Physics 214 Solution Set 2 Winter 2026

1. [Jackson, problem 11.10]

(a) For the Lorentz boost and rotation matrices K and S show that

(-8 =—¢-8,
(€ KP=¢é K,

where € and € are any real unit 3-vectors.

We are given

0O 0 0 0 0 0 0 O 0 0
0 0 0 ©0 0 0 0 1 0 0 —
=10 0 o0 -1 “2=1g 0 0o of =g
0O 0 1 0 0-1 0 0 0 O
0O 1 0 O 0 0 1 0 0 0
1 0 0 O 0O 0 0 O 0 O
Ke=1lo 0 0 o] Ke=11 0 0 o] Ks=10 o
0 0 0 O 0 0 0 O 1 0
To prove eq. (1), we evaluate the matrix € - S explicitly,
0 0 0 0
R - 0 0 —€3 €2
€5 = 0 €3 0 —€1 ’
0 —€9 €1 0
and then compute (€ - S)3 via matrix multiplication. Indeed,
0 0 0 0
s w2 |0 —E—6 €1€2 €1€3
(€-5)" = 0 €162 —€2 — €2 €963
0 €1€3 €2€3 —€2 — €2
and
0 0 0 0
(-8 =(e-8pe-S=—(+a+ |0 ) T8 2l g,
0 €3 0 —€1
0 —€9 €1 0

after using the fact that € is a real unit 3-vector, which implies that 5 + €3 + €3 = 1.

o O = O

o O OO

o O O O

o O O



To prove eq. (2), we evaluate the matrix € - K explicitly,

0 € € €

o000

€K=1g o o ol 3)
& 0 0 0

and then compute (€'« K)? via matrix multiplication. Indeed,

€2 + €5 + €5 0 0 0
/2 !’ ’
(& K)? = 0 €1 €162 €1€3
- 0 E/ E/ 6/2 E/ 6/ 9
162 2 2°3
! !/ /
0 €165 €5€q €y
and
/ / /
0 €] €9 €
/
. . - € 0 0 0 .
(€ KyP=(E -KyPe K=(+e&+6&") | ) -é-K,
€9 0 0 0
€h 0 0 0

after using the fact that €’ is a real unit 3-vector.

ALTERNATIVE SOLUTION:

The following alternative solution to part (a) is noteworthy. First, observe that the first row
and column of S, Sy and S5 are all zeros. Hence we can simply focus on the remaining 3 x 3
block. That is, we write the S; in block matrix form,

where 07 is a row vector of three zeros, 0 is a column vector of three zeros, and

+1, if (ijk) is an even permutation of (123),
€ijk =19 —1, if (ijk) is an odd permutation of (123),
0, otherwise ,

is the three-dimensional Levi-Civita tensor. After excluding the first row and column, jk labels
the three remaining rows and columns of the S;.

Thus, we can compute (€-S)? by pretending that the first row and column do not exist. More
explicitly,’

(&85, =(€-8)e(€+ S)em(&-S)mr = €(Si) e €p(Sp)em €q(Sg)mn
= TE€i€p€g€ijr Eptm Eqmk = €i€p€q€ije Epmi Eqmk

= €i€p€q(5i:n5jm - 5im5jp>€qu = €q€qjk — EmE€j€qCqmk (5)

n eq. (5), we employ the Einstein summation convention. In this derivation, we make use of the antisymmetry
properties of the Levi-Civita tensor and employ the identity €;jr€pme = 6ipdjm — dimdjp-
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after noting that ¢;¢;, = €+ € = 1 since € is an arbitrary real unit vector. We now observe
that €,€;€,€4mr = 0 since €,,¢, is symmetric under the interchange of m and ¢ whereas €y, is
antisymmetric under the same interchange of indices. Thus, eq. (5) yields

(€- 5)3% = €q€qjit. = —€4(Sq)jk = —(€+ 8)jk ,

which establishes eq. (1).
To establish eq. (2), we rewrite €'+ K given by eq. (3) in block matrix form [analogous to the
form of the S; in eq. (4)],

where 0, stands for the matrix elements of the 3 x 3 zero matrix. In particular, j labels the row
and k labels the column. Then,

e K 0 ‘ € 0 ‘ € 0| € e-e | o 0 ‘ €}
K3 = =
’ €; | Oje € ‘ 0y; € | O OJT ‘ € e | Oi
1 ‘ 0, \ (0] ¢ 0 ‘ & €K
= = — = (&' - K)y
0; ‘ €€ e | O €€ & | 05 €5 | Ojx "

after using the fact that € is real unit vector. Once again, eq. (2) is established.

(b) Use the result of part (a) to show that:
exp(—CB-K)=1-p-K sinh(+ (B-K)*[cosh¢ — 1],
where [ is the 4 x 4 identity matrix.

We employ the series expansion for the exponential (which defines the matrix exponential),

0" 5. k),

n!

exp(~A-K) =3
n=0

In part (a), we established the following result: (8- K)? = 3+ K. Hence, it follows that
(B-K)™=(8-K), B-K)"' =3-K, forn=123,....

Thus, we can rewrite the series given in eq. (7) as

exp(~CK)=1-f-K Y S+ (B-KP Y S (8)
no " nee



after using the fact that (8« K)° = I is the 4 x 4 identity matrix. Using,

i C2n+1 - C i C2n N C
=smh(, = cosng,
n:O 271, + 1 n:O

and noting that the last summation in eq. (8) starts at n = 2, we end up with

exp(—CB-K) =] —3-Ksinh¢+ (BI()2 [cosh ¢ — 1],

which is the desired result.

REMARKS:

To understand the significance of eq. (9), let us write it explicitly in matrix form.

It is

convenient to use the block matrix form of eq. (6), where j labels the row and k labels the

column,

Then, eq. (9) yields

cosh ¢ ‘ -3 i sinh ¢

exp(—(B-K) =

—Bj sinh ¢ ‘ djk + Bjék(coshg - 1)
In class, we identified ¢ = tanh™" /3 as the rapidity, which satisfies
1

= ———— =cosh(, = sinh (.
g N ¢ Chl ¢
Hence, after writing 8 = 38 = (61, B2, B3), it follows that
( CB K) v ‘ =B
exp(—(3- = ,
5)@%

—7B; ‘ o+ (v —1)

which we recognize as the boost matrix defined in eq. (11.98) of Jackson.

AN ALTERNATIVE METHOD FOR COMPUTING exp(—¢ 3 - K):

If ¢ =0, then exp(—(@ . K) = [. Henceforth, we suppose that ¢ # 0. Using eq. (3),

0 ) —CB/B —CB2/B —(Ps/
O 0 0
M= K= s o 0 0
(/50 0 0



In order to compute f(M) = exp M, we shall employ the following formula of matrix algebra.
Denote the m distinct eigenvalues of the n x n matrix M by \; (noting that m < n), and define
the following polynomial,?

p(z) = (= M)(@ = Ag) -~ (= Aw) - (13)

Then, M is diagonalizable if and only if p(M) = 0,,, where 0,, is the n x n zero matrix.® In this
case, any function of M is given by*

“ M —\1,
f(M):Zf(Ai) | ﬁ ; (14)

J#i
where I,, is the n x n identify matrix and m is the number of distinct eigenvalues.’
We first compute the eigenvalues of M, which are roots of the characteristic polynomial,

CB _Cﬁl/ﬁ 0 0 Cﬁ _Cﬁl/ﬁ —A 0
det(M — M) = M+ 22 det | —=CB/8 =N 0| =222det | =¢CB/8 0 0
—(B3/B 0 = —(Bs/B 0 =\
By —CBi/B =A 0
—2=det [ —CB/B 0 A = NN =7, (15)
b\ 0 o

after using 3% = 8% + 2 + 2. Thus, the three distinct eigenvalues of M are \; = 0, ¢, —C.
We can check that M is diagonalizable by evaluating:

p(M) = M(M — (I,)(M + (1)

0 —CB1/B —(Ba/B  —(Bs/B —C —CB1/B —(Ba/B  —(Bs/B
—(p1/B 0 0 0 —Cp1/B —C 0 0
—(B2/ 0 0 0 —(B2/ 0 —C 0
—(Bs/B 0 0 0 —(Bs/B 0 0 —C

C/ —(B1/B —CB/B  CBs/B
—(B1/B ¢ 0 0
N\ =cas 0 ¢ 0 (16)
—(pB3/p 0 0 ¢

2Since the n eigenvalues of M are roots of the characteristic polynomial of M, and some of these roots can
have multiplicity greater than one, it follows that the number of distinct eigenvalues m < n.

