
Physics 215 Winter 2018

The Characteristic Polynomial

1. Coefficients of the characteristic polynomial

Consider the eigenvalue problem for an n× n matrix A,

A~v = λ~v , ~v 6= 0 . (1)

The solution to this problem consists of identifying all possible values of λ (called the
eigenvalues), and the corresponding non-zero vectors ~v (called the eigenvectors) that
satisfy eq. (1). Consider the n×n identity matrix I. Noting that I~v = ~v, one can rewrite
eq. (1) as

(A− λI)~v = 0 . (2)

This is a set of n homogeneous equations. If A − λI is an invertible matrix, then one
can simply multiply both sides of eq. (2) by (A − λI)−1 to conclude that ~v = 0 is the
unique solution. By definition, the zero vector is not an eigenvector. Thus, in order to
find non-trivial solutions to eq. (2), one must demand that A − λI is not invertible, or
equivalently,

p(λ) ≡ det(A− λI) = 0 . (3)

Eq. (3) is called the characteristic equation. Evaluating the determinant yields an nth
order polynomial in λ, called the characteristic polynomial, which we have denoted above
by p(λ).

The determinant in eq. (3) can be evaluated by the usual methods. It takes the form,

p(λ) = det(A− λI) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n
...

...
. . .

...
an1 an2 · · · ann − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)n
[
λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn−1λ+ cn

]
, (4)

where A = [aij ]. The coefficients ci are to be computed by evaluating the determinant.
Note that we have identified the coefficient of λn to be (−1)n. This arises from one term
in the determinant that is given by the product of the diagonal elements. It is easy to
show that this is the only possible source of the λn term in the characteristic polynomial.
It is then convenient to factor out the (−1)n before defining the coefficients ci.

Two of the coefficients will be derived in problem 1 of Problem Set 1,

c1 = −Tr A , cn = (−1)n det A . (5)
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It then follows that the general form for the characteristic polynomial is:

p(λ) = det(A− λI)

= (−1)n
[
λn − λn−1Tr A+ c2λ

n−2 + · · ·+ (−1)n−1cn−1λ+ (−1)ndet A
]
. (6)

The explicit expressions for c2, c3, . . . , cn−1 are more complicated than those of eq. (5).
In the Appendix to these notes, I will provide explicit expressions for these coefficients in
terms of traces of powers of A.

By the fundamental theorem of algebra, an nth order polynomial equation of the form
p(λ) = 0 possesses precisely n roots. Thus, the solution to p(λ) = 0 has n potentially
complex roots, which are denoted by λ1, λ2, . . . , λn. These are the eigenvalues of A. If
a root is non-degenerate (i.e., only one root has a particular numerical value), then we
say that the root has multiplicity one—it is called a simple root. If a root is degenerate
(i.e., more than one root has a particular numerical value), then we say that the root has
multiplicity p, where p is the number of roots with that same value—such a root is called
a multiple root. For example, a double root (as its name implies) arises when precisely
two of the roots of p(λ) are equal. In the counting of the n roots of p(λ), multiple roots
are counted according to their multiplicity.

One can always factor a polynomial in terms of its roots. Thus, eq. (4) implies that:

p(λ) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn) ,

where multiple roots appear according to their multiplicity. Multiplying out the n factors
above yields

p(λ) = (−1)n






λn − λn−1

n∑

i=1

λi + λn−2

n∑

i=1

n∑

j=1

i<j

λiλj + . . .

+λn−k

n∑

i1=1

n∑

i2=1

· · ·

n∑

ik=1

i1<i2<···<ik

λiiλi2 · · ·λik
︸ ︷︷ ︸

k factors

+ · · · + λ1λ2 · · ·λn






. (7)

Comparing with eq. (6), it immediately follows that:

Tr A =

n∑

i=1

λi = λ1 + λ2 + · · ·+ λn , det A = λ1λ2λ3 · · ·λn .

