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1. The velocity four-vector

The velocity four-vector of a massive particle is defined by:1

uµ =
dxµ

dτ
= (γc ; γ~v ) , (1)

where dτ = γ−1dt is the differential proper time (which is a scalar quantity). Note that
γ ≡ (1 − v2/c2)−1/2, where v ≡ |~v| is the magnitude of the velocity vector ~v ≡ d~x/dt
that appears in eq. (1). The squared magnitude of the velocity four-vector,

u2 ≡ gµνu
µuν = c2 (2)

is a Lorentz invariant. This quantity is most easily evaluated in the rest frame of the
particle where ~v = 0, in which case uµ = c (1 ; ~0). One then immediately obtains u2 = c2.
Note that u is a timelike vector.

Let us now consider the following question. Suppose that the velocity vector is
uµ = (u0 ; ~u) in an inertial frame K. That is u0 ≡ γc and ~u ≡ γ~v, where ~v is the
velocity as measured in K. Note that γ depends implicitly on ~v and is also frame
dependent. A second inertial frame K ′ is defined to be moving with relative velocity ~w

with respect to K. Note that I have chosen a different symbol for the relative velocity
to avoid confusion with ~v which is the velocity of the particle in the reference frame K.

We wish to relate the four-vector uµ which describes the velocity of the particle in K
and the corresponding four-vector u′µ which describes the velocity of the particle in K ′.
This is accomplished by a Lorentz boost:

u′µ = Λµ
νu

ν (3)

with the boost matrix Λµ
ν given by2

Λ =







γw −γw
~βw

−γw
~βw δij + (γw − 1)

βi
wβ

j
w

|~βw|
2






, (4)

where ~βw ≡ ~w/c and γw ≡ (1− |~βw|
2)−1/2. Then, eqs. (3) and (4) imply that:

u′ 0 = γw(u
0 − ~βw·~u ) , (5)

~u ′ = ~u+
(γw − 1)

|~βw|2
(~βw·~u) ~βw − γw

~βw u0 . (6)

1We exclude massless particles, where v = c and γ = ∞, in which case the velocity four-vector does
not exist. In particular, the proper time, which is defined via c2dτ2 = gµνdx

µdxν = c2γ−2dt2, is not
well defined since there is no reference frame relative to which a massless particle is at rest.

2Note that we have employed a subscriptw on ~βw and γw to distinguish these quantities from ~β ≡ ~v/c

and γ ≡ (1− |~β|2)−1/2, which appear in the definition of the four vector uµ = (u0 ; ~u) = (γc ; γ~v).
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Dividing these two equations yields:

~u ′

u′ 0
=

1

u0 − ~βw·~u

[

~u

γw
+

(γw − 1)

γw|
~βw|

2
(~βw·~u) ~βw − ~βw u0

]

. (7)

Substituting u0 = γc, ~u = γ~v, and ~u ′/u′ 0 = ~v ′/c in eq. (7), we arrive at:

~v ′ =
1

1−
~v · ~w

c2

[

~v

γw
+

(γw − 1)

|~w|2γw
(~v · ~w) ~w − ~w

]

. (8)

This result can be rewritten as:

~v ′ =
1

1−
~v · ~w

c2

[

1

γw

(

~v −
~v · ~w

|~w|2
~w

)

−

(

1−
~v · ~w

|~w|2

)

~w

]

. (9)

This is the law of addition of velocities. As a check, if ~v = ~w, then the particle in
reference frame K moves at the same velocity as reference frame K ′ moves with respect
to K. This means that v′ = ~0 as viewed by an observer in K ′, in agreement with eq. (9).

In the simple case where ~v and ~w are parallel, it follows that:3

~v =

(

~v · ~w

|~w|2

)

~w . (10)

In this case, eq. (9) simplifies immediately to:

~v ′ =
~v − ~w

1− ~v · ~w/c2
. (11)

Note that the non-relativistic limit we can take c → ∞ (equivalently, all velocities
are much smaller that c) which implies that γw ≃ 1, in which case eqs. (9) and (11) both
reduce to the expected result, ~v ′ = ~v − ~w.