3 A very nice proof of this result can be found in Section 8.3.2 of James B. Carrell, Groups, Matrices, and Vector
Spaces—A Group Theoretic Approach to Linear Algebra (Springer Science+Business Media LLC, New York, NY,
2017).

4For example, see eqs. (7.36) and (7.3.11) of Carl D. Meyer, Matriz Analysis and Applied Linear Algebra (STAM,
Philadelphia, PA, 2000) or Chapter V, Section 2.2 of F.R. Gantmacher, Theory of Matrices—Volume I (Chelsea
Publishing Company, New York, NY, 1959).

°If the n x n matrix M is not diagonalizable then p(M) # 0,, in which case the formula for f(M) is more
complicated than the one given in eq. (14). A generalization of the formula for f(A) when M is not diagonalizable
can be found in the references cited in footnote 4 above (although the more general formula is not needed here).



After multiplying the first two matrices on the right-hand side of eq. (16), we are left with

1 Bi/B Ba/ B B3/ B 1 —Bi/B  —B2/B  B3/B
p(M) = ¢ B/B Bt/ B BiBa/B*  BiBs/B | | —51/B 1 0 0
Bo/B  BiB2)B? 33/6° Ba33/ 32 —[2/ 0 1 0

Bs/B  BiBs/B*  PafBs/B? B3/ B2 —f3s/B 0 0 1 -
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Carrying out the final matrix multiplication above yields:

where 04 is the 4 x 4 zero matrix. This computation again confirms that M is diagonalizable, in
which case the formula for f(M) given in eq. (14) is applicable.
We now apply eq. (14) to f(M) = exp M. It then follows that

emﬂiz—éﬂMﬁwJQM4+§h)+é£?MUW+CL)+é{£?MUW—(h)
:h+<ﬁ¥>M+(9%§i)M? (19)

Inserting M = —( 3 - K, we recover the result of eq. (9). Note that in the limit of { — 0, we
obtain exp M = 1,4, as expected.

REMARK: The method employed above can be generalized to the computation of the most gen-
eral proper orthochronous Lorentz transformation (which combines boosts and three-dimensional
proper rotations). This computation is explicitly carried out in Howard E. Haber, Explicit form
for the most general Lorentz transformation revisited, Symmetry 2024, 16, 1155 [arXiv:2312.12969
[physics.class-ph]].

2. [Jackson, problem 11.13] An infinitely long straight wire of negligible cross-sectional area is
at rest and has a uniform linear charge density ¢y in the inertial frame K’. The frame K’ (and
the wire) move with velocity ¥ parallel to the direction of the wire with respect to the laboratory
frame K.

(a) Write down the electric and magnetic fields in cylindrical coordinates in the rest frame of
the wire. Using the Lorentz transformation properties of the fields, find the components of the
electric and magnetic fields in the laboratory.

In the rest frame of the wire (i.e. frame K”), choose the z-axis to point along the wire. Then, to

compute the electric field, we draw a cylinder of length L and radius 7/, whose symmetry axis
coincides with the z-axis. Applying Gauss’ law in gaussian units,

fﬁhﬁszQ, (20)
S



where (@ is the total charge enclosed inside the cylinder. In cylindrical coordinates (', ¢/, 2'),% the
symmetry of the problem implies that E'(+, ¢/, ') = E'(+')#', where E'(+') depends only on the
radial distance from the symmetry axis. Choosing the surface S to be the surface of the cylinder,
we have i = 7', and so eq. (20) reduces to

21 LE' (r') = 47Q) .

Defining the linear charge density (i.e. charge per unit length) by ¢y = Q/L, we conclude that”

o 2q0
E/(T,) = 77'/. (21)
Since there are no moving charges in the rest frame of the wire, it follows that B'=0.
The transformation laws for the electric and magnetic field between reference frames K and
K’ are given by®

VB -Ax B - T4

.E%
v+1

&S|
I
)

For this problem, 3 = 3 2. Using the results of part (a), and noting that r = " (since the radial
direction is perpendicular to the direction of the velocity of frame K’ with respect to K), it follows
that 5 28
E="04 B=2g (22)
r r

X F = .

N

where we have used 2 - 7 = 0 and

(b) What are the charge and current densities associated with the wire in its rest frame? In
the laboratory?

In reference frame K’ there are no moving charges, so that J' = 0. The corresponding charge
density is
1eo0 4q0 /
=—0(r"). 23
§r) = 52 5(0) (23)

To check this, let us integrate over a cylinder of length L and arbitrary nonzero radius, whose
symmetry axis coincides with the z-axis. Then,

/,0'(7") dV = /p'(r') r'dr'dodZ = qq / dr'o(r')dz' = gL = Q.

6We denote the radial coordinate of cylindrical coordinates in frame K’ to be r’ rather than the more traditional
P, since we reserve the letter p for charge density.

"The direction of the unit vectors #, (;AS and 2 are the same in frames K and K’, so no extra primed-superscript
is required on these quantities.

8Eq. (11.149) of Jackson provides the equations to transform the fields from reference frame K to reference
frame K'. To transform the fields from K’ to K, simply change the sign of ﬁ
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Since J" = (cp; f) is a four-vector, the relevant transformation law between frames K and K’
are:

cp=n(cp +B-J), (24)

F= 3+ G IO+ e (25)

Plugging in J' = 0 and the result of eq. (23), and noting that 5 = % and 7’ = r, it follows that”
o) =105y, T= 200 550 = plryes = plr), (26)

after using v = fec.

(c) From the laboratory charge and current densities, calculate directly the electric and mag-
netic fields in the laboratory. Compare with the results of part (a).

This is an electrostatics and magnetostatics problem, so we can use Gauss’ law to compute E
and Ampere’s law to compute B. The computation of E is identical to the one given in part (a)
with go replaced by vqy. Hence, it immediately follows from eq. (21) that

L2
Bir)="1Ly
T

Y

in agreement with eq. (22). Ampere’s law in gaussian units is

%B’-d_’:@,
C C

where I is the current enclosed in the loop C. With J given by eq. (26),

]:/f-ﬁda:/p(r)vrdrd¢:7qov,
A

after noting that n = 2 points along the direction of the current flow and da = rdrde is the
infinitesimal area element perpendicular to the current flow. Using the symmetry of the problem,
B=2B (r)¢A) Thus, evaluating Ampere’s law with a contour C' given by a circle centered at r = 0
that lies in a plane perpendicular to the current flow, de = rd¢$ and

Arl 4
2mrB(r) = ™ 7wq01)7
c c
which yields
-» 2vBqov =~
B(r) = =12 4.

after using v = fc¢, in agreement with eq. (22).

9We can interpret ¢ = vqo as the linear charge density as observed in reference frame K. This is not unexpected
due to the phenomenon of length contraction.



3. [Jackson, problem 11.15] In a certain reference frame, a static uniform electric field Ej is
parallel to the z-axis, and a static uniform magnetic field By = 2Fj lies in the x—y plane, making
an angle # with respect to the x-axis. Determine the relative velocity of a reference frame in
which the electric and magnetic fields are parallel. What are the fields in this frame for § < 1
and 0 — %w?

In frame K, we have
E=Fyx, B=B,2+DB,79, (27)

with
E.-B = |E||B|cost = EyBycosf = 2E3 cos 0, (28)

after writing |E| = Ey and |B| = By = 2E,. It follows that
B, = 2Fqcosb, B, =2Eysind. (29)

The electric and magnetic fields are parallel in a reference frame K’ which is moving at a
velocity ¥ = ¢ with respect to reference frame K. That is, the fields in K’ satisfy,

E'xB'=0. (30)

The electric and magnetic fields in frame K’ are related to the corresponding fields in frame K
by eq. (11.149) of Jackson,

Ir:’zv(E’+5’><B’)—7+ BB-E), (31)
B'=1(B-BxE)-—— B3 B). (32)

These relations can be rewritten in the following form,
Ej=E), Bj =By, (33)
EL:W(EHB’XB’L), Eizv(gl—ﬁxﬁL). (34)

In eqs. (33) and (34), fields with a || subscript are parallel to 3 and fields with a L subscript are
perpendicular to 3. For example, 8 x By =0 and 8- E, = 0, which implies that

The form of egs. (33) and (34) suggests that the relative velocity ¥ should point in the z-
direction. That is, 3 = £, in which case E| = E.Z and B = B.Z. Since £, = B, = 0, it
follows from eq. (33) that E. = B, = 0. Using eq. (34), the transverse fields are given by

E! =~(E, — BB,) = vEo(1 — 20sinb), E, =~(E, + 3B,) = 2fvEycos? (35)
B! =~(B, + BE,) = 2yE,cos b, B, =(E, + B,) = vEo(2sinf — ), (36)



after using eqs. (27)-(29). Moreover, eq. (30) implies that E, B, — E; B), = (E'x B'), = 0.
Inserting the results for the primed fields in this last equation, it then follows that

Y EF (1 —2Bsinf)(2sinf — B) — 43v*E5 cos* 0 = 0.
Multiplying out the factors above and writing cos?# = 1 —sin? 6, the above equation simplifies to
23%sin — 58 +2sinf = 0. (37)

This is a quadratic equation in [ which is easily solved. The larger of the two roots is greater
than 1, which we reject since 0 < 5 < 1 (i.e., 0 < v < ¢). The smaller of the two roots is
non-negative and less than 1. Thus, we conclude that

v H—1/25—16sin’0
6_2_ 4¢in6 ' (38)

The two limiting cases are easily analyzed. In the case of § < 1, we can work to first order
in . From eq. (38) we find that 8 ~ 26. Since § < 1 it follows that # < 1, in which case

v=(1- B2)_1/2 ~1+0(p%).