The coefficients c2, c3, . . . , cn−1 are also determined by the eigenvalues. In general,

ck = (−1)k
n∑

i1=1

n∑

i2=1

· · ·

n∑

ik=1

i1<i2<···<ik

λi1λi2 · · ·λik
︸ ︷︷ ︸

k factors

, for k = 1, 2, . . . , n . (8)
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2. The Cayley-Hamilton Theorem

Theorem: Given an n × n matrix A, the characteristic polynomial is defined by
p(λ) = det(A− λI) = (−1)n [λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn−1λ+ cn], it follows that

1

p(A) = (−1)n
[
An + c1A

n−1 + c2A
n−2 + · · ·+ cn−1A+ cnI

]
= 0 , (9)

where A0 ≡ I is the n× n identity matrix and 0 is the n× n zero matrix.

False proof: The characteristic polynomial is p(λ) = det(A− λI). Setting λ = A, we
get p(A) = det(A − AI) = det(A − A) = det(0) = 0. This “proof” does not make any
sense. In particular, p(A) is an n×n matrix, but in this false proof we obtained p(A) = 0
where 0 is a number.

Correct proof: Recall that the adjugate (sometimes called the classical adjoint) of
a matrix S, denoted by adj S, is the transpose of the matrix of cofactors.2 The cofactor
expansion of the determinant is equivalent to the equation3

S adj S = I det S . (10)

In particular, setting S = A− λI, it follows that

(A− λI) adj(A− λI) = p(λ)I , (11)

where p(λ) = det(A − λI) is the characteristic polynomial. Since p(λ) is an nth-order
polynomial, it follows from eq. (11) that adj(A−λI) is a matrix polynomial of order n−1.
Thus, we can write:

adj(A− λI) = B0 +B1λ+B2λ
2 + · · ·+Bn−1λ

n−1 ,

where B0, B1, . . . , Bn−1 are n×n matrices (whose explicit forms are not required in these
notes). Inserting the above result into eq. (11) and using eq. (4), one obtains:

(A− λI)(B0 +B1λ+B2λ
2 + · · ·+Bn−1λ

n−1) = (−1)n
[
λn + c1λ

n−1 + · · ·+ cn−1λ+ cn
]
I .

(12)
Eq. (12) is true for any value of λ. Consequently, the coefficient of λk on the left-hand
side of eq. (12) must equal the coefficient of λk on the right-hand side of eq. (12), for

1In the expression for p(λ), we interpret cn to mean cnλ
0. Thus, when evaluating p(A), the coefficient

cn multiplies A0 ≡ I.
2The cofactor matrix of S is the n×nmatrix C, whose matrix elements are given by Cij = (−1)i+jMij ,

where Mij is the determinant of the matrix obtained from S by deleting the ith row and jth column
of S. Then, the the adjugate of S is defined as adj S ≡ CT, where T indicates the transpose. That is,
adj(S)ij = Cji = (−1)i+jMji. For further details, see Ref. [2].

3Note that if det S 6= 0, then we may divide both sides of eq. (10) by the determinant and identify
S−1 = adj S/det S, since the inverse satisfies SS−1 = I.
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k = 0, 1, 2, . . . , n. This yields the following n+ 1 equations:

AB0 = (−1)ncnI , (13)

−Bk−1 + ABk = (−1)ncn−kI , k = 1, 2, . . . , n− 1 , (14)

−Bn−1 = (−1)nI . (15)

Using eqs. (13)–(15), we can evaluate the matrix polynomial p(A).

p(A) = (−1)n
[
An + c1A

n−1 + c2A
n−2 + · · ·+ cn−1A+ cnI

]

= AB0 + (−B0 +B1A)A+ (−B1 +B2)A
2 + · · ·+ (−Bn−2 +Bn−1A)A

n−1 −Bn−1A
n

= A(B0 − B0) + A2(B1 −B1) + A3(B2 − B2) + · · ·+ An−1(Bn−2 − Bn−2) + An(Bn−1 −Bn−1)

= 0 ,

which completes the proof of the Cayley-Hamilton theorem.
A notable feature of the Cayley-Hamilton theorem is that it provides a new way

to compute the inverse of an n × n matrix A. The inverse A−1 exists if and only if
cn = (−1)ndetA 6= 0 [cf. eq. (5)]. Multiplying eq. (9) by A−1 and dividing by cn yields,

A−1 =
(−1)n−1

detA

[
An−1 + c1A

n−2 + . . .+ cn−2A+ cn−1I
]
, for detA 6= 0 . (16)

Remarkably, the inverse matrix A−1 can always be expressed as a matrix polynomial of
degree n − 1. Similarly, the Cayley-Hamilton theorem can be used to show that any
matrix power, or more generally any function f(A) that can be expressed as an series
(either finite or infinite) of the form,

f(A) =
∑

j

ajA
j ,

can be expressed as a matrix polynomial of degree at most n− 1.
It is instructive to illustrate the Cayley-Hamilton theorem for 2× 2 matrices. In this

case,
p(λ) = λ2 − λTr A + det A .

