector potential given by Jackson eq. (5.55)
in gaussian units, in the frame K, is given by

~A =
~m× ~R

R3
=

~R× (~β × ~p)

R3
=

(~p · ~R)~β − (~β · ~R)~p

R3
. (138)

Comparing this result with eq. (118), we see that there is an extra term in eq. (138). Hnizdo and
McDonald argue that the total vector potential of a moving electric dipole in frame K is actually

14V. Hnizdo and Kirk T. McDonald, Fields and Moments of a Moving Electric Dipole, is available as a download
from Kirk T. McDonald’s websitre: http://kirkmcd.princeton.edu/examples/movingdipole.pdf.
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due to two contributions: the so-called electric-polarization current density and the magnetic-
polarization current density. Hence, in the reference frame K, they write :

~A = ~Ap + ~Am , (139)

where

~Ap =
(~β · ~R)~p

R3
, ~Am =

(~p · ~R)~β − (~β · ~R)~p

R3
. (140)

Thus, ~A = ~Ap + ~Am coincides with the result obtained in eq. (118) to leading order in β, whereas

the magnetic dipole moment is extracted from ~Am. However, Hnizdo and McDonald note that
one can decompose ~A in a different way, ~A = ~As + ~Aa, where the corresponding symmetric and
antisymmetric combinations are defined as

~As =
(~p · ~R)~β + (~β · ~R)~p

2R3
, ~Aa =

(~p · ~R)~β − (~β · ~R)~p

2R3
= 1

2
~Am . (141)

This is the choice that Jackson has made implicitly in problems 6.21 and 11.27(a). Because of

the extra factor of 1/2, Jackson concludes that ~m = 1
2
~p × ~β, in contrast to eq. (137). Hnizdo

and McDonald thus argue that the identification of the magnetic dipole moment ~m of a moving
electric dipole moment is a convention and depends on the choice made in the decomposition
of ~A. Whether one decomposition is preferred over another is still a matter of debate in the
literature.

BONUS MATERIAL

One can perform the computation of part (c) without any approximations by following the method
outlined in the class handout entitled, The electromagnetic fields of a uniformly moving charge.
First, we note that the corresponding electromagnetic fields in the rest frame K ′ of the charge
are given (in gaussian units) by:

~E ′(~x ′) =
3~x ′(~p · ~x ′)

r′ 5
− ~p

r′ 3
, ~B ′(~x ′) = 0 . (142)

after setting β = 0 in eq. (131). We now resolve the vectors above into components parallel and
perpendicular to the velocity vector. In particular,

~x ′ = ~x ′
‖ + ~x ′

⊥ ,

and
r′ 2 = ~x ′

·~x ′ = ~x ′
‖ ·~x

′
‖ + ~x ′

⊥ ·~x
′
⊥ , (143)

since ~x‖ ·~x⊥ = 0. Likewise, we can identify the longitudinal and transverse electric fields in
frame K ′,

~E ′
‖ =

3~x ′
‖

[
~p ·
(
~x ′
‖ + ~x ′

⊥)
]

r′ 5
−

~p‖

r′ 3
, (144)

, ~E ′
⊥ =

3~x ′
⊥

[
~p ·
(
~x ′
‖ + ~x ′

⊥)
]

r′ 5
− ~p⊥

r′ 3
. (145)
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We shall make use of the transformation law for the electric and magnetic fields under a
Lorentz boost:

~E ′
‖ = ~E‖ , ~E ′

⊥ = γ(~E⊥ + ~β × ~B⊥) , (146)

~B ′
‖ = ~B‖ , ~B ′

⊥ = γ( ~B⊥ − ~β × ~E⊥) . (147)

In analyzing the uniformly moving electric dipole, ~E ′ and ~B ′ are known, so we have to invert
eqs. (109) and (110) to obtain the electromagnetic fields in frame K. This is easily done by

interchanging the primed and unprimed fields while reversing the sign of ~β. That is,

~E⊥ = γ(~E ′
⊥ − ~β × ~B ′

⊥) , ~B⊥ = γ( ~B ′
⊥ + ~β × ~E ′

⊥) . (148)

We are now ready to evaluate the electromagnetic fields in frame K. First, we employ
eqs. (146)–(148) to obtain

~E = ~E‖ + ~E⊥ = ~E ′
‖ + γ ~E ′

⊥ , ~B = ~B‖ + ~B⊥ = γ~β × ~E ′
⊥ . (149)