2. The momentum four-vector

The momentum four-vector (also called the four-momentum) is related in a simple way
to the velocity four-vector:

pµ = muµ = (E/c ; ~p ) , (12)

where [using eq. (1)]

~p = γm~v , (13)

E = γmc2 . (14)

Note that by dividing these two equations, one deduces an expression for the particle
velocity:

~v =
~p c2

E
. (15)

3If ~v and ~w are parallel, then ~v = k ~w for some constant k. Taking the dot product of both sides of
this equation with ~w yields k = ~v · ~w/|~w|2, which establishes eq. (10).
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Again, it must be emphasized that ~v, which appears both explicitly and implicitly in
the factors of γ in eqs. (13)–(15) corresponds to the velocity of the particle. Thus, in
the rest frame of the particle, ~v = 0 and γ = 1, which implies that pµ = mc(1 ; ~0 ).

Furthermore, the mass m is a scalar quantity (which is Lorentz invariant); it cor-
responds to the rest energy of the particle divided by c2. This also follows from the
observation4 that the Lorentz invariant scalar pµp

µ = m2c2. Finally, by noting that

p2 ≡ gµνp
µpν = (p0)2 − |~p|2 = m2c2 , (16)

and inserting p0 = E/c, one obtains an expression for the relativistic energy:

E2 = c2|~p|2 +m2c4 . (17)

Taking the square root, and expanding out resulting expression in the limit of |~v| ≪ c
yields:

E ≃ mc2 +
|~p|2

2m
, (18)

which we recognize as the sum of the rest energy and the non-relativistic kinetic energy.
More generally, the relativistic energy can be written as E = mc2+T , which defines the
relativistic kinetic energy as:

T =
√

c2|~p|2 +m2c4 −mc2 . (19)

The above results apply to massive particles. In the case of a massless particle
(m = 0), although the velocity four-vector is undefined, the momentum four-vector
exists and satisfies p2 = 0. That is, one can formally take the limit of m → 0 such that
the product pµ = muµ is meaningful. Eqs. (16) and (17) are still valid so that,

p2 = gµνp
µpν = 0 =⇒ E = c|~p| . (20)

We see that pµ is a lightlike vector that can be written as pµ = |~p|(1 ; p̂), where p̂ is a
unit vector that points in the direction of the momentum three-vector.

3. The force and acceleration four-vectors

The relation between the three-vector force and the three-vector momentum remains
valid in special relativity,

~F =
d~p

dt
.

Using eq. (13), it follows that for a massive particle (m 6= 0),

~F =
d~p

dt
=

d

dt

(

γm~v
)

= γm
d~v

dt
+m~v

dγ

dt
. (21)

4Since Lorentz scalars do not depend on the reference frame, I may compute it in any frame. By
choosing the rest frame of the particle, the computation is trivial.
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Using

dγ

dt
=

d

dt

(

1−
~v ·~v

c2

)

−1/2

=
γ3

c2
~v ·

d~v

dt
, (22)

it follows that

~F = γm

[

d~v

dt
+

γ2

c2

(

~v ·
d~v

dt

)

~v

]

. (23)

which is the relativistic generalization of Newton’s second law for a massive particle.
Note that eq. (23) can be rewritten as follows:

~F = γ3m

{

d~v

dt
+

1

c2

[

~v ×

(

~v ×
d~v

dt

)]}

. (24)

Expanding out the triple cross product and using γ2 = (1 − v2/c2)−1, we recover the
result of eq. (23).

Two special cases are noteworthy:

1. ~v ‖ d~v/dt (linear motion).

In this case, ~v × (d~v/dt) = 0. Plugging this result into eq. (24) yields

~F = γ3m
d~v

dt
, for linear motion. (25)

One can also derive eq. (25) by noting that if ~v is parallel to ~v/dt then it follows that

d~v

dt
= κ~v , (26)

for some constant κ. Taking the dot product of eq. (26) with ~v/v2 (where v2 ≡ ~v ·~v

is the squared magnitude of the velocity three-vector), one obtains κ = [~v ·d~v/dt]/v2.
Inserting this result back into eq. (26) yields:

d~v

dt
=

~v

v2

(

~v ·
d~v

dt

)

. (27)

Using this result in eq. (23) and noting that 1 + v2γ2/c2 = γ2, we end up with eq. (25),
as expected.

2. ~v ⊥ d~v/dt (circular motion).

