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A Gaussian integral with a purely imaginary argument

The Gaussian integral,
∫

∞

0

e−ax2

dx =

√

π

4a
, Where Re a > 0 , (1)

is a well known result. Students first learn how to evaluate this integral in the case where a
is a real, positive constant. It is not difficult to show that eq. (1) is valid for complex values
of a in the case of Re a > 0. Writing a = aR + iaI , where aR > 0, it follows that

e−ax2

= e−aRx2

e−iaIx
2

.

The presence of the e−aRx2

term guarantees that the integral given in eq. (1) converges, due
to the exponential suppression of the integrand as |x| → ∞.

In this note, I wish to evaluate the integral in eq. (1) in the case of an exponential function
with a purely imaginary argument; i.e., aR = 0. To treat this case, we shall first consider the
following integral that is integrated over a closed contour C in the complex plane,

∮

C

eiaz
2

dz , where a > 0 is a real constant , (2)

and the closed contour C is exhibited below.

R

R

Re z

Im z

45◦

Since there are no singularities in the region of the complex plane enclosed by C (and no
singularities on the contour itself), we can use Cauchy’s theorem to conclude that

∮

C

eiaz
2

dz = 0 .

We can evaluate this integral in another way by considering three separate contributions,
∮

C

eiaz
2

dz =

∫ R

0

eiax
2

dx+

∫

S

eiaz
2

dz +

∫

D

eiaz
2

dz = 0 , (3)

where z = x+ iy, S indicates the integral over the arc portion of the contour and D indicates
the integral over the diagonal portion of the contour (in the direction indicated by the arrows).
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Along D, we have x = y, where x = r cos(π/4) and y = r sin(π/4). That is, z = reiπ/4 and
dz = eiπ/4dr. Hence,

∫

D

eiaz
2

dz = eiπ/4
∫ 0

R

eia(re
iπ/4)2 dr = eiπ/4

∫ 0

R

e−ar2 dr , (4)

after using eiπ/2 = i in the argument of the exponent. Along S, z = Reiθ, with 0 ≤ θ ≤ π/4.
Then dz = iReiθ dθ and

∫

S

eiaz
2

dz =

∫ π/4

0

eiaR
2(cos 2θ+i sin 2θ)iReiθ dθ . (5)

We shall now demonstrate that

lim
R→∞

∫

S

eiaz
2

dz = 0 . (6)

First, we employ the generalization of the triangle inequality, |a+ b| ≤ |a|+ |b|, to integrals,

∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

≤

∫ b

a

|f(x)| dx .

Applying this inequality to eq. (5), it follows that

∣

∣

∣

∣

∫

S

eiaz
2

dz

∣

∣

∣

∣

≤ R

∫ π/4

0

e−aR2 sin 2θ dθ .

Changing variables to α = 2θ, it follows that

∣

∣

∣

∣

∫

S

eiaz
2

dz

∣

∣

∣

∣

≤
R

2

∫ π/2

0

e−aR2 sinα dα . (7)

To make further progress, we employ the following result, known as Jordan’s inequality, which
is established in Appendix A,

2α

π
≤ sinα ≤ α , for 0 ≤ α ≤ 1

2
π . (8)

Using this result, eq. (7) yields

∣

∣

∣

∣

∫

S

eiaz
2

dz

∣

∣

∣

∣

≤
R

2

∫ π/2

0

e−aR2 sinα dα ≤
R

2

∫ π/2

0

e−2aR2α/π dα ≤
π

4aR

(

1− e−aR2)

.

Taking the R → ∞ limit and recalling that a > 0, we end up with the result quoted in eq. (6).
In light of eq. (6), eqs. (3) and (4) yields

∫

∞

0

eiax
2

dx = − lim
R→∞

∫

D

eiaz
2

dz = eiπ/4
∫

∞

0

e−ar2 dr = eiπ/4
√

π

4a
, (9)

where we have employed eq. (1) in the final step above.
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It is amusing to note that if we interpret i1/2 = eiπ/4 (which implies that we are defining
the complex square root function as its principal value on the first Riemann sheet), then, one
can rewrite eq. (9) as

∫

∞

0

eiax
2

dx =

√

iπ

4a
. (10)

Note that eq. (10) coincides with eq. (1) if a is replaced by −ia. That is, it appears that
eq. (1) is valid even when Re a = 0.1

Thus, we have established the formula,
∫

∞

0

eiax
2

dx = eiπ/4
√

π

4a
, for a > 0. (11)

The corresponding result for a < 0 can be obtained simply by complex conjugating the above
result,2

∫

∞

0

e−iax2

dx = e−iπ/4

√

π

4a
, for a > 0. (12)

Eqs. (11) and (12) can be combined into one formula,

∫

∞

0

eiax
2

dx = eiπsgn(a)/4
√

π

4|a|
, where a 6= 0 is a real constant, (13)

and the sign function is defined as sgn(a) = a/|a| for real a 6= 0. Taking the real and imaginary
parts of eq. (13) yields the Fresnel integrals,

∫

∞

0

sin(ax2) dx = sgn(a)

√

π

8|a|
,

∫

∞

0

cos(ax2) dx =

√

π

8|a|
.

It is instructive to employ eq. (12) in evaluating the Fourier transform of e−iax2

,

F (k) =

∫

∞

−∞

e−iax2

e−ikx dx ,

assuming that a > 0. By “completing the square,” one can write

−i(ax2 + kx) = −ia

(

x+
k

2a

)2

+
ik2

4a
.