Using eqs. (129) and (144), it follows that

~E =
3
(
~x ′
‖ + γ~x ′

⊥

)[
~p ·
(
~x ′
‖ + ~x ′

⊥)
]

r′ 5
−

~p‖ + γ~p⊥

r′ 3
, (150)

~B = ~β × ~E . (151)

Next, we need to convert the primed coordinate into the unprimed coordinates. In light of
eq. (113),

~x ′
‖ = γ ~R‖ , ~x ′

⊥ = ~R⊥ , (152)

after noting that ~R‖ = (β · ~R)~β/β2. Hence,

~x ′
‖ + γ~x ′

⊥ = γ ~R , r′2 = γ2R2
‖ +R2

⊥ = R2 + γ2(~β · ~R)2 , (153)

in light of eq. (115). Furthermore, since ~β × ~p‖ = ~β × ~R‖ = 0, it follows that ~β × ~p⊥ = ~β × ~p

and ~β × ~R⊥ = ~β × ~R.
Finally, we shall make use of

~p‖ + γ~p⊥ = ~p‖ + γ(~p− ~p‖) =
(~β · ~p)~β

β2
+ γ

(
~p− (~β · ~p)~β

β2

)
= γ~p− γ − 1

β2

(
~β · ~p

)
~β , (154)

γ ~R‖ + ~R⊥ = ~R + (γ − 1)~R‖ = ~R +
γ − 1

β2

(
~β · ~R

)
~β . (155)

Hence, we end up with:

~E(~x, t) =
3γ ~R

[
~p · ~R + (γ − 1)

(
~β · ~R

)(
~p · ~β

)
/β2
]

[
R2 + γ2(~β · ~R)2

]5/2 − γ~p− (γ − 1)~β
(
~β · ~p

)
/β2

[
R2 + γ2(~β · ~R)2

]3/2 , (156)
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Likewise, we use eq. (151) to obtain:

~B(~x, t) =
3γ~β × ~R

[
~p · ~R + (γ − 1)

(
~β · ~R

)(
~p · ~β

)
/β2
]

[
R2 + γ2(~β · ~R)2

]5/2 − γ~β × ~p
[
R2 + γ2(~β · ~R)2

]3/2 . (157)

The time-dependence of the electric and magnetic fields in frame K arise through ~R ≡ ~x− c~βt.
One can verify that if terms of O(β2) are neglected, then the above equations reduce to those
exhibited in eq. (132).

As a further check of eq. (156), we present below an independent computation of the electric
field starting from scalar and vector potential given in eqs. (116) and (117). The electric field is
then obtained by evaluating

~E(~x, t) = −~∇Φ − 1

c

∂ ~A

∂t
= −~∇Φ −

~β

c

∂Φ

∂t
. (158)

Recall that ~∇ = ~∇R, where ~∇ = (∂/∂x1 , ∂/∂x2 , ∂/∂x3), and ~∇R = (∂/∂R1 , ∂/∂R2 , ∂/∂R3
)
,

where Ri = xi − cβt (i = 1, 2, 3) are the components of the vector ~R. Next, the time-dependence

of ~A(~x, t) is due to the time dependence of ~R = ~x − cβt. Therefore, using the chain rule [or
employing the result of eq. (120)],

~β

c

∂Φ

∂t
=

~β

c

∂ ~R

∂t
· ~∇RΦ = −~β

(
~β· ~∇RΦ) . (159)

Hence, eq. (158) yields
~E(~x, t) = −~∇RΦ + ~β

(
~β· ~∇RΦ) . (160)

In the evaluation of ~∇RΦ, note that

~∇R(~p · ~R) = ~p , ~∇R(~β · ~R) = ~β , (161)

and
~∇R

[
R2 + γ2(~β · ~R)2

]−3/2
= −3

2

[
R2 + γ2(~β · ~R)2

]−5/2
2
[
~R + γ2(~β · ~R

)
~β
]
. (162)

Therefore,

~∇RΦ = γ

{
~p · ~R +

γ − 1

β2

(
~β · ~R

)(
~p · ~β

)}
~∇R

[
R2 + γ2(~β · ~R)2

]−3/2
+

γ

(
~p +

γ − 1

β2
(~p · ~β)~β

)

[
R2 + γ2(~β · ~R)2

]3/2

= − 3γ
[
~R + γ2(~β · ~R

)
~β
]