Since we are working to first order in #, we also must work to first order in . In particular we
can neglect terms such as 6. Hence, in this limiting case, egs. (35) and (36) yield

E' = 1B = E(&+289), forf~20<1, (39)

where we have neglected terms that are second order (or higher) in . Finally, in the limit of
0 — im, eq. (38) yields # = 1. Then v = 2/V/3, and egs. (35) and (36) yield

E' =0, B' =3Eg, for 0 = Im. (40)

REMARK 1:

Recall that in class, we showed that the quantity F Wﬁuv = %eumgF wpeB — _AE.B is a
Lorentz invariant. This means that if E and B are perpendicular in one frame, then they must
be perpendicular in all frames. Thus, if § = %w in frame K and 6 = 0 in frame K’, then it must
be true that either the electric field or the magnetic field (or both) vanish in frame K’, since the
only vector that is both perpendicular and parallel to a given fixed nonzero vector is the zero
vector. This is indeed the case here, as can be seen in eq. (40).

REMARK 2:

It is easy to show that eq. (38) implies that 0 < g < % If we multiply the numerator and
denominator of eq. (38) by 5+ 1/25 — 16sin? §, we obtain,

4sin @

54++/25 —16sin26
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Since the polar angle lies in the range 0 < 6 < 7 or equivalently 0 < sinf < 1, it follows
immediately that 5 > 0 (where § = 0 corresponds to sin = 0 as expected). Finally, it is easy to

verify that
4 sin 6

<
541425 —16sin* 0

Since the denominator on the left hand side above is positive, we can rewrite eq. (41) as
4sinf < L (5 + /25— 16sin? 9) . (42)

This inequality is manifestly true for sin@ = 0. For sinf > 0, eq. (42) can be rearranged into the

following form
8sinf — 5 < /25 — 16sin* 6. (43)

Squaring both sides and simplifying the resulting expression then yields sinf (sinf — 1) < 0.
Dividing both sides of the equation by sin @ (which is assumed positive) yields 0 < sinf < 1,
which is valid for all polar angles 6. Hence, eq. (41) is established. The inequality becomes an
equality if sin@ = 1, in which case § = %

(41)

NN

REMARK 3: Non-uniqueness of the solution

In our analysis above, we found one solution to the problem. However, it is easy to see that
there are an infinite number of solutions. That is, there are an infinite number of Lorentz boost

matrices such that ~ ~
F'*" = N(B)*oA(B) s F°7 (44)

where F*% is the electromagnetic field strength tensor made up of the E and B fields given in
eqs. (27) and (29), F'* is the electromagnetic field strength tensor made up of the E’ and B’
fields such that £’ x B’ =0, and A(f3) is the Lorentz boost matrix in the direction of 3 given
in eq. (11). We have already found one such boost matrix, namely A(52), where § is given by
eq. (38). This boost matrix produces the E’ and B’ fields given in eqs. (35) and (36). Since E’

and B’ are parallel in the primed reference frame, we can write
E'=F'n, B' = B'n, (45)

where 7 is the common direction of E’ and B’. Using eq. (35), one obtains an explicit form for
7 that is given by,

(1 —-2Bsinf)& +2Bcosfy  (sinf — 28)E + Bcos 6 B

n = = , 46
/1 —4Bsinf + 432 Eysin /1 — 4Bsin 0 + 432 (46)
where (3 is given by eq. (38). We used eqgs. (27)—(29) to obtain the final expression above.
If one applies the following Lorentz transformation to reference frame K,
A= A(FR)A(BZ), (47)

then in the resulting reference frame K’ the E’ and B’ fields are also parallel, for any choice of 3’
This result follows from eq. (33), which states that the components of the electric and magnetic
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field that are parallel to the boost direction are unaffected by the Lorentz transformation. Having
found the reference frame K’ after applying A(52) where E' and B are parallel and point in the
7 direction, one can perform an arbitrary boost in the direction parallel to n without modifying
E’ and B’ further.

One can evaluate the right hand side of eq. (47) explicitly. Here, I will make use of Pawel
Klimas, Lecture Notes on Classical Electrodynamics, which has been posted to the Physics 214
webpage. Using egs. (1.73) and (1.78) of Klimas’ notes,

A(B'R)A(B2) = OA(B"), (48)
where O is a Lorentz transformation corresponding to a pure rotation'? and
2! 1 5/’& Vﬁﬁl A A ~
= 1 . 4
o 1+5ﬁ“ﬁ-2{7 - +v+1n =) 0| (49)

where v = (1 — 82)~Y/2. In light of eq. (46), it follows that 7 - 2 = 0, and eq. (49) simplifies to'!
B"=p5(1- 5" 0+ B2 (50)

Note that the parallel electric and magnetic field remain parallel if one transforms the reference
frame by a pure rotation. Thus, we can neglect the pure rotation O in eq. (47) to conclude that
starting from reference frame K, the application of the boost A(ﬁ ") to produce reference frame
K" yields E" and B" fields that are parallel.

To summarize, the complete answer to the problem posed by Jackson (although probably not
what Jackson meant to ask) is that any boost of the form A(S'(1 — 3?)"/?f + B2), where 3 and
7 are fixed by eqs. (38) and (46), respectively, will yield a reference frame K” such that the E”
and B" fields are parallel, for any choice of the parameter ', where 0 < g’ < 1.

REMARK 4:

An alternative solution to Jackson, Problem 11.15 is provided in an Appendix at the end of
this Solution Set.

4. [Jackson, problem 11.18] The electric and magnetic fields of a particle of charge ¢ moving
in a straight line with speed v = fc¢, given by eq. (11.52) of Jackson, become more and more
concentrated as f — 1, as indicated in Fig. 11.9 on p. 561 of Jackson. Choose axes so that
the charge moves along the z axis in the positive direction, passing the origin at ¢ = 0. Let the
spatial coordinates of the observation point be (x,y, z) and define the transverse vector # , with
components x and y. Consider the fields and the source in the limit of § = 1.

0The rotation O is called the Wigner rotation. As explained below eq. (50), the parallel electric and magnetic
fields remain parallel under a pure rotation, and thus we will not require an explicit expression for the Wigner
rotation in this problem.

UTf we define 87 = |3"], then 8”2 = 3'2(1 — 82) + 2. One can then check that 0 < 2,8’ < 1 implies that
0 < "2 < 1, as required by special relativity.
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A
(2,9, 2)
g R
. (0
vt
> » 2

Figure 1: A charge ¢ moving at constant velocity ¥ in the z-direction as seen from reference frame
K. The angle 1 is defined so that © - R = cos 1.

(a) Show that the fields can be written as

—

E:2q/r—2l d(ct — 2), B =2q lcs(ct—z), (51)
Tl

where ¥ is a unit vector in the direction of the particle’s velocity.