In this case ~v ·d~v/dt = 0. Plugging this result into eq. (23) yields

~F = γm
d~v

dt
, for circular motion. (28)

In older introductory books on relativity, the concept of “relativistic mass,” defined
as mR ≡ γm was introduced. I suppose that this was motivated by eqs. (13) and (14)
which could be written as ~p = mR~v (which resembles the non-relativistic expression
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of momentum) and E = mRc
2. However, as eqs. (23)–(28) make clear, mR is not a

useful construct.5 Indeed, there is nothing special about γm that would single out this
choice for some definition of the relativistic mass. In the formalism presented in these
notes, m2 = p2/u2 is the ratio of two Lorentz-invariant scalars, and thus is itself Lorentz-
invariant (and independent of the choice of reference frame). In the older introductory
books on relativity, m was called the rest mass. In the formalism presented in these
notes, m is a Lorentz invariant quantity that is an intrinsic property of the particle (like
electric charge).

We still have not yet developed an appropriate expression for a four-vector that can
be related to the force. To see how to do this, we first consider the dot product of
eq. (24) with ~v, which immediately yields,

~F · ~v = γ3m~v ·
d~v

dt
. (29)

This should be compared with

dE

dt
=

d

dt

(

γmc2
)

= mc2
dγ

dt
= γ3m~v ·

d~v

dt
,

after using eq. (22). Hence, the relation between the power dE/dt and ~F · ~v,

dE

dt
= ~F · ~v ,

remains valid in special relativity, as long as we define the power to be the time rate
of change of the relativistic energy. The above results motivate the introduction of
Minkowski four-vector force,

Kµ ≡
dpµ

dτ
=

(

γ ~F ·~v

c
; γ ~F

)

= m

(

γ4

c
~v ·

d~v

dt
; γ2

d~v

dt
+

γ4

c2

(

~v ·
d~v

dt

)

~v

)

, (30)

where we have used dτ = γ−1dt and then employed eqs. (23) and (29) to obtain the final
form above.

Likewise, we can define the acceleration four-vector for a massive particle,6

αµ ≡
duµ

dτ
=

(

c
dγ

dτ
;
d

dτ

(

γ~v
)

)

. (31)

5This point has been emphasized in L.B. Okun, The concept of mass, Physics Today 42(6), 31–36
(1989). This article is based on a longer paper that was published in Usp. Fiz. Nauk 158, 511-530
(July 1989). More recently, Okun published a paper that traces the way Einstein formulated the
relation between energy and mass in his work from 1905 to 1955. See L.B. Okun, The Einstein formula:

E0 = mc2. “Isn’t the Lord laughing?”, Physics-Uspekhi 51(5), 513–527 (2008). Okun ended this paper
with the following remark. “It is high time we stopped deceiving new generations of college and high
school students by inculcating into them the conviction that mass increasing with increasing velocity is
an experimental fact.”

6As in the case of the velocity four-vector, the acceleration four-vector of a massless particle does
not exist.
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Using dτ = γ−1dt, it follows that

αµ =

(

γc
dγ

dt
; γ

d

dt

(

γ~v
)

)

=

(

γ4

c
~v ·

d~v

dt
; γ2

d~v

dt
+

γ4

c2

(

~v ·
d~v

dt

)

~v

)

.

The three-vector acceleration is defined as usual by ~a ≡ d~v/dt. Then, one can rewrite
the four-vector acceleration as7

αµ =

(

γ4

c
~v ·~a ; γ2~a+

γ4

c2
(

~v ·~a
)

~v

)

=
γ4

c
~v ·~a

(

1 ;
~v

c

)

+ γ2
(

0 ; ~a
)

. (32)

Employing eqs. (12) and (31), we can insert pµ = muµ into eq. (30) to obtain

Kµ = m
duµ

dτ
= mαµ , (33)

which is the four-vector version of Newton’s second law.
An important property of the four-vector acceleration is

uµα
µ = 0 . (34)

In light of eq. (33), the above result immediately yields, uµK
µ = 0. Eq. (34) can be

proved as follows. Noting that uµuµ = c2 which is a constant, it follows that

0 =
d

dτ

(

uµuµ
)

= 2uµα
µ .