Hence, by the Cayley-Hamilton theorem,

p(A) = A2 −ATr A+ I det A = 0 .

Let us take the trace of this equation. Since Tr I = 2 for the 2× 2 identity matrix,

Tr(A2)− (Tr A)2 + 2det A = 0 .

It follows that for any 2× 2 matrix,

det A = 1

2

[
(Tr A)2 − Tr(A2)

]
, and A−1 =

1

detA

[
ITrA−A

]
. (17)

You can easily verify the results of eq. (17) for any 2× 2 matrix.
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Appendix: Identifying the coefficients of the characteristic polynomial in

terms of traces

The characteristic polynomial of an n× n matrix A is given by:

p(λ) = det(A− λI) = (−1)n
[
λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn−1λ+ cn

]
.

In Section 1, we identified:

c1 = −Tr A , cn = (−1)ndet A . (18)

One can also derive expressions for c2, c3, . . . , cn−1 in terms of traces of powers of A. In
this appendix, I will exhibit the relevant results without proofs (which can be found in
the references at the end of these notes). Let us introduce the notation:

tk = Tr(Ak) .

Then, the following recursive equation can be proven:

ck = −
1

k

k∑

i=1

ck−iti , for 1 ≤ k ≤ n,

where c0 ≡ 1. More explicitly,

t1 + c1 = 0 and tk + c1tk−1 + · · ·+ ck−1t1 + kck = 0 , k = 2, 3, . . . , n . (19)

These equations are called the Newton’s identities. A nice proof of these identities can be
found in Ref. [3]. The equations exhibited in eq. (19) are recursive, since one can solve
for the ck in terms of the traces t1, t2, . . . , tk iteratively by starting with c1 = −t1, and
then proceeding step by step by solving the equations with k = 2, 3, . . . , n in successive
order. This recursive procedure yields:

c1 = −t1 ,

c2 =
1

2
(t21 − t2) ,

c3 = −1

6
t31 +

1

2
t1t2 −

1

3
t3 ,

c4 =
1

24
t41 −

1

4
t21t2 +

1

3
t1t3 +

1

8
t22 −

1

4
t4 ,

and so on. The results above can be summarized by the following equation [4],

cm = −
tm

m
+

1

2!

m−1∑

i=1

m−1∑

j=1

i+j=m

titj

ij
−

1

3!

m−2∑

i=1

m−2∑

j=1

m−2∑

k=1

i+j+k=m

titjtk

ijk
+ · · ·+

(−1)mtm1
m!

, m = 1, 2, . . . , n .
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Note that by using cn = (−1)ndet A, one obtains a general expression for the determinant
in terms of traces of powers of A,

det A = (−1)ncn = (−1)n






−
tn

n
+

1

2!

n−1∑

i=1

n−1∑

j=1

i+j=n

titj

ij
−

1

3!

n−2∑

i=1

n−2∑

j=1

n−2∑

k=1

i+j+k=n

titjtk

ijk
+ · · ·+

(−1)ntn1
n!






,

where tk ≡ Tr(Ak). One can verify that:

det A = 1

2

[
(Tr A)2 − Tr(A2)

]
, for any 2× 2 matrix ,

det A = 1

6

[
(Tr A)3 − 3Tr ATr(A2) + 2Tr(A3)

]
, for any 3× 3 matrix ,

etc. The coefficients of the characteristic polynomial, ck, can also be expressed directly
in terms of the eigenvalues of A, as shown in eq. (8).

BONUS MATERIAL

One can derive another closed-form expression for the ck. To see how to do this, let
us write out the Newton identities explicitly.