We begin with eq. (11.154) on p. 560 of Jackson,

qR

E=
R3~42(1 — B2sin?q)3/2

(52)

where 1 is the angle between the vectors ¥ and R. 1 have modified Jackson’s notation by
employing the symbol R for the vector that points from the charge ¢ to the observation point 7 =
(7,9, z) in reference frame K.'? Eq. (52) was also derived in class along with the corresponding
result for the magnetic field,

— Tx R
5o GRS VN (53)
cR3~2(1 — B%sin” 4))3/2
The reference frame K is exhibited in Fig. 1. It is evident from this figure that
R=7—1t. (54)
The velocity vector is taken to lie along the z-direction. That is, ¥ = vZ.
It is convenient to introduce the notation where
r. = 1% +yy, | = 2%, (55)

so that 7, - ¥ = 0 and 7)) X ¥ = 0. Likewise, we can resolve the vector R into components parallel
and perpendicular to the velocity vector,

R=R||+Rl,

12 Jackson denotes the vector that points from the charge ¢ to the observation point (z,y,2) by . However,
I prefer to employ 7 to represent the vector that points from the origin of reference frame K to the observation
point, as shown in Fig. 1.
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where

E||ER||2:(Z—Ut)2, EJ_I’FJ_. (56)
after making use of eq. (54). In particular, note that |R 1| = R, = Rsin. It follows that
R3(1 . 62 SiIl2 w)3/2 ( 52R2 San w)3/2 (R ﬁ . 52Ri)3/2
= (B + B3(1— B2 = (B} + R /)" (57)

Note that in obtaining eq. (57) we used R? = R? + Rﬁ and v = (1 — B?)~/2. Moreover, since

R, =7, [cf. eq. (56)], we may replace R, with 7, = |7, | = (22 4 y*)"/2 in the above formulae.
Egs. (52), (56) and (57) then yield

g7+ (2 — vt)2]

E= (58)
PR+
Likewise, egs.(53), (56) and (57) yield
= 7q(T X L)
B-= . (59)
c(fyzRﬁ + 72 )3/2
Consider the limit of f — 1. In this limit, v — oo, and we see that
: gl 0, if Ry #0,
lim 2 ,2)3/2 '
=00 (72R||+7“ )3/ 00 , if R =0.
This implies that
lim i = K5(R)), (60)

y—o0 (”yzRﬁ + 72 )3/2
for some constant K. Note that in light of eq. (56),

lim R” =z—ct,

Y— 00
since v — oo in the limit of v — ¢. To determine K, we integrate eq. (60) from —oo to oo,
since R) can be any real number (either positive, negative or zero) depending on the value of the
time ¢. Thus, employing the substitution v = yR),

fydR” [ du B u <2
K= / 2R2 3/2 - (u2 42 )3/2 o (u2 42 )1/2 . - E (61)
Hence, we conclude that
i il _ 250
V11_)10([)1o (72Rﬁ R rid(z ct). (62)

Note that in the limit of v — ¢, we can insert the result of eq. (62) back into eq. (58), and
make use of the well-known property of the delta function,

(z—ct)o(z—ct) =0, (63)
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to obtain

. 2q
}}LII;EZ = E(z —ct)o(z—ct) =0. (64)
It therefore follows that 7
lim E = 2q— d(z —ct). (65)
v—C

ry

Likewise, in light of the observation that lim, ,.¥/c = ©, when we insert the result of eq. (62)
back into eq. (59), we end up with

DX T

lim B = 2q

v—C

= 6(z —ct). (66)

H

Since the delta function is an even function of its argument, we can write d(z — ct) = d(ct — z) in
egs. (65) and (66), and eq. (51) is verified.

An alternate solution to part (a)

I cannot resist sharing an alternate solution suggested by one of the Physics 214 students
(with additional modifications to the original analysis added below).

Starting from eq. (58) and defining a new variable w = z — vt, consider the following Fourier
transform of B (7., w),

0o ) R d .
= / E | (7, w)e ™ dw = yqi, / ( v e~ (67)

Y2w? + 13 )3/

We can change the integration variable w — ~yw to obtain,

. I dw
E (¥, k)= QTL/ (

—ikw /vy
w? 4 12 )3/2 ¢ : (68)
If we formally take the limit v — ¢, or equivalently v — oo, then e~**/7 — 1. This limit needs
justification, since for finite but very large -, it is not clear that one can ignore higher order terms.
I will attempt to justify this step at the end. Meanwhile, if we go ahead and take the formal limit
of e7™"/7 — 1, then

dw _ 2q7)
o (W2472)32 7 2

Y— 00

If we now compute the inverse Fourier integral to determine the v — oo limit of £ (¥, w), then

_ 2 1 2
lim B (7, w) = lim — / E (71, k) et = q’} “de: - qna(w) . (70)
Y00 =00 2 ri 2w r
Since lim,_,oc w = lim,,. w = 2 — ct, we end up with
- PN 2q7,
lim E | (7, w) = ——0(z — ct) . (71)
v—c Ty
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In essence, the somewhat mathematical dubious steps above have effectively provided a method
for determining the coefficient of the delta function in eq. (71). Indeed, this is not surprising, as the
integration carried out in eq. (69) is precisely the same integration that was used in determining
the constant K in eq. (61).

However, we still must determine lim,_,, E. (7, w). Following the steps that yielded eq. (67),

E.(7L k) = / E.(7L,w)e ™ dw = 1q / whw ke (72)

o0 oo (VW £ 17)32

This time, if we change the integration variable w — ~w, then

. ¢ [ wdw
FE, k) == - v, 73
(7L k) 7/_m(w2+@g,/26 (73)

Hence, in the limit of v — oo, it follows that

lim E. (7, k) =0. (74)

y—00

The inverse Fourier transform then yields,

. N RET 1 > — ikw __
}L%EZ(TL,W) _vh—{go%/_oo E. (¥, k)e™ =0. (75)

Finally, let’s try to justify the v — oo limit taken below eq. (68). First, we break up the
integral in eq. (68) from —oo to 0 and then from 0 to co. In the first integral, we change variables
w — —w. We can now combine the sum of the resulting two integrals into

_ /°° cos (kw /) dw

EL(FLk) =2 | e

We first note formula 3.754 no. 2 on p. 439 of .S. Gradschteyn and .M. Ryzhik, Table of Integrals,
Series, and Products (8th edition), edited by Daniel Zwillinger (Academic Press, Waltham, MA,
2015), henceforth to be denoted by G&R,

(76)

* cos(ax) dz
v ViR
where K is the modified Bessel function of the 2nd kind. Taking the derivative of this formula
using G&R formula 8.486 no. 18 on p. 938,

Ko(ab) = for a > 0 and Reb > 0, (77)

d
L Kolz) = ~Ka2), (78)
we obtain y o (ax)d
cos(ax) dz
Kl(&b):aA m, for a > 0 and Reb>0, (79)
Identifying z — w, a — k/~ and b — r, it follows that
- 2kqrT k
Bum b =2 g (). (50)
yrL Y
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In the limit of v — oo, we need to make use of the small argument approximation of Ki(z).
G&R formulae 8.445-8.446 on p. 928 provides the necessary expansions. However, for me, it is
easier to first write down the small argument expansion of Ky(z), and then differentiate using
eq. (78) to get the small argument expansion of K;(z). G&R formula 8.447 gives

2k

=z z "1
Ko(z2) = kzom [— In <§> —VEJF;;] : (81)

after making use of G&R, formula 8.365 nos. 1 and 4 on p. 913, where v, = 0.5772156649 . . . is
the Euler-Mascheroni constant, and by convention Z?Zl is assigned the value zero when £ = 0
(corresponding to the case of the “empty sum”). Using eqs. (78) and (81), one obtains

Kl(z):%jtg {ln <§) ‘I'VE_%] +0(*Inz). (82)

Inserting this expansion into eq. (80),

. 2qT In
B =2 0 (7). (53)
1 8

which justifies the v — oo limit quoted in eq. (69). It is still not clear that one can mathematically
justify obtaining E | (7, w) as we did in eq. (70) for very large but finite v (due, in part, to the
presence of terms that go as In+), although the leading term at large v does yield the correct
result in the sense of distributions.

(b) Show by substitution into the Maxwell equations that these fields are consistent with the
4-vector source density
J% = qev®d@ (7 )d(ct — 2)

A~

where the 4-vector v* = (1; D).

