
Physics 215 Problem Set 5 Winter 2018

DUE: MONDAY, MARCH 20, 2018

FINAL EXAM ALERT: The final exam will take place on Tuesday March 20, 2018 from
8–11 am in ISB 231. The exam will cover the entire course material. During the exam, you
may consult Sakurai and Napolitano, your class notes (and any other handwritten notes),
and any of the homework solutions, class handouts or other material that is posted on the
course website.

1. The probability density multiplied by the electron charge −e can be interpreted as the
current density,

~j(~x) =
ie~

2µ
[ψ∗(~x)∇ψ(~x)− ψ(~x)∇ψ∗(~x)] .

of an electron of mass µ in a Coulomb potential.

(a) Evaluate the current density as a function of position for the n = 2, ℓ = 1, m = −1
state of hydrogen. (It is particularly convenient to express the current density in spherical
components.) Sketch a picture illustrating the flow of current.

(b) Calculate the current flowing in a ring of cross section dA and the magnetic moment
it produces (using classical electromagnetic theory). Integrate to find the entire magnetic
moment produced by the current distribution.

(c) How do your answers above change for the n = 2, ℓ = 1, m = 1 state of hydrogen?
Interpret the difference physically.

(d) Obtain the general result for the current density and the total (integrated) magnetic
moment for a state of hydrogen with arbitrary n, ℓ and m. You may express the current den-
sity in terms of the corresponding hydrogen energy eigenfunction without explicitly writing
out the wave function.

2. Consider the following set of expectation values for powers of the electron radius in the
hydrogen atom:

〈

rk
〉

≡ 〈nℓm| rk |nℓm〉 .

(a) Derive the following recurrence relation:

k + 1

n2

〈

rk
〉

− (2k + 1)a0
〈

rk−1
〉

+ 1

4
k
[

(2ℓ+ 1)2 − k2
]

a20
〈

rk−2
〉

= 0 ,

where a0 is the Bohr radius. This result is valid when k > −(2ℓ+ 1).
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HINT: First, show that the radial equation can be written in the following form:
[

d2

dρ2
−
ℓ(ℓ+ 1)

ρ2
+

2n

ρ
− 1

]

u(ρ) = 0 ,

where ρ is a suitably rescaled dimensionless radial variable. Multiply this equation by
ρk+1du/dρ and ρku respectively, and partially integrate the results. One can then obtain
a recurrence relation for

〈

ρk
〉

.

(b) Evaluate 〈r2〉, 〈r〉 and 〈1/r〉.

HINT: In evaluating
〈

rk
〉

for k = −1, use the quantum Virial Theorem, which was treated
in problem 4 of Problem Set 2. For k = 1 and 2, use the results of part (a).

3. [EXTRA CREDIT] Consider the hydrogen atom in two dimensions. The Hamiltonian
(expressed in atomic units, where µ = Ze2 = 1), is given by

H = 1

2
(P 2

x + P 2

y )−
1

R
,

where ~X = (X, Y ) and R ≡ ‖ ~X‖ = (X2 + Y 2)1/2. The goal of this problem is to solve for
the bound state energies of H . We shall employ an algebraic technique by introducing the
two dimensional Runge-Lenz vector operator, ~R = (Rx, Ry), where

Rx = 1

2
(PyLz + LzPy)−

X

R
,

Ry = −1

2
(PxLz + LzPx)−

Y

R
,

and Lz = XPy − Y Px is the two-dimensional angular momentum operator.

(a) Show that
[

Rx, H
]

=
[

Ry, H
]

= 0.

(b) Evaluate the commutation relations satisfied by {Rx, Ry, Lz}.

HINT: Employ the canonical commutation relations,
[

Xi, Pj

]

= i~δijI, where I is the identity
operator.

(c) Define Ai ≡ (−2H)−1/2Ri, for i = x, y and Az ≡ Lz. Working in the subspace of the
Hilbert space corresponding to the bound states, (−H)−1/2 is a self-adjoint operator. Verify
that {Ax, Ay, Az} satisfy the same commutation relations as the three-dimensional angular
momentum operators.

(d) Using the well known solution of the eigenvalue problem of ~L2 in three-dimensions,
obtain the eigenvalues of the operator, A2

x + A2
y + A2

z. Using this result, find a formula for
the bound state energies of the two-dimensional hydrogen atom.

HINT: To complete the final step of part (d), prove that A2
x + A2

y + A2
z = −1

4
~
2I − (2H)−1,

where I is the identity operator.
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4. (a) Consider a system of two spin-1/2 particles (labeled 1 and 2 below). Show that

P1 =
3

4
I + ~S1 ·

~S2/~
2 , P0 =

1

4
I − ~S1 ·

~S2/~
2

are projection operators, i.e. they obey PiPj = δijPj (no sum over j), where I is the identity

operator and the ~Si (i = 1, 2,) are spin-1
2
operators for particles 1 and 2, respectively.

(b) Show that P1 and P0 project onto the spin-1 and spin-0 subspaces of the direct
product space of two spin-1

2
spaces.

NOTE: This decomposition is sometimes denoted by 1

2
⊗ 1

2
= 1⊕ 0.

(c) Construct the projection operators P± for the j = ℓ ± 1

2
subspaces of the direct

product space obtained by combining orbital angular momentum and spin-1
2
.

HINT: You should express the P± as linear combinations of ~L·~S and the identity operator I
with coefficients that depend on ℓ.

5. Define the traceless symmetric second-rank Cartesian tensor,

Tij = xixj −
1

3
r2δij ,

where ~x ≡ (x1, x2, x3) and r
2 ≡ x21 + x22 + x23.

(a) Write T12, T13, and T11−T22 as linear combinations of the components of an irreducible
spherical tensor of rank 2.

(b) The expectation value,

Q = e
〈

α, j,m = j
∣

∣ 3x23 − r2
∣

∣ α, j,m = j
〉

, (1)

is known as the quadrupole moment. In eq. (1), α denotes other unspecified quantum
numbers that characterize the state. Evaluate the matrix element,

e
〈

α, j,m′
∣

∣ x21 − x22
∣

∣ α, j,m = j
〉

,

where m′ = j, j−1, j−2, . . ., in terms of Q and the appropriate Clebsch-Gordan coefficients.

(c) Using the Wigner-Eckart theorem, prove that a spin-1
2
particle cannot possess a static

quadrupole moment.
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