One can also derive the same result from eqs. (1) and (32),

uµα
µ = γ5~v ·~a− γ3~v ·~a−

γ5v2

c2
~v ·~a = γ3~v ·~a

(

γ2 − 1−
γ2v2

c2

)

= 0 ,

since γ2(1− v2/c2) = 1.
Moreover, after some algebra, one obtains,

αµα
µ = −γ4

[

|~a|2 +
γ2

c2
(

~v ·~a
)2

]

. (35)

Using the vector identity, |~v × ~a|2 = |~v|2| |~a|2 − (~v ·~a)2, we can rewrite eq. (35) as

αµα
µ = −γ6

[

|~a|2 −
|~v ×~a|2

c2

]

= −γ6|~a|2
(

1−
v2

c2
sin2 θ

)

≤ 0 , (36)

where the equality is satisfied if and only if αµ = 0. That is, a nonzero acceleration
four-vector is necessarily spacelike. This result is a special case of a more general result

7Most books simply use the notation aµ for the four-vector acceleration. One disadvantage of this
notation is that the space component of this four-vector, which would be denoted by ai is not the ith
component of the vector d~v/dt.
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that if a is a timelike vector and a·b = 0, then either b is spacelike or b is the zero
vector.8 Since u is timelike and u·α = 0, it follows that either α is spacelike or α = 0.

The concept of constant acceleration must be reconsidered in special relativity. It
clearly cannot mean that the three-vector ~a = d~v/dt is constant, since this would be a
frame-dependent condition. Instead, constant acceleration means that the square of the
four-vector acceleration, αµα

µ, is a constant. Clearly, the latter is a Lorentz-invariant
condition. Since αµα

µ ≤ 0, it is traditional to define,

g ≡
√

−αµαµ . (37)

To motivate this definition, consider the case of ~a ‖ ~v, corresponding to linear motion.
In this case, eq. (27) yields

v2~a = (~v·~a)~v , for linear motion, (38)

where v ≡ |~v|. Taking the magnitude of the three-vectors on both sides of eq. (38) yields
~v ·~a = v|~a|. Inserting these results into eq. (32) yields after some simplification,

αµ = γ4

(

~v ·~a

c
; ~a

)

, for linear motion.

Using |~a|2 = (~v ·~a)2/v2, it then follows that

g2 = −αµα
µ = γ8|~a|2

(

1−
v2

c2

)

= γ6|~a|2 . (39)

That is, in the case of linear motion, constant linear acceleration in special relativity
means that g = γ3|~a| is constant. Note that in each instantaneous rest frame9 of the
accelerating particle, constant linear acceleration does indeed correspond to a constant
vector ~a as expected.

We can easily evaluate the velocity at time t of a constantly linearly accelerating
particle, which starts off at rest at t = 0. For example, if ~v is parallel to ~a then
~v ·~a = v|~a|, and it follows that10

dv

dt
=

d

dt
(~v ·~v)1/2 =

~v ·~a

v
= |~a| = γ−3g =

(

1−
v2

c2

)3/2

g ,

where g = γ3|~a| is constant. Integrating this equation subject to the boundary condition,
v(t = 0) = 0, yields

v(t) =
gt

(

1 +
g2t2

c2

)1/2
. (40)

8To prove this more general result, one first shows that for any timelike vector a, there exists a
reference frame such that aµ = (a0 ; ~0). Given that a·b = 0, it then follows that b = (0 ; ~b), in which

case b2 = −|~b|2 ≤ 0. Since b2 is a Lorentz scalar, it follows that b2 ≤ 0 in any reference frame and
b2 = 0 if and only if bµ = 0. That is, either b is spacelike or b is the zero vector.

9At any time t, the instantaneous rest frame corresponds to the inertial frame traveling at the same
velocity ~v as the accelerating particle at time t. For further details, see the Appendix A.

10In the case where ~v is antiparallel to ~a, we have ~v ·~a = −v|~a|, in which case dv/dt is negative.
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Note that the non-relativistic limit, v(t) ≃ gt, which is a good approximation when
gt ≪ c (i.e., when the velocity is non-relativistic). Furthermore, in the limit of t → ∞,
we have

lim
t→∞

v(t) = c .

and v < c for all finite times t. Thus, in special relativity, a particle that is constantly
accelerating never reaches the speed of light in a finite amount of time!

Without loss of generality, we shall assume that both ~v and ~a point in the x̂ direction.
Then, the coordinate x(t) as a function of t can be determined from eq. (40),

v =
dx

dt
=

gt
(

1 +
g2t2

c2

)1/2
.