The four-vector current is given by J* = (cp; J) ). Hence, using the Maxwell equations in gaussian
units,

V.-E =4mp = rJ .
c

Using egs. (65) and (66) and noting that £, = 0, it follows that

0_ ‘o F. (o L OB _Cs, . (T
J _47rV E_47r <VL E+ 0z ) N 27?5(2 AV (ri) ' (84)
where -

Vi=&0/0x+90d/0y. (85)

For ¥, =x& + y g # 0, an elementary computation yields

- T B 0 €T 0 y B y2—{lf2 {E2—y2 B
v <Ti) - Or (fczﬂf) "oy (x2+y2) N T (86)
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To determine the behavior at ¥, = 0, we consider the two-dimensional analogue of the divergence

theorem,
. ’FJ_ 'FJ_ . 2m
/dxdyVL- — :7{710@—2'71:/ d¢ = 27, (87)
A L c r 0

where A is a circular disk and C' is the circular boundary of the disk. Note that #, = 7, /r, is
the outward normal to the circular boundary.
Egs. (86) and (87) imply that

V.. (’“j) — 26 (7,) (59)

where §)(7,) is a two-dimensional delta function. Inserting this result into eq. (84), we end up
with
JO = qed@(7)6(z — ct). (89)

Next, we employ the Maxwell equation,
VxB--—=2"7, (90)

to evaluate J. First, we compute

— A~

O X T =2X (22 +yy) =29 — y&, (91)

where we have used the fact that ¥ points in the z direction. It then follows that

x U Z

b X7 0 0 0

- VXT| v v v
Ry 5(z—ct) S d(z — ct) 0

Evaluating the determinant and making use of eqs. (55), (85) and (88) yields,

= VX T B T +yy 0 x 0 Y B
Vxl ) (2 ct)} e (2 —ct) + {8x <7$2+y2)+8y <x2+y2)}6(2 ct)

= —Ir—;é/(z —ct) (’r_; (z —ct)

T T
= —F—Lé'(z —ct) 4+ 272 6@ (71)6(z — ct 93
=—— 1)6(2 — ct). (93)

T

The prime refers to differentiation with respect to z. Finally, we compute

S (Tot-a) =i (Tate—an)) = - T o — ). (01)

L H
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Inserting egs. (65) and (66) into eq. (90) and using egs. (93) and (94), we obtain

P9 o [P X T | = 42 (T, -
J_QWVX{ ) o(z ct)] 5 D (rié(z ct))

—

= % {—%5'(2 —ct) + 212 0P(7F1)0(z — ct) + % §(z — ct)}
= qcv 6D (FL)0(2 — ct) (95)
after using the fact that ©® = 2. Combining eqgs. (89) and (95), we can write
J = qev*d P (7 )6 (2 — ct)

where the four-vector v® = (1; D).

(c) Show that the fields of part (a) are derivable from either of the following 4-vector potentials:
A = A% = —2¢6(ct — z) In(A\ry) A =0, (96)

or

A0 — A% — 0, fL_ — —2q@(ct — Z)§L ln()\rL) , (97)

where \ is an irrelevant parameter setting the scale of the logarithm. Show that the two potentials
differ by a gauge transformation and find the corresponding gauge function x.

The four-vector potential is A* = (¥ E) Given the four-vector potential, the electromagnetic
fields are determined by

Bo_oa_124 B-VxA.

Inserting the scalar and vector potentials given in eq. (96),

E =2¢V [5(015 —2) ln()\rl)] + @2 ln()\rl)gé(ct —2)
c ot
.0 0 ) o 10
= 2q0(z — ct) (a:% + ya—y) [% In(2? +3?) + InA| +2¢2In(Ar) (@ + EE) d(ct — 2)
= 2qr—;6(z —ct),
1

after using ¥, = 22 + yg and r? = 2% + y%. In particular, note that
o 10
Gl fet—2) =0
(8z * cat) Jlet =2) ’
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for any function of ¢t — z. Using eq. (96) to compute the magnetic field,

T U Z
Lo - 0 0 0
B =V X A =det % 8_ a—
0 0 —2qIn(Arp)o(ct — 2)

_2q5(ct — Z) {@% ln()\rl) ag ln()\rL)}

B 0
:—2q5(ct—z){ a—y[ In(z* 4+ y*) + In A] ~ 95 [%1n(m2+y2)+ln>\]}
= 2y — g)b(ct — ) = 22T (et — 2)
= ’r‘i Yy Zlfy C Z) = q TJ_ C Z),

after employing eq. (91).
Repeating these calculations using eq. (97),

= 104 o .0
E = o = 2¢6(ct — 2) ( ey —I—’ya ) [1In(z® + y*) + In A| —2q—l5(ct—z)
d
after using the relation between the delta function and the step function, §(z) = d:)s@( x). In the
computation of the magnetic field, we require the following result:
= 0 0 9 o T + Yy
Vin(Ary) = ( p +y8 ) [1ln(z® +y*) + InA] = ey
Hence, it follows that
T ] Z
- . 0 0 0
B =V X A= —2qdet oz dy 9z
Y
@(Ct—Z)m ("‘)( _Z)x2+y2 0
YT — xy 0 Y 0 x
= d(ct — O(ct — S (N
Ay A RO D) {&T <x2+y2) Ay <x2+y2)}
= 2qv in o(ct — 2),
L

after employing eq. (91) and noting that

O(_ v N_ 9 ( x \___ 2oy . 2oy _,
Ox \ 22 + 92 oy \ 22 +y2)  (224+92)% (a2 +y2)2
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Finally, we demonstrate that eqs. (96) and (97) differ by a gauge transformation. Under a
gauge transformation (using gaussian units),
A A=A+ Vy, A0—>A’0:A0——a—>t<.
c

Denoting A* by eq. (96) and A’* by eq. (97), it follows that

0

8_>t< = —2qcd(ct — z) In(Ary ),
Vix=-2¢0(ct — 2)V In(Ar,),

0

0_>z< =2¢d(ct — z)In(Ary).

The solution to these equations can be determined by inspection,
X(&,t) = —2¢O(ct — 2) In(Ary),

up to an overall additive constant.

5. [Jackson, problem 11.22] The presence in the universe of an apparently uniform “sea” of
blackbody radiation at a temperature of roughly 3K gives one mechanism for an upper limit on the
energies of photons that have traveled an appreciable distance since their creation. Photon-photon
collisions can result in the creation of a charged particle and its antiparticle (“pair creation”) if
there is sufficient energy in the center of “mass” of the two photons. The lowest threshold and
also the largest cross section occurs for an electron-positron pair.

(a) Taking the energy of a typical 3K photon to be E = 2.5 x 10~ eV, calculate the energy for
an incident photon such that there is energy just sufficient to make an electron-positron pair. For
photons with energies larger than this threshold value, the cross section increases to a maximum
of the order of (e?/mc?)? and then decreases slowly at higher energies. This interaction is one
mechanism for the disappearance of such photons as they travel cosmological distances.

Since the photon is massless, it can be described by a four-vector of the form & = E(1; n2), where

E' is the photon energy and m is the unit vector that points along the direction of the photon

three-momentum. Note that &% = g, k*k” = 0, which indicates that the photon is massless.
Denote the four-momentum vectors of the two photons by

ki = Eq(1; 1), ky = Es(1; M), (98)

where the subscripts 1 and 2 above label the kinematic quantities of the two photons. We are
given F; = 2.5 x 10* eV, and we are asked to find the minimum allowed energy Es such that the
process vy — ete” is kinematically allowed. Let p; and p, denote the four-momentum vectors of
the electron and positron, respectively. Using the conservation of four-momentum,

ki + ko =p1+ps. (99)
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If the process vy — eTe™ is kinematically allowed, then the minimal value that (p; +p2)? can take
occurs when the electron and positron (each with equal mass m, = 511 keV /c? = 5.11x10° eV /c?)
are produced at rest in the center-of mass reference frame of the eTe™ pair. That is, the minimal
value that (p; + p2)? can take occurs when p; = ps = (m.c?; 0,0,0). It follows that the minimal
value of (p; + p2)? is equal to 4m?c*. Since (p; + ps)? is Lorentz invariant (and therefore can be
evaluated in any reference frame with the same result), one can conclude that

(ky + ko)? > 4m?2c*, (100)
after squaring both sides of eq. (99). Using eq. (98), we obtain
(Ey + Ey)* — (Eyniy + Eprig)® > 4mict. (101)
Simplifying the above equation yields
EyEy(1 — cos ) > 2m2ct, (102)

where cosf = 71y + 1. Since | cosf| < 1, the minimum value of Fy arises when cosf = —1. In
this case, we end up with EyEy > m?2ct. Putting in the numbers,

m2ct  (5.11 x 105 eV)?

— =1.04 x 10" eV = 1.04 PeV . 103
B, 25x101eV e ¢ (103)

Es

v

(b) There is some evidence for a diffuse x-ray background with photons having energies of
several hundred electron volts or more. Beyond 1 keV the spectrum falls as E~" with n ~ 1.5.
Repeat the calculation of the threshold incident energy, assuming that the energy of the photon
in the “sea” is 500 eV.