[
R2 + γ2(~β · ~R)2

]5/2
[
~p · ~R +

γ − 1

β2

(
~β · ~R

)(
~p · ~β

)]
+

γ

(
~p +

γ − 1

β2
(~p · ~β)~β

)

[
R2 + γ2(~β · ~R)2

]3/2

(163)

and

~β
(
~β· ~∇RΦ) = − 3γ3

(
~β · ~R

)
~β

[
R2 + γ2(~β · ~R)2

]5/2
[
~p · ~R +

γ − 1

β2

(
~β · ~R

)(
~p · ~β

)]
+

γ2
(
~p · ~β

)
~β

[
R2 + γ2(~β · ~R)2

]3/2 ,

(164)
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after using 1+γ2β2 = γ2 in the first numerator on the right hand side of eq. (164) above. Inserting
the results of eqs. (163) and (164) back into eq. (160), we end up with:

~E(~x, t) =
3γ ~R

[
R2 + γ2(~β · ~R)2

]5/2
[
~p · ~R +

γ − 1

β2

(
~β · ~R

)(
~p · ~β

)]
−
γ~p− γ − 1

β2

(
~p · ~β

)
~β

[
R2 + γ2(~β · ~R)2

]3/2 , (165)

after making use of the identity γ2/(γ + 1) = (γ − 1)/β2. Thus, we have confirmed the result
previously obtained in eq. (156).

APPENDIX: An alternative solution to Jackson, problem 11.15

In frame K, we have
~E = E0 x̂ , ~B = Bx x̂ +By ŷ , (166)

with
~E · ~B = |~E| | ~B| cos θ = E0B0 cos θ = 2E2

0 cos θ , (167)

after writing |~E| = E0 and | ~B| = B0 = 2E0. It follows that

Bx = 2E0 cos θ , By = 2E0 sin θ . (168)

The electric and magnetic fields are parallel in a reference frame K ′ which is moving at a
velocity ~v ≡ c~β with respect to reference frame K. That is, the fields in K ′ satisfy,

~E ′
× ~B ′ = 0 . (169)

The electric and magnetic fields in frame K ′ are related to the corresponding fields in frame K
by eq. (11.149) of Jackson,

~E ′ = γ(~E + ~β × ~B) − γ2

γ + 1
~β(~β · ~E) , (170)

~B ′ = γ( ~B − ~β × ~E) − γ2

γ + 1
~β(~β · ~B) . (171)

Plugging the results for the electric and magnetic fields in reference frame K ′ given by
eqs. (170) and (171) into eq. (169), one can work out the following expressions. First,

(~E+ ~β× ~B)× ( ~B− ~β× ~E) = ~E× ~B− ~β
[
E2 +B2− ~β · (~E× ~B)

]
+ ~E(~β · ~E)+ ~B(~β · ~B) , (172)

where E ≡ |~E| and B ≡ | ~B|. Second,

(~E + ~β × ~B) × ~β = −~β × ~E − ~β(~β · ~B) + β2 ~B , (173)

~β × ( ~B − ~β × ~E) = ~β × ~B − ~β(~β · ~E) + β2 ~E . (174)
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Hence, we obtain,

~E ′
× ~B ′ = γ2 ~E × ~B − ~β

{
γ2[E2 +B2 − ~β · (~E × ~B)

]
− γ3

γ + 1

[
(~β · ~E)2 + (~β · ~B)2

]}

+γ2
[
~E(~β · ~E) + ~B(~β · ~B)

] [
1 − γβ2

γ + 1

]
− γ3

γ + 1

{
(~β · ~E)~β × ~B − (~β · ~B)~β × ~E

}
.

(175)

We can simplify the above expression by using γ2 = (1 − β2)−1, which yields β2 = (γ2 − 1)/γ2.
Hence,

1 − γβ2

γ + 1
= 1 − γ − 1

γ
=

1

γ
. (176)

We then end up with,

~E ′
× ~B ′ = γ2 ~E× ~B+γ

[
~E(~β· ~E)+ ~B(~β· ~B)

]
−γ2h~β− γ3

γ + 1

{
(~β· ~E)~β× ~B−(~β· ~B)~β× ~E

}
, (177)

where

h ≡ E2 +B2−k
[
E2B2− (~E · ~B)2

]
− γ

γ + 1

{[
k1E

2 +k2(~E · ~B)
]2

+
[
k1(~E · ~B) +k2B

2
]2
}
. (178)