Hence,
∫

∞

−∞

e−iax2

e−ikx dx = eik
2/(4a)

∫

∞

−∞

exp

{

−ia

(

x+
k

2a

)2
}

dx .

Changing integration variables by defining x′ = x+ k/(2a), it follows that
∫

∞

−∞

e−iax2

e−ikx dx = eik
2/(4a)

∫

∞

−∞

e−iax′ 2

dx′ = 2eik
2/(4a)

∫

∞

0

e−iax′ 2

dx′ ,

1This conclusion is correct as long as one remembers to interpret i1/2 = eiπ/4 in eq. (10).
2One can also obtain eq. (12) by repeating the calculation of eq. (3), where the closed contour C is now

located in the fourth quadrant of the complex plane with an arc that makes an angle of −45◦.
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where the final step makes use of the fact that the integrand is an even function of x. Using
eq. (12), we arrive at the desired result,

F (k) =

∫

∞

−∞

e−iax2

e−ikx dx =

√

π

a
e−iπ/4 eik

2/(4a) , for real a > 0. (14)

Additional results can be obtained by differentiating eq. (14). For example,

i
∂F

∂k
=

∫

∞

−∞

x e−iax2

e−ikx dx . (15)

It then follows that
∫

∞

−∞

x e−iax2

e−ikx dx = −
1

2

√

π

a3
e−iπ/4 eik

2/(4a) , for real a > 0. (16)

Eq. (16) was employed in class in evaluating the free particle propagator in three dimensions.
It should be noted that strictly speaking, eq. (15) is false, which then casts doubt on

the validity of eq. (16). One is permitted to compute ∂F/∂k by differentiating under the
integral sign only if certain conditions are satisfied.3 Unfortunately, eq. (15) does not satisfy
the necessary conditions. Nevertheless, if we regard e−iax2

eikx as a generalized function (also
called a distribution), then one can justify eq. (15) in the sense of distributions. An alternative
(and ultimately equivalent) approach is to insert a convergence factor, e−εx2

, into the integrand
of F (k), where ε is a real positive infinitesimal quantity. In this case, one simply modifies
eqs. (14)–(16) by replacing a → a− iε. Eq. (15) is then valid as long as ε 6= 0. At the end of
the calculation, one takes ε → 0 to recover eq. (16).

APPENDIX A: Proof of Jordan’s inequality

In this appendix, we shall prove Jordan’s inequality,

2x

π
≤ sin x ≤ x , for 0 ≤ x ≤ 1

2
π . (17)

The simplest proof is a graphical one. Plot the following three functions in the x-y plane:
(i) y = x; (ii) y = sin x; and (iii) y = 2x/π for values of 0 ≤ x ≤ 1

2
π. It is easy to see that

the the graph of y = sin x lies below the graph of y = x over the entire range of 0 ≤ x ≤ 1
2
π.

Likewise, it is easy to see that the graph of y = sin x lies above the graph of y = 2x/π over
the same range. All three functions meet at x = 0 and the graphs of y = sin x and y = 2x/π
intersect again at x = 1

2
π. (I leave the explicit graphing of these three functions to the reader).

Thus, eq. (17) is verified.4

3For a discussion of the precise conditions, see, e.g., p. 272 of T.W. Körner, A Companion to Analysis

(American Mathematical Society, Providence, RI, 2004).
4More details on the graphical proof of eq. (17) can be found on pp. 43–45 of Debabrata Basu, Introduction

to Classical and Modern Analysis and their Application to Group Representation Theory (World Scientific,
Singapore, 2011).
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For the more analytically minded student, here is another proof. First, we define a function,

f(x) = x− sin x , for 0 ≤ x ≤ 1
2
π .

Then, f ′(x) ≡ (df/dx) = 1 − cosx ≥ 0. In particular, one achieves f ′(x) = 0 at x = 0 in the
x range of interest. Since f(0) = 0 and the slope of f(x) is positive for 0 < x ≤ 1

2
π, it follows

that f(x) > 0 for 0 < x ≤ 1
2
π. It then follows that sin x < x for 0 < x ≤ 1

2
π, with equality

achieved only at x = 0.
Next, we consider a different function,

g(x) = π sin x− 2x .

Computing the first and second derivatives,

g′(x) = π cosx− 2 , g′′(x) = −π sin x < 0 , for 0 < x ≤ 1
2
π.

In particular, g′(x) is decreasing as x increases from 0 to 1
2
π. Since g′(0) = π − 2 > 0 and

g′(1
2
π) = −2, there must exist some value of x (call it x0) in the range 0 < x0 <

1
2
π such that

g′(x0) = 0. It follows that g(x) is an monotonically increasing function in the range 0 < x < x0

and g(x) is a monotonically decreasing function for x0 < x < 1
2
π. Since g(0) = g(1

2
π) = 0, we

can conclude that g(x) > 0 for 0 < x < 1
2
π. That is,

g(x) = π sin x− 2x > 0 , for 0 < x < 1
2
π,

with equality achieved only at the two endpoints x = 0 and x = 1
2
π. It therefore follows that

sin x ≥ 2x/π for 0 < x ≤ 1
2
π. The proof of eq. (17) is now complete.
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