In this case, we use eq. (103) but we replace the denominator with 500 eV. The end result is

m2ct  (5.11 x 105 eV)?
E,>—¢ = =5.22 x 10% eV = 522 MeV . 104
2 = E1 5% 102 eV 5 x 10° eV 5 eV ( 0 )

6. [Jackson, problem 11.28] Revisit Problems 6.21 and 6.22 of Jackson from the viewpoint of
Lorentz transformations. An electric dipole instantaneously at rest at the origin in the frame K’
has potentials, ® = §'- &’/r'3 (where 1’ = |Z’|), and A’ = 0 (and thus only an electric field).

—

The frame K’ moves with uniform velocity ¥ = B¢ in the frame K.

(a) Show that in frame K to first order in [, the potentials are

=}
=}

p- - ~P -
q): R3 s A:ﬁ R3 5

(105)
where R = & — &(t), with @ = d&,/dt at time ¢.
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Here, we shall follow the analysis of the class handout entitled The electromagnetic fields of a
uniformly moving charge. Consider an electric dipole with dipole moment vector p moving at
constant velocity ¥ with respect to the laboratory frame K. The rest frame of the electric dipole
will be denoted by K’. In particular, we define the origin of K’ to be the location of the charge.
A laboratory observer is located at the point & = (x,y, z), which denotes the vector that points
from the origin of the laboratory frame to the observer. As seen in the rest frame of the electric
dipole, the observer is located at the point &' = (2/,%/, 2’), which denotes the vector that points
from the origin of K’ to the observer.

At time t = 0, the electric dipole is located at the origin of the laboratory frame. After a
time t has elapsed (as measured in frame K), the electric dipole is located at the point ¥t in the
laboratory frame. It is convenient to define the axes of the K’ coordinate system such that the K
and K’ coordinate systems (and their origins) coincide at ¢t = ¢ = 0. As usual we define zy = ct
and zf, = ct’. The relation between (z¢; &) and (z}; €') is given by

zp = (w0 — B-&) (106)
&~z + UG5~ B, (107)
where 1
B=d/c, s=18], vy =

Vv

Since the scalar potential ® and the vector potential A make up a four vector A* = (P; K),

the corresponding transformation laws are the same as those for 2 = (2°; &). Hence,
(&) = 7(9(F,t) — B-A(&.1)) | (108)
— —_ — 1 - — — -
K@) - A@.o+ U (3. A@0)F - Bo@. b, (109)

We can invert these transformation laws by interchanging primed and unprimed variables and
taking 3 — —3. Thus,

O(& 1) = (¥ (&, 1) + B-A'(&, 1)), (110)
(=1

32 (B-A&'(@,1)) B+~ | (111)

Let us compare the views from reference frames K and K’. The moving electric dipole as
seen from the laboratory frame K is shown in Fig. 2. In addition, we define R to be the vector
in frame K that points from the location of the electric dipole at time ¢ to the location of the
observer. It follows that &y = ¢¥t. Hence, we can identify:

R=&—cft. (112)

The rest frame K’ of the moving electric dipole is depicted in Fig. 3. In this frame, the vector
that points from the origin of frame K to the location of the electric dipole is U1, where t is
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(z,y,2)
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p
Figure 2: An electric dipole p' moving at constant velocity ¥ in the z-direction as seen from reference frame K.
The origin of the laboratory frame K is denoted by O, and &y is the location of the electric dipole at time t.
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Figure 3: An electric dipole p moving at constant velocity ¥ in the z’-direction as seen from reference
frame K’. The origin of the laboratory frame K is denoted by O. The z-axis of frame K is indicated by a
dashed line.

the time elapsed as measured in frame K’ (where t =t/ = 0 marks the time when the frames K
and K’ coincided). In particular, note that eq. (107) can be rewritten in the following equivalent
form,

v _ g, 0D = ==
w’:R+T(B-R)B, (113)
after noting that By = Bt

In the rest frame K’ of the electric dipole, the scalar and vector potentials are time-independent
and are given by

S p-x
(2, t) = wEt

A& 1) =0. (114)

where 1’ = |Z’|. After making use of eq. (113), and using v* — 1 = 32?2 to simplify the resulting
expression, we end up with
2 =|&']2 =R ++*B- R)*, (115)

where R = | R|. Hence, using eqgs. (107) and (114) with & and ’ given by eqs. (113) and (115),
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respectively, we obtain:

O(Z, 1) = ' (&', 1 s , 116
(@.1) = /(@) SRty (116)

Likewise, setting A’ = 0 in egs. (110) and (111) yields
AZ 1) =B0(&1). (117)

Since Jackson only asks for the expressions for ¢ and A to first order in 5, the above results
simplify greatly. In particular, v = (1 — 32)7%2 = 1+ O(5?). Hence, eqgs. (116) and (117) yield

_P-R

S0, A@n =8

(£, 1) +0(B%), (118)

where B = & — ¢ft, in agreement with the results quoted in eq. (105).

Note that p'is the electric dipole moment vector in the rest frame of the electric dipole. It is
an intrinsic property of the particle (like the mass). So, there is no problem in using this quantity
in the expressions for the scalar and vector potential in the laboratory frame K.

(b) Show explicitly that the potentials in K satisfy the Lorenz condition.

The Lorenz condition,
109

0MA“:V-A+E§—O, (119)
is a Lorentz-invariant condition that is trivially satisfied in the reference frame K’ where A =0
and ® = p'- £’/r'? is time independent. Thus, eq. (119) is also satisfied in reference frame K’
since it must be satisfied in any inertial reference frame.

One can also verify explicitly that eq. (119) is satisfied in reference frame K. First, note
that V = Vg, where V = (9/dz", 0/92%, 9/02%), and Vi = (9/OR", d/OR?, d/IR?), where
R' = x'—cBt (i = 1,2,3) are the components of the vector R. Moreover, the time-dependence of
®(&,t) is due to the time dependence of R = & — ¢t [cf. eq. (116)]. Hence, using the chain rule,

100 10R

Finally, since A = 8@ [cf. eq. (117)],
ﬁ-A’: 63(5@) :§°§R®+®63'525°63®, (121)

since 3 is fixed (and thus independent of R). Adding eqs. (120) and (121) yields

> - 100
V-A+-——=0 122
+08t ' (122)

and the Lorenz condition is established (without any approximations).
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(c¢) Show that to first order in (3, the electric field E in K is just the electric dipole field
(centered at &), or a dipole field plus time-dependent higher multipoles, if viewed from a fixed

origin, and the magnetic field is B = ﬁ x E. Where is the effective magnetic dipole moment of
Jackson, Problem 6.21 or Problem 11.27 part (a)?

In reference frame K’, the electric and magnetic fields due to an electric dipole p'is given by:

L, -, . 10A -, (P& 3T (F-&) P
E (:13’) = —V (b/ — E dt/ = —V r/3 = T — 7‘/_3’ (123)
B'(#)=V'x A =0, (124)

under the assumption that ' = |&’] # 0.13

The electric and magnetic fields in frame K’ are related to the corresponding fields in frame
K by eq. (11.149) of Jackson. To obtain the electric and magnetic fields in frame K in terms of
the corresponding fields in frame K’, one simply changes 5 — —ﬁ. That is,

o "/_" D/ Y "". =

E=~FE -p3xB') 7Hﬁ(ﬁ E’), (125)

— — — — 2 —_ = —

B-—~y(B'+BxE)-—_—33-B". (126)
v+ 1

Since B’ = 0, these equations simplify to

E=~E'- 711 36-E"), (127)
B=+3xE'. (128)
Noting that 5 x E = 75 X E', it follows that
B=3xE. (129)
Neglecting terms of O(3?), it follows that v = 1 + O(3?) and
B

= 1=0(). (130)

In this approximation, eq. (127) reduces to

E=E +0(p)=22E 20

15 7“/3

+ 0(B%), (131)

after making use of eq. (123). Finally, we note that egs. (113) and (115) yield, = R + O(5?)
and ' = R+ O(f?). Inserting these results into eq. (131), we end up with
= B3R(G-R) 7 5 o=
E:T—ﬁuﬂﬁ?), B=3xE. (132)

13By assuming that 7’ # 0, we explicitly exclude the delta function singularity at &€/ = 0 in the expression for
E'(Z'), which is exhibited in eq. (4.20) of Jackson.
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Recall that B = & — Iy, where ¥y = ¥t. Hence, to first order in 3, the electric field E in
K is just the electric dipole field centered at Z,. If the electric dipole is viewed from a fixed
origin, then we must express the electric field as a function of &. Then, if we denote r = |Z| and
ro = |Zo| = ¢ft, then

N Y 1
R=|%—- &y = [7"2—1-7"3—27"'&-50]1/2:7" 1+r0—7"2nwo] :r—ﬁ,-:'c'+(’)(—) - (133)
r r
where we have introduced the unit vector n = &/r, and
. R T, n(n- @ 1
R=F_, T _n0-3) (1) (134)
R r r r?
Then, eq. (132) yields
L 3@ -p (1
E = — 5 +0 ) (135)

The O(1/r*) terms can only arise from higher multipole moments. For example, carrying out the
next term in the expansion, one finds

= 3n(p-n)—p  15(& - A)(F- A)h — 3[(Zo - )R+ (Zo - )P + (B 1)) 1
PS5 ; co(2).
(136)

where the O(1/r) term is recognized as an electric quadrupole field [cf. Jackson problem 6.21
part (c)]. Thus, if the electric dipole is viewed from a fixed origin, it would correspond to an
electric dipole moment plus time-dependent higher multipole terms.