Integrating the above expression yields,

x(t) = x0 +
c2

g

[

(

1 +
g2t2

c2

)1/2

− 1

]

, (41)

where x0 ≡ x(t = 0). One can check that in the non-relativistic limit where gt ≪ c,
eq. (41) reduces to x(t) = x0 +

1

2
gt2, as expected.

The coordinates x and t corresponding to the position and time measured in the
accelerating reference frame. It is convenient to express these coordinates in terms of
the proper time τ . Using dτ = γ−1dt where γ ≡ (1− v2/c2)−1/2, it follows that

dτ

dt
=

√

1−
v2

c2
=

√

1−
g2t2

c2

(

1 +
g2t2

c2

)

−1

=
1

√

1 +
g2t2

c2

,

after making use of eq. (40) for v. Hence,

τ =

∫ t

0

dt
√

1 +
g2t2

c2

=
c

g
sinh−1

(

gt

c

)

,

where we have applied a boundary condition that fixes τ = 0 at t = 0. Hence,11

t =
c

g
sinh

(gτ

c

)

. (42)

Plugging the value of t obtained in eq. (42) into eqs. (40) and (41) yields,

v

c
= tanh

(gτ

c

)

, x = x0 −
c2

g

[

1− cosh
(gτ

c

)]

. (43)

Due to the properties of the hyperbolic tangent function, it immediately follows that
−1 ≤ v/c ≤ 1, which is consistent with the relativistic requirement that no object

11Note that in the non-relativistic limit (or equivalently, as c → ∞), we obtain t ≃ τ as expected.
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can exceed the speed of light. Moreover, if we choose the initial condition such that
x0 = c2/g, we end up with the parametric equations,

ct =
c2

g
sinh

(gτ

c

)

, x =
c2

g
cosh

(gτ

c

)

. (44)

It immediately follows that

x2 − c2t2 =
c4

g2
, (45)

which is the equation for a hyperbola in the x–ct plane. This result explains why constant
acceleration in relativity is often called hyperbolic motion.

APPENDIX A: The comoving reference frame

Consider the velocity four vector uµ = (γc ; γ~v). We can boost to the rest frame
using the boost matrix Λ. Explicitly,

Λ =





γ −γ ~v/c

−γ ~v/c δij + (γ − 1)
vivj

v2



 , (46)

where γ = (1− v2/c2)−1/2, with v ≡ |~v|. Thus, the rest frame velocity four vector is,





γ −γ vj/c

−γ vi/c δij + (γ − 1)
vivj

v2











γ c

γ vj






=







c

0






. (47)

Indeed, in the rest frame, u0 = (c ; ~0), as expected since in the rest frame the velocity
of the particle is zero.

Consider now the acceleration four vector given by eq. (32), which we repeat below,

αµ =

(

γ4

c
~v ·~a ; γ2~a+

γ4

c2
(

~v ·~a
)

~v

)

=
γ4

c
~v ·~a

(

1 ;
~v

c

)

+ γ2
(

0 ; ~a
)

. (48)

Can we boost to the rest frame as we did in the case of the velocity four vector? Not
quite, since as the particle accelerates along its worldline, its velocity is changing. If we
apply a boost at one time to reach the rest frame of the particle, we would have to apply
a different boost at another time. The best one can do is to define an instantaneous
rest frame. That is, at time t, we define an inertial frame with a velocity ~v(t) that
coincides with the rest frame of the accelerating particle at time t. Considering the
entire worldline, one then defines an infinite number of instantaneous rest frames, each
of which coincides with a different inertial reference frame. At a given time t, the
corresponding inertial frame that coincides with the instantaneous rest frame is called
the comoving frame.
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Given an accelerating particle, one can now define the acceleration three-vector mea-
sured in the momentarily comoving frame, which we denote by ~aco. In the comoving
frame, the velocity four vector is uµ = (c ; ~0). Since u·α = 0 [cf. eq. (34)], it follows that
in the comoving frame, the acceleration four vector is given by

αµ = (0 ; ~aco) . (49)

Let us check that ~aco can be interpreted as the Newtonian acceleration of the particle
that the comoving inertial observer would measure.12 In the observer’s reference frame,
the velocity four vectors at the exact instant of comobility (call this time t = 0) and at
an infinitesimal time interval ∆t later are given by,

u(t = 0) = (c ; ~0) , u(∆t) = (γ
∆
c ; γ

∆
∆~v) , (50)

where γ
∆
≡ [1− (∆~v ·∆~v/c2]1/2. Since dτ = γ−1dt, it follows that ∆τ/∆t → 1 as t → 0.