The only way to satisfy ~E ′
× ~B ′ = 0 is if the right hand side of eq. (177) is proportional to

~E × ~B.15

One way of ensuring that the right hand side of eq. (177) is proportional to ~E× ~B is to take
~β to be parallel to ~E × ~B. That is, there exists a nonzero constant k such that

~β = k ~E × ~B . (179)

Note that eq. (179) implies that ~β · ~E = ~β · ~B = 0. Hence, eq. (177) simplifies to,

~E ′
× ~B ′ = γ2~β

[
1 + β2

k
− E2 − B2

]
. (180)

It then follows that

~E ′
× ~B ′ = 0 =⇒ 1 + β2

k
= E2 +B2 . (181)

Using eqs. (166) and (168), E2 +B2 = 5E2
0 and

~β = k ~E × ~B =
2E2

0k sin θ

β
~β . (182)

Thus, one can identify,

k =
β

2E2
0 sin θ

. (183)

15Recall that if {~vi} is a set of linearly independent vectors, then the only solution to
∑

i ci~vi = 0 is ci = 0 for
all i.
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Plugging this result into eq. (181) yields,

2 sin θ(1 + β2) = 5β , (184)

which reproduces the result previously obtained in eq. (37).

As a check of our calculation, let us verify explicitly that ~E ′ is parallel to ~B ′. Inserting
eq. (179) into eqs. (170) and (171) yields,

~E ′ = γ ~E
(
1 − kB2

)
+ γk ~B(~E · ~B) , (185)

~B ′ = γ ~B
(
1 − kE2

)
+ γk ~E(~E · ~B) . (186)

In light of eqs. (166)–(168) and eq. (183),

~E ′ = γE0

[
(1 − 2β sin θ)x̂ + 2β cos θ ŷ

]
, (187)

~B ′ = γE0

[
2 cos θ x̂ + (2 sin θ − β)ŷ

]
. (188)

We can now check that
~E ′

× ~B ′ = [2 sin θ(1 + β2) − 5β]ẑ = 0 , (189)

after employing eq. (184), which completes the check of the calculation.
The two limiting cases are now easily analyzed. In the case of θ ≪ 1, we can work to first

order in θ. As noted below eq. (38), β ≃ 2
5
θ and γ = (1 − β2)−1/2 ≃ 1 + O(β2). Since we are

working to first order in θ, we also must work to first order in β. In particular we can neglect
terms such as βθ. Hence, in this limiting case, eqs. (187) and (188) yield

~E ′ = 1
2
~B ′ = E0(x̂ + 2βŷ) , for β ≃ 2

5
θ ≪ 1 , (190)

where we have neglected terms that are second order (or higher) in β. Finally, in the limit of
θ → 1

2
π, eq. (38) yields β = 1

2
. Then γ = 2/

√
3, and eqs. (187) and (188) yield

~E ′ = 0 , ~B ′ =
√

3E0ŷ , for θ = 1
2
π . (191)

Thus, we have reproduced the results of eqs. (39) and (40).

REMARK:

Another strategy to find all possible boosts that result in parallel electric and magnetic fields
is to start with eqs. (170) and (171) and impose the condition ~E ′

× ~B ′ = 0 to determine the

most general form for the boost. We again denote the boost parameter by ~β.
Since ~E, ~B and ~E × ~B are three linearly independent vectors, ~β can be written in the

following form,
~β = k1 ~E + k2 ~B + k ~E × ~B , (192)

where the constants k1, k2 and k are to be determined. It then follows that,

~β · ~E = E2k1 + (~E · ~B)k2 , ~β · ~B = (~E · ~B)k1 +B2k2 ,

~β × ~E = −k2 ~E × ~B − k
[
(~E · ~B)~E − E2 ~B

]
, ~β × ~B = k1 ~E × ~B + k

[
(~E · ~B) ~B −B2 ~E

]
.