A moving electric dipole moment acquires a magnetic dipole moment, but this effect is quite
subtle. It turns out that the B field obtained in eq. (132) has two separate sources. One source
can be attributed to a magnetic dipole moment

m=px0. (137)

while the second source arises from the electric polarization current that is due to the polarization
produced by a moving electric dipole. Details can be found in V. Hnizdo, Magnetic dipole moment
of a moving electric dipole, Am. J. Phys. 80, 645 (2012), with further discussion in V. Hnizdo and
Kirk T. McDonald, in a set of notes entitled, Fields and Moments of a Moving Electric Dipole.'*
If m is given by eq. (137), then the corresponding vector potential given by Jackson eq. (5.55)
in gaussian units, in the frame K is given by

- mXR RX(BX p-R)B—(B-R)p

fomxR_Rx@xp @R (@-Fp s

Comparing this result with eq. (118), we see that there is an extra term in eq. (138). Hnizdo and
McDonald argue that the total vector potential of a moving electric dipole in frame K is actually

14V, Hnizdo and Kirk T. McDonald, Fields and Moments of a Moving FElectric Dipole, is available as a download
from Kirk T. McDonald’s websitre: http://kirkmcd.princeton.edu/examples/movingdipole.pdf.
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due to two contributions: the so-called electric-polarization current density and the magnetic-
polarization current density. Hence, in the reference frame K, they write :

A=A, +A,, (139)
where . o o
+ _(B-R)P ¢ _ (@-RB-(B-R)P
A, == A, = I . (140)

Thus, A= Kp + A, coincides with the result obtained in eq. (118) to leading order in /3, whereas
the magnetic dipole moment is extracted from A, However, Hnizdo and McDonald note that
one can decompose A in a different way, A=A, + ja, where the corresponding symmetric and
antisymmetric combinations are defined as

i <ﬁ-é>ﬁ2;3<5-é>ﬁ7 i _P-RB-(B-R)F

A, . (141)

This is the choice that Jackson has made implicitly in problems 6.21 and 11.27(a). Because of
the extra factor of 1/2, Jackson concludes that m = %ﬁ X 3, in contrast to eq. (137). Hnizdo
and McDonald thus argue that the identification of the magnetic dipole moment 1 of a moving
electric dipole moment is a convention and depends on the choice made in the decomposition
of A. Whether one decomposition is preferred over another is still a matter of debate in the
literature.

BONUS MATERIAL

One can perform the computation of part (c¢) without any approximations by following the method
outlined in the class handout entitled, The electromagnetic fields of a uniformly moving charge.
First, we note that the corresponding electromagnetic fields in the rest frame K’ of the charge
are given (in gaussian units) by:

E@)="2"1_ % B'(#)=0. (142)

after setting f = 0 in eq. (131). We now resolve the vectors above into components parallel and
perpendicular to the velocity vector. In particular,

—/

—/ —/
T =x)+T,

and

—/ =/ —/ =/ —/ =/
1t =& & = &3 + & &, (143)

since &-Z; = 0. Likewise, we can identify the longitudinal and transverse electric fields in
frame K,

of 3% [P~ (& +ZD] P

Bl - e - (144)
- 3Z [p- (5:"" —I—:Z"’l)} 7.
T (115)



We shall make use of the transformation law for the electric and magnetic fields under a
Lorentz boost:

E

&,

/
|

K E| =~v(E,+B8xB)), (146)

!
l

o)1

By, B =y(B,-BxE.). (147)

In analyzing the uniformly moving electric dipole, E' and B’ are known, so we have to invert
egs. (109) and (110) to obtain the electromagnetic fields in frame K. This is easily done by
interchanging the primed and unprimed fields while reversing the sign of 3. That is,

E, =1(E| -BxBY), B, =B +BxE). (148)
We are now ready to evaluate the electromagnetic fields in frame K. First, we employ
egs. (146)—(148) to obtain
E=E +E,=E|+1E|, B=B +B, =v8xE/|. (149)
Using eqs. (129) and (144), it follows that

3(&) +1Z)) [P+ (&) + Z))] PP

E = o PTRE (150)

B=3xE. (151)

Next, we need to convert the primed coordinate into the unprimed coordinates. In light of
eq. (113),
Z =Ry, T =R, (152)

after noting that RII =(B- R)ﬁ/ﬂz Hence,
T +9% =R, r? =v’R} + R: = R* ++°(B - R)?, (153)
in light of eq. (115). Furthermore, since B x P = % EH = 0, it follows that 3 x P, = Bxp

andﬁxﬁlzgxﬁ.
Finally, we shall make use of

B8, =B+ - = PP (ﬁ— L'ﬁ)") B LY}, BV MIEH

. L - v o =1, 4 o
YR+ R =R+ (y-1)R =R+1_~(3-R)j. (155)

Hence, we end up with:
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Likewise, we use eq. (151) to obtain:

E(i,t):?wﬁxR'[ﬁ-ﬁﬂv—l)(ﬁ-ﬁ)(ﬁ-@/ﬁz}_ V8 x 7
) [R2+72(5-R)2}5/2 [324_72(5,133’)2]

The time-dependence of the electric and magnetic fields in frame K arise through R=%— cﬁt.
One can verify that if terms of O(3?) are neglected, then the above equations reduce to those
exhibited in eq. (132).

As a further check of eq. (156), we present below an independent computation of the electric
field starting from scalar and vector potential given in eqs. (116) and (117). The electric field is
then obtained by evaluating

e (157)

. - 10A . G0d
Ext)=-V®o———=-Vb - ——. 158
@) c ot c ot (158)
Recall that V = Vg, where V = (9/0z", 0/92%, 8/02%), and Vi = (3/OR', d/OR?, /OR?),
where R' = ' — ¢ft (i = 1,2, 3) are the components of the vector R. Next, the time-dependence
of K(:E', t) is due to the time dependence of R = & — ¢ft. Therefore, using the chain rule [or
employing the result of eq. (120)],

Bov BOR o oo
ZE_ZE'VR(D__ﬁ(B'VR@)' (159)
Hence, eq. (158) yields
E(Z )= -Vio+B(3-Vid). (160)
In the evaluation of V rP, note that
Vr(@-R) =7, Vr(B-R)=4, (161)
and - oL Lo . Lo
ValR?+2B- R 7 = =3[R+ +*(B- R’ "*2[R++*(3- R)j]. (162)
Therefore,
) L R o=t )
Vid = D R)( Vr[R*+ R)"| —
R 7{ 32 (5 5)} R 7(5 )} [R2+72(B-R)2}3/2
¥ - L ==
3[R oL 7<p+ 5 (nﬂ)ﬁ)
_ ol +V£ " )_] [—» R+7—21(ﬁ-R)(15' ﬁ)} b 37
[R2++2(3- B)2”” p (72 + 728 R)?]
(163)
and
N 38+ R)3 {ﬂ v=1,5% = ] v (p-B)B
Vid) =— — R+ —— R)( — ,
ﬁ(ﬁ R ) [R2+72( -R)Z}S/Z 32 (ﬁ p 5) [R2+V2(5'R)2}3/2
(164)
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after using 14++23% = 42 in the first numerator on the right hand side of eq. (164) above. Inserting
the results of egs. (163) and (164) back into eq. (160), we end up with:

-~ -1, -
= 371? y=1,5 = 717_7(?'5)5
B R+ (B R - . (165
TR N R 7 PR w @ w2

after making use of the identity v*/(y + 1) = (v — 1)/8% Thus, we have confirmed the result
previously obtained in eq. (156).