Moreover, ∆~v = O(∆t). Hence,

αµ = lim
∆t→0

(0 ; ∆~v/∆t) = (0 ; ~aco) . (51)

To find ~aco explicitly, we apply the method used in eq. (47) to the acceleration four
vector. Using eq. (48),





γ −γ vj/c

−γ vi/c δij + (γ − 1)
vivj

v2











γ4

c
~v ·~a

γ4

c2
(~v ·~a)vj + γ2aj






=











0

γ2

[

ai + (γ − 1)
(~v·~a)vi

v2

]











.

(52)
Thus, we can identify,

~aco = γ2

[

~a+ (γ − 1)
(~v ·~a)~v

v2

]

. (53)

Note that
~v ·~aco = γ3~v ·~a . (54)

Another common form for ~aco makes use of the identity,

γ − 1

v2
=

γ2

c2(γ + 1)
. (55)

Thus,

~aco = γ2

[

~a+
γ2

γ + 1

(~v ·~a)~v

c2

]

. (56)

12Here we following the illuminating discussion given in Anupam Garg, Classical Electromagnetism

in a Nutshell (Princeton University Press, Princeton, NJ, 2012) pp. 538–539.
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As a check of our computation, we work out the squared magnitude of ~aco. Using
eq. (53),

|~aco|
2 = γ4|~a|2 +

γ4(γ − 1)2

v2
(~v·~a)2 +

2γ4(γ − 1)

v2
(~v ·~a)2

= γ4|~a|2 +
γ4(γ2 − 1)

v2
(~v·~a)2

= γ4|~a|2 +
γ6(~v ·~a)2

c2
. (57)

Using γ−2 = 1− v2/c2, we can rewrite eq. (57) in the following form:

|~aco|
2 = γ6

[

|~a|2
(

1−
v2

c2

)

+
(~v ·~a)2

c2

]

= γ6

[

|~a|2 −

(

v2|~a|2 − (~v ·~a)2

c2

)]

= γ6

[

|~a|2 −
|~v ×~a|2

c2

]

. (58)

An interesting application of eq. (58) is provided in Appendix B.
Recall eq. (37), which implies that g2 = −αµα

µ. Eq. (36) yields,

g2 = γ6

[

|~a|2 −
|~v × ~a|2

c2

]

. (59)

Since g2 is a Lorentz invariant, one can evaluate it in any frame (and obtain the same
answer). In particular, in the comoving frame where αµ = (0 ; ~aco), it follows that
g2 = −αµα

µ = |~aco|
2. That is, eqs. (58) and (59) are in agreement. This serves as a

consistency check and gives us confidence that eq. (53) is correct. Moreover, we see that
constant acceleration in special relativity means a constant acceleration three-vector in
the comoving frame of the accelerating particle, which is equivalent to a constant g2, as
asserted below eq. (39).

The form of eq. (53) may be somewhat surprising. After all, starting from the velocity
four vector, uµ = (γc ; γ~v), the rest frame is obtained by setting ~v = 0, in which case
the rest frame velocity four vector uµ = (c ;~0) is obtained. One may have been tempted
to say that starting from the acceleration four vector given in eq. (48), the rest frame
acceleration four vector should be obtained by setting ~v = 0. However, this procedure
yields αµ = (0 ; ~a), which is clearly not the same as αµ = (0 ; ~aco). This paradox is
resolved by realizing that setting ~v = 0 only makes sense if there is a global rest frame—
that is, a unique rest frame in which to observe the particle motion. For a particle
traveling at constant velocity ~v, such a global rest frame exists, and the statements
concerning the velocity four vector made at the beginning of this paragraph are valid.
However, no global rest frame exists for an accelerating particle. The best we can do
is to define the comoving frame, which corresponds to an instantaneous rest frame that
is always changing along the particle trajectory. In particular, setting ~v = 0 in the
expression for the acceleration four vector does not yield anything useful. Indeed, the
correct analysis yields the comoving acceleration three-vector ~aco exhibited in eq. (53),
which has a nontrivial dependence on ~a = d~v/dt.
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It is instructive to apply the result of eq. (53) to two cases. First, if ~a ‖ ~v (corre-
sponding to linear motion), then we can use eq. (38) to write v2~a = (~v ·~a)~v. Inserting
this result into eq. (53) yields ~aco = γ3~a. Thus, we have recovered the result of eq. (39),
which was the starting point for our analysis of hyperbolic motion. Second, consider cir-
cular motion where ~v ⊥ ~a. In this case, we set ~v ·~a = 0 in eq. (53) to obtain ~aco = γ2~a.
This result is consistent with eq. (59), since in this case, g2 = γ4|~a|2. In both special
cases just considered, ~aco is proportional to ~a. However, in the generic case, ~aco is
not parallel to ~a, since it has a component that points along the instantaneous velocity
vector, ~v.