~β · (~E × ~B) = k|~E × ~B|2 = k
[
E2B2 − (~E · ~B)2

]
,
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and β ≡ |~β|, where

β = k21E
2 + 2k1k2(~E · ~B) + k22B

2 + k2
[
E2B2 − (~E · ~B)2

]
. (193)

This last equation is needed to obtain an expression for γ ≡ (1 − β2)−1/2. Plugging the above
results into eq. (177) yields,

~E ′
× ~B ′ = c1 ~E + c2 ~B + c3 ~E × ~B , (194)

in reference frame K ′′, where

c1 = −γ2k1h+ γ
[
k1E

2 + k2(~E · ~B)
]

+
γ3kk1
γ + 1

[
E2B2 − (~E · ~B)2

]
, (195)

c2 = −γ2k2h+ γ
[
k1(~E · ~B) + k2B

2
]

+
γ3kk2
γ + 1

[
E2B2 − (~E · ~B)2

]
, (196)

c3 = γ2(1 − kh) − γ3

γ + 1

[
k21E

2 + 2k1k2(~E · ~B) + k22B
2
]
. (197)

and h is given by eq. (178), which we rewrite below for the reader’s convenience,

h ≡ E2 +B2−k
[
E2B2− (~E · ~B)2

]
− γ

γ + 1

{[
k1E

2 +k2(~E · ~B)
]2

+
[
k1(~E · ~B) +k2B

2
]2
}
. (198)

To find solutions {k1, k2, k} to the equation ~E ′
× ~B ′ = 0, we set c1 = c2 = c3 = 0. This

yields three nonlinear equations for the three unknowns, k1, k2 and k. The one solution obtained
previously with ~β = β0ẑ corresponds to k1 = k2 = 0 and kh = 1, where k is given by eq. (183).
Here, we write β0 to distinguish this special case from the general case under consideration. In
this special case, c1 = c2 = 0 automatically and c3 = 0 yields kh = 1 which implies that

k(E2 +B2) − k2
[
E2B2 − (~E · ~B)2

]
= 1 . (199)

Using eqs. (27)–(29), E2 +B2 = 5E2
0 and E2B2 − (~E · ~B)2 = 4E4

0 sin2 θ. Hence,

4E4
0k

2 sin2 θ − 5E2
0k + 1 = 0 . (200)

Using eq. (183) to eliminate k (replacing β with β0 as noted above), eq. (179) is equivalent to

β2
0 −

5β0
2 sin θ

+ 1 = 0 , (201)

which yields eq. (184) for the special case of ~β = β0ẑ, as expected.
More generally, one can verify that eq. (50) provides a family of solutions to eqs. (195)–(197)

with c1 = c2 = c3 = 0. In light of eqs. (46) and (50), we can identify,

k1 =
β ′(sin θ − 2β0)

γ0E0 sin θ
√

1 − 4β0 sin θ + 4β2
0

, (202)

k2 =
β ′β0 cos θ

γ0E0 sin θ
√

1 − 4β0 sin θ + 4β2
0

, (203)

k =
β0

2E2
0 sin θ

, (204)

34



where β0 is given by eq. (201), γ0 ≡ (1−β2
0)−1/2 and β ′ is an arbitrary number such that 0 ≤ β ′ ≤ 1.

I have checked using Mathematica that after plugging in eqs. (202)–(204) into eqs. (195)–(198)

along with E2 = E2
0 , B2 = 4E2

0 , and ~E · ~B = 2E2
0 cos θ, the end result is,

c1 = − 2γCE0

[
2(β2

0 + 1) sin θ − 5β0
]

(1 + γ) sin θ

[
γ +

1 − 1
2
β0 sin θ − C2 cos2 θ

1 − β2
0 − C2(1 − 4β0 sin θ + 4β2

0)

]
, (205)

c2 =
γCE0 cos θ

[
2(β2

0 + 1) sin θ − 5β0
]

(1 + γ) sin θ

[
γ +

1 − C2(1 − 2β0 sin θ)

1 − β2
0 − C2(1 − 4β0 sin θ + 4β2

0

]
, (206)

c3 =
γ2
[
2(β2

0 + 1) sin θ − 5β0
][

1 + γ − γC2(1 − 2β0 sin θ)
]

2(1 + γ) sin θ
, (207)

where

C ≡ β ′

γ0
√

1 − 4β0 sin θ + 4β2
0

. (208)

Indeed, if β0 satisfies eq. (201) then we find that c1 = c2 = c3 = 0. Thus, I have verified that a

boost to the frame with boost parameter given by eq. (50) yields ~E ′
× ~B ′ = 0. I believe that

{k1, k2, k} given by eqs. (202)–(204) provides all possible solutions, but I do not have a proof of
this statement.
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