APPENDIX: An alternative solution to Jackson, problem 11.15

In frame K, we have
E=Eax, B=B,z+DB,7, (166)

with o o
E-B = |E||B|cosf = EyBycosf = 2E3 cos 0, (167)

after writing | E| = Ey and |B| = By = 2E,. It follows that
B, = 2Ejcosf, B, = 2Ejsin. (168)

The electric and magnetic fields are parallel in a reference frame K’ which is moving at a
velocity ¥ = ¢ with respect to reference frame K. That is, the fields in K’ satisfy,

E'xB' =0. (169)

The electric and magnetic fields in frame K’ are related to the corresponding fields in frame K
by eq. (11.149) of Jackson,

2

E' —yE+3xB) -——53- E), (170)
v+1

—»_ — - — 72 P — —

B'=(B-FxE)- 157 B). (171)

Plugging the results for the electric and magnetic fields in reference frame K’ given by
egs. (170) and (171) into eq. (169), one can work out the following expressions. First,

(E+BxB)x(B-BxE)=ExB-B[E*+B*-3-(ExB)|+EQ-E)+B(8-B), (172)
where E = |E| and B = |B|. Second,

(3-B)+p°B, (173)
—BxE)=8xB-3(3-E)+E. (174)



Hence, we obtain,

R 3
/

E'xB =ExB-f{[E>+B>-3-(ExB)] - [(&E)%(B’.ﬁ)ﬂ}

s
v+1

(B3 B)+ B(3- B)) [1 } - f’ {(B’-E)Ex B (3 B)f E}

+1
(175)

We can simplify the above expression by using v? = (1 — 3%)7}, which yields 82 = (v* — 1)/92.
Hence,

2 -1 1
LCARS N Sk S (176)
7+1 g gl

We then end up with,

where
h=E*+B*—k[E°B*—(E-B)?] - %{ (k1 B + ko (E - B)]* + [ky(E - B) +k2B2]2} . (178)
Y

The only way to satisfy E' x B’ = 0 is if the right hand side of eq. (177) is proportional to
E x B

One way of ensuring that the right hand side of eq. (177) is proportional to E x B is to take
5 to be parallel to E x B. That is, there exists a nonzero constant k such that

B=kKE xB. (179)

Note that eq. (179) implies that B-E=73-B =0. Hence, eq. (177) simplifies to,
ST g opr| (180)

It then follows that

E'xB =0 — — E?+ B2, (181)

Using egs. (166) and (168), E* + B? = 5E2 and

2F2ksin6 -

B=kE x B = 3 8. (182)

Thus, one can identify,

B

h=—F
2EZ¢sin 6

(183)

I5Recall that if {¥;} is a set of linearly independent vectors, then the only solution to Zl c;¥; =01is ¢; =0 for
all 4.

32



Plugging this result into eq. (181) yields,
2sin (1 + %) =58, (184)

which reproduces the result previously obtained in eq. (37).

As a check of our calculation, let us verify explicitly that E’ is parallel to B’. Inserting
eq. (179) into egs. (170) and (171) yields,

E'=~E (1-kB*) ++kB(E- B), (185)
B'=4B (1 - kE®) + ykE(E - B). (186)
In light of egs. (166)—(168) and eq. (183),
E' =~E, [(1—283sin0)& + 28 cosb ] , (187)
B' =~E, [2cosf& + (2sinf — )P . (188)
We can now check that ~ .
E' x B'=[2sinf(1+p* —58]2=0, (189)

after employing eq. (184), which completes the check of the calculation.

The two limiting cases are now easily analyzed. In the case of § < 1, we can work to first
order in #. As noted below eq. (38), 8 ~ 26 and v = (1 — 5%)7%/2 ~ 1 + O(B?). Since we are
working to first order in 0, we also must work to first order in . In particular we can neglect
terms such as 6. Hence, in this limiting case, eqs. (187) and (188) yield

E'=1B'=Fyz&+2py), forfB~20<1, (190)
where we have neglected terms that are second order (or higher) in 5. Finally, in the limit of
0 — im, eq. (38) yields f# = 1. Then v =2/V/3, and eqgs. (187) and (188) yield

E'=0, B'=V3Eyg, forf=1r. (191)

Thus, we have reproduced the results of egs. (39) and (40).

REMARK:

Another strategy to find all possible boosts that result in parallel electric and magnetic fields
is to start with egs. (170) and (171) and impose the condition E’ x B’ = 0 to determine the
most general form for the boost We again denote the boost parameter by B

Since E B and E x B are three linearly independent vectors, B can be written in the
following form,

B=kE+kB+kEx B, (192)

where the constants ki, ks and k are to be determined. It then follows that,
HXE:—kgExB k[(E *)E’ EE], i}
B-(E x B)=k|E x B! =k[E*B*— (E - B)"],
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and = \ﬁ|, where
B =k E* + 2kiko(E - B) + k2B* + K*[E*B* — (E - B)?]. (193)

This last equation is needed to obtain an expression for v = (1 — 3?)7'/2. Plugging the above
results into eq. (177) yields,

E'XxB'=c¢,E+B+cE X B, (194)
in reference frame K", where
— — 3]’{:]’{: o —
o= b (B B+ T e (8. B (195)
2 5B 2 v kky 2 2 B B2
2 = = hah 9 [l (B - B) + o 5] + 22 [B°B — (- BYY], (196)
3
cs =7*(1 — kh) — 71 1 [k%Ez + 2k1ko(E - B) + kng] : (197)

and h is given by eq. (178), which we rewrite below for the reader’s convenience,

h=E*+B*—k[E°B*—(E-B)?] - #{ [k B2 + ko (E - B)] + [kl(E-§)+kng]2} . (198)

To find solutions {k, ko, k} to the equation E' x B' = 0, we set ¢; = ¢o = ¢3 = 0. This
yields three nonlinear equations for the three unknowns, kq, k; and k. The one solution obtained
previously with B = B2 corresponds to k; = ko = 0 and kh = 1, where k is given by eq. (183).
Here, we write [y to distinguish this special case from the general case under consideration. In
this special case, ¢; = ¢o = 0 automatically and ¢35 = 0 yields kh = 1 which implies that

k(E*+ B?) — k*[E°B? — (E-B)*] = 1. (199)
Using eqs. (27)-(29), E2 + B2 = 5E2 and E2B? — (E - B)? = 4E?*sin® 0. Hence,
AEgk*sin®0 — 5E5k +1=0. (200)
Using eq. (183) to eliminate k (replacing § with 3y as noted above), eq. (179) is equivalent to
5050
o — 1=0 201
b 2sin 6 + ’ (201)

which yields eq. (184) for the special case of B = By, as expected.
More generally, one can verify that eq. (50) provides a family of solutions to egs. (195)—(197)
with ¢; = ¢3 = ¢3 = 0. In light of egs. (46) and (50), we can identify,

B'(sind — 255)

by = , 202
Ly Eosingy/1 — 4, sin 6 + 452 (202)
/
hy = ' 5500059‘ | (203)
YoEosin0y/1 — 483, sin 0 + 432
o
_ 204
g 2E2sing’ (204)
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where f3 is given by eq. (201), v, = (1—82)"1/? and ' is an arbitrary number such that 0 < 8’ < 1.
I have checked using Mathematica that after plugging in eqgs. (202)—(204) into egs. (195)—(198)
along with £? = E2, B> = 4E2, and E - B = 2E? cos 0, the end result is,

20K, [2(83 + 1) sinf — 5] 1 — 1Bysing — C? cos? 6 (205)
“a= (1+7)sind 1— 32— C2(1— 4Bysind + 452) |
o — VCEOCOSH[Q(ﬂg—I-‘l) sin @ — 50 o i —02(1—2505‘1n6’) 1 (200
(14+~)sind 1— 65— C?*(1 — 4y sin 0 + 455
Y — Y2[2(82 + 1) sinf — 550 [1 +~ — vC?(1 — 23, sin6)] | (207)

2(1 + ) sinf
where 5
Yo/1 — 4Fosinf + 452
Indeed, if [y satisfies eq. (201) then we find that ¢; = ¢ = ¢3 = 0. Thus, I have verified that a
boost to the frame with boost parameter given by eq. (50) yields E' x B’ = 0. I believe that

{k1, k2, k} given by eqgs. (202)—(204) provides all possible solutions, but I do not have a proof of
this statement.

C (208)
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