It is sometimes useful to express the acceleration four vector directly in terms of ~aco.
Using eqs. (53) and (54), it follows that

~a =
1

γ3

[

γ~aco −

(

γ − 1

v2

)

(~v ·~aco)~v

]

. (60)

Plugging in this result for ~a into eq. (48) and making use of eq. (55) yields,

αµ =

(

γ

c
~v ·~aco ; ~aco +

γ2

γ + 1

(~v·~aco)~v

c2

)

. (61)

One can check this last result by boosting the acceleration four vector in the instanta-
neous rest frame where αµ = (0 ; ~aco) back to the original reference frame by using the
inverse boost matrix Λ−1 (which is obtained from Λ by replacing ~v → −~v). That is,







γ γ vj/c

γ vi/c δij + (γ − 1)
vivj

v2













0

aj
co






=







γ ~v ·~aco

c

ai
co
+

γ − 1

v2
(~v ·~aco)v

i






. (62)

Using eq. (55), we then recover the result of eq. (61), as expected.
Finally, one can perform a similar analysis involving the force four vector. In the

comoving frame, the force acting on the accelerating particle in its instantaneous rest
frame is ~f = m~aco. Using eqs. (33) and (61), we obtain,13

Kµ = mαµ =

(

γ

c
~v · ~f ; ~f +

γ2

γ + 1

(~v · ~f)~v

c2

)

. (63)

Just like the relation between ~a = d~v/dt and ~aco is nontrivial, the same can be said for

the relation between ~F = d~p/dt and ~f . Comparing eqs. (30) and (63) yields,

~F = γ−1 ~f +
γ

γ + 1

(~v · ~f)~v

c2
. (64)

Using eq. (55), one can quickly verify that

~v · ~F = ~v · ~f . (65)

13Eq. (63) appears in eq. (4.1.12) on p. 66 of Roman U. Sexl and Helmuth K. Urbantke, Relativ-
ity, Groups, Particles—Special Relativity and Relativistic Symmetry in Fields and Particle Physics

(Springer-Verlag, Vienna, Austria, 2001).
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Inverting the expression given in eq. (64) to obtain ~f in terms of ~F , we end up with

~f = γ ~F −
γ2

γ + 1

(~v · ~F )~v

c2
. (66)

That is, the force three-vector that acts in the instantaneous rest frame depends non-
trivially on ~F = d~p/dt.

We can perform one last check of our calculations by rewriting eq. (23) as

~F = γm

[

~a+
γ2

c2
(~v ·~a)~v

]

, ~v · ~F = γ3m~v ·~a . (67)

Plugging these results into eq. (66) yields,

~f = γ2m

[

~a +
γ2

γ + 1

(~v ·~a)~v

c2

]

= m~aco , (68)

after employing eq. (56), as required.

APPENDIX B: The Relativistic Larmour formula

Later on in this course, we will derive the Larmour formula for the power emitted
by an accelerating point charge q in the nonrelativistic limit,

P =
2q2|~a|2

3c3
, (69)

where ~a is the acceleration three-vector. Remarkably, one can derive the correct rela-
tivistic version of Larmour’s formula using the results obtained in Appendix A.

Given an accelerating point charge, we can boost to the instantaneous (comoving)
rest frame of the point charge. In this frame, eq. (69) is valid if we identify ~a with the
acceleration vector in the comoving rest frame, ~aco. That is,

P =
2q2|~aco|

2

3c3
, (70)

But now, it is a simple matter to employ eq. (58) to obtain,

P =
2q2γ6

[

|~a|2 − |~β ×~a|2
]

3c3
, (71)

where ~β ≡ ~v/c, which is the correct relativistic Larmour formula obtained by another
method in class.
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