Eq. (19) for k = 1, 2, . . . , n yields:

c1 = −t1 ,

t1c1 + 2c2 = −t2 ,

t2c1 + t1c2 + 3c3 = −t3 ,
...

...

tk−1c1 + tk−2c2 + · · ·+ t1ck−1 + kck = −tk ,
...

...

tn−1c1 + tn−2c2 + · · ·+ t1cn−1 + ncn = −tn .

Consider the first k equations above (for any value of k = 1, 2, . . . , n). This is a system
of linear equations for c1, c2, . . . , ck, which can be written in matrix form:












1 0 0 · · · 0 0
t1 2 0 · · · 0 0
t2 t1 3 · · · 0 0
...

...
...

. . .
...

...
tk−2 tk−3 tk−4 · · · k − 1 0
tk−1 tk−2 tk−3 · · · t1 k























c1
c2
c3
...

ck−1

ck












=












−t1
−t2
−t3
...

−tk−1

−tk












.
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Applying Cramer’s rule, we can solve for ck in terms of t1, t2, . . . , tk [5]:

ck =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 · · · 0 −t1
t1 2 0 · · · 0 −t2
t2 t1 3 · · · 0 −t3
...

...
...

. . .
...

...
tk−2 tk−3 tk−4 · · · k − 1 −tk−1

tk−1 tk−2 tk−3 · · · t1 −tk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 · · · 0 0
t1 2 0 · · · 0 0
t2 t1 3 · · · 0 0
...

...
...

. . .
...

...
tk−2 tk−3 tk−4 · · · k − 1 0
tk−1 tk−2 tk−3 · · · t1 k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The denominator is the determinant of a lower triangular matrix, which is equal to the
product of its diagonal elements. Hence,

ck =
1

k!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 · · · 0 −t1
t1 2 0 · · · 0 −t2
t2 t1 3 · · · 0 −t3
...

...
...

. . .
...

...
tk−2 tk−3 tk−4 · · · k − 1 −tk−1

tk−1 tk−2 tk−3 · · · t1 −tk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

It is convenient to multiply the kth column by −1, and then move the kth column over
to the first column (which requires a series of k − 1 interchanges of adjacent columns).
These operations multiply the determinant by (−1) and (−1)k−1 respectively, leading to
an overall sign change of (−1)k. Hence, our final result is:4

ck =
(−1)k

k!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t1 1 0 0 · · · 0
t2 t1 2 0 · · · 0
t3 t2 t1 3 · · · 0
...

...
...

...
. . .

...
tk−1 tk−2 tk−3 tk−4 · · · k − 1
tk tk−1 tk−2 tk−3 · · · t1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, k = 1, 2, . . . , n .

4This result is derived in section 4.1 on p. 20 of Ref. [5]. However, the determinantal expression given
in Ref. [5] for σk ≡ (−1)kck contains a typographical error—the diagonal series of integers, 1, 1, 1, . . . , 1,
appearing just above the main diagonal of σk should be replaced by 1, 2, 3, . . . , k − 1.
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We can test this formula by evaluating the the first three cases k = 1, 2, 3:

c1 = −t1 , c2 =
1

2!

∣
∣
∣
∣

t1 1
t2 t1

∣
∣
∣
∣
= 1

2
(t21 − t2) ,

c3 = −
1

3!

∣
∣
∣
∣
∣
∣

t1 1 0
t2 t1 2
t3 t2 t1

∣
∣
∣
∣
∣
∣

= 1

6

[
−t31 + 3t1t2 − 2t3

]
,

which coincide with the previously stated results. Finally, setting k = n yields the deter-
minant of the n× n matrix A, det A = (−1)ncn, in terms of traces of powers of A,

det A =
1

n!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t1 1 0 0 · · · 0
t2 t1 2 0 · · · 0
t3 t2 t1 3 · · · 0
...

...
...

...
. . .

...
tn−1 tn−2 tn−3 tn−4 · · · n− 1
tn tn−1 tn−2 tn−3 · · · t1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where tk ≡ Tr(Ak). Indeed, one can check that our previous results for the determinants
of a 2× 2 matrix and a 3× 3 matrix are recovered.
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