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Properties of the Wigner d-matrices

The matrix elements of Wigner’s small d-matrix are defined by,

d
(j)
m′m(θ) ≡ 〈j m′|e−iθJy/~|j m〉 ,

where j is a non-negative half-integer and m,m′ = −j,−j + 1, . . . , j − 1 , j.

Property 1: d
(j)
m′m(θ) are real for all values of m, m′ and j.

Recall the explicit form for the matrix elements of the angular momentum operator Jy

obtained in class,

〈jm′|Jy|jm〉 = −1
2
i~

[

δm′,m+1

[

(j −m)(j +m+ 1)
]1/2

− δm′,m−1

[

(j +m)(j −m+ 1)
]1/2

]

. (1)

Thus the matrix elements of iJy are real. It then follows that the matrix elements of e−iθJy/~

are also real.

Property 2: d
(j)
m′m(−θ) = d

(j)
mm′(θ) for all values of m, m′ and j.

First, note that e−iθJy/~ is a unitary operator. From property 1, it follows that e−iθJy/~ is
real. Hence, e−iθJy/~ is a real orthogonal operator, which implies that its matrix representation
satisfies dT(θ)d(θ) = I, where I is the identity matrix, or equivalently, dT(θ) = d−1(θ). More-
over, the inverse of e−iθJy/~ is given by eiθJy/~, which yields d−1(θ) = d(−θ). Hence, we conclude
that

dT(θ) = d(−θ) .

The matrix elements of this equation correspond to Property 2 above.

Property 3: d
(j)
m′m(θ) = d

(j)
−m,−m′(θ) for all values of m, m′ and j.

This property immediately follows from eq. (1), since Jy is invariant under the interchange
m → −m′, m′ → −m. In particular, under this interchange,

〈j,−m|Jy|j,−m′〉 = −1
2
i~

[

δ−m,−m′+1

[

(j+m′)(j−m′+1)
]1/2

−δ−m,−m′−1

[

(j−m′)(j+m′+1)
]1/2

]

.

In the first term above, the Kronecker delta imposes m′ = m+1, and in the second term above,
the Kronecker delta imposes m′ = m− 1. Hence,

〈j,−m|Jy|j,−m′〉 = −1
2
i~

[

δ−m,−m′+1

[

(j+m+1)(j−m)
]1/2

−δ−m,−m′−1

[

(j−m+1)(j+m)
]1/2

]

.

(2)
Noting that δm′,m+1 = δ−m,−m′+1 and δm′,m−1 = δ−m,−m′−1, it follows from eqs. (1) and (2) that,

〈jm′|Jy|jm〉 = 〈j,−m|Jy|j,−m′〉 .

Upon exponentiation, Property 3 is confirmed.
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Property 4: d
(j)
m′m(θ) = (−1)m−m′

d
(j)
mm′(θ) for all values of m, m′ and j.

From the definition of the raising and lowering operators, J± ≡ Jx ± iJy, it follows that

e−iθJy/~ = e−θ(J+−J−)/2 .

It is easy to check that the matrix representation of Jy is antisymmetric. Starting from eq. (1),

〈jm|Jy|jm
′〉 = −1

2
i~

[

δm,m′+1

[

(j −m′)(j +m′ + 1)
]1/2

− δm,m′−1

[

(j +m′)(j −m′ + 1)
]1/2

]

= −1
2
i~

[

δm′,m−1

[

(j −m+ 1)(j +m)
]1/2

− δm′,m+1

[

(j +m+ 1)(j −m)
]1/2

]

= −〈j,m′|Jy|j,m〉 .

Moreover, the matrix elements of Jy are nonzero if and only if |m−m′| = 1. Hence, if follows
that for any positive integer k,

1. The matrix representation of J2k
y is symmetric and its matrix elements vanish if |m−m′|

is an odd integer.

2. The matrix representation of J2k+1
y is antisymmetric and its matrix elements vanish if

|m−m′| is an even integer.

The matrix exponential, e−iθJy/~, is defined via its Taylor series. In light of the two results
obtained above, the validity of Property 4 follows.

Property 5: d
(j)
mm′(2π) = (−1)2j δmm′ for all values of m, m′ and j.

We begin by using Theorem 1, which states that if R is a rotation by an angle θ about a
fixed axis n̂ and û′ = Rû, then

U [R] ~J ·ûU †[R] = ~J ·û′ . (3)

The proof of Theorem 1 is given in Appendix A. Exponentiating eq. (3) yields

U [R] e−iβ ~J ·û/~ U †[R] = e−iβ ~J ·û′/~ . (4)

In eq. (4), choose θ = 2π, û = ẑ and û′ = ŷ. Then,

U [R] e−2πiJz/~ U †[R] = e−2πiJy/~ . (5)

We will now evaluate eq. (5) by multiplying on the left by 〈jm| and on the right by |jm′〉.
We first observe that

〈jm|e−2πiJx/~|jm′〉 = e−2πim′

δmm′ = e−2πije2πi(j−m′) δmm′ = e−2πij δmm′ = (−1)2j δmm′ ,
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after noting that j −m′ is an integer so that e2πi(j−m′) = 1. In the final step above, we wrote
e−2πij = (e−iπ)2j = (−1)2j . Hence, multiplying on the left by 〈jm| and on the right by |jm′〉
on the left hand side of eq. (5) yields,

〈jm|U [R] e−2πiJz/~ U †[R]|jm′〉 =
∑

m1

∑

m2

〈jm|U [R]|jm1〉〈jm1|e
−2πiJz/~|jm2〉〈jm2|U

†[R]|jm′〉

= (−1)2j
∑

m1

∑

m2

D(j)
mm1

[R]D
(j)†
m2m′ [R]δm1m2

= (−1)2j
(

D(j)[R)]D(j)†[R]
)

mm′
= (−1)2j δmm′ ,

since D(j)[R] is the unitary matrix representation of the operator U [R], which implies that
D(j)[R)]D(j)†[R]

)

= I.
Finally, multiplying on the left by 〈jm| and on the right by |jm′〉 on the right hand side of

eq. (5) yields,

〈jm|e−2πiJy/~|jm′〉 = d
(j)
mm′(2π) .

Hence, we have proved Property 5. In summary, we have established that

d(j)(2π) =

{

I , for integral values, j = 0, 1, 2, . . .

−I , for half-integral values, j = 1
2
, 3
2
, 5
2
, . . .

That is, a 2π rotation returns the wave function of a boson to its original value, whereas one
must perform a 4π rotation to return the wave function of a fermion to its original value.

Property 6: d
(j)
m′m(π) = (−1)j−mδm,−m′ for all values of m, m′ and j.

Starting from eq. (15), we choose ~V = ~J and consider a rotation parameterized by n̂ = ŷ

and θ = π. The corresponding 3 × 3 rotation matrix R is given by [cf. eq. (20) of the class
handout entitled Three Dimensional Rotation Matrices ]:

R(ŷ, π) =





−1 0 0
0 1 0
0 0 −1



 .

By choosing û to be the unit vector that points in the x, y, and z directions, respectively, we
obtain,

exp(iπJy/~)Jx exp(−iπJy/~) = −Jx , (6)

exp(iπJy/~)Jy exp(−iπJy/~) = Jy , (7)

exp(iπJy/~)Jz exp(−iπJy/~) = −Jz . (8)

If we operate on the state |j m〉 with eq. (8), we obtain

Jz

[

exp(−iπJy/~)|j m〉
]

= −~m
[

exp(−iπJy/~)|j m〉
]

.
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Since ~J2 and Jy commute, it follows that

~J2
[

exp(−iπJy/~)|j m〉
]

= ~j(j + 1)
[

exp(−iπJy/~)|j m〉
]

.

Hence, we can conclude that1

exp(−iπJy/~)|j m〉 = eiα(j,m)|j , −m〉 , (9)

where eiα(j,m) is a complex phase that can depend in principle on j and m.
To determine eiα(j,m), we first note that eqs. (6) and (7) can be rewritten as

exp(iπJy/~)J± exp(−iπJy/~) = −J∓ , (10)

where J± ≡ Jx ± iJy. Applying eq. (10) to the state |j m〉, and making use of eq. (9),

J± exp(−iπJy/~)|j m〉 = − exp(−iπJy/~)J∓|j m〉

= −~
[

(j ±m)(j ∓m+ 1)
]1/2

exp(−iπJy/~)|j , m∓ 1〉 .

= −~
[

(j ±m)(j ∓m+ 1)
]1/2

eiα(j,m∓1)|j , −m± 1〉 .

However, eq. (9) also yields

J± exp(−iπJy/~)|j m〉 = eiα(j,m)J±|j , −m〉 = ~
[

(j ±m)(j ∓m+ 1)
]1/2

eiα(j,m)|j , −m± 1〉 .

Consequently, eiα(j,m) = −eiα(j,m∓1) . Given the value of α(j, j), one can obtain α(j,m) for
m = −j , −j + 1 , . . . , j − 1 , j,

eiα(j,j−n) = (−1)neiα(j,j) , for n = 0, 1, 2, . . . , 2j .

Thus, writing n = j −m, it follows that

eiα(j,m) = (−1)j−meiα(j,j) , for m = −j , −j + 1 , . . . , j − 1 , j .

Hence, we conclude that

exp(−iπJy/~)|j m〉 = eiα(j,j) (−1)j−m|j , −m〉 , (11)

and
d
(j)
m′m(π) = 〈j m′| exp(−iπJy/~)|j m〉 = eiα(j,j) (−1)j−mδm,−m′ . (12)

In Appendix B, we demonstrate that eiα(j,j) = 1 for all values of j. Hence,

d
(j)
m′m(π) = (−1)j−mδm,−m′ ,

which completes the proof.
One immediate consequence of eiα(j,j) = 1 is that eq. (11) is now completely determined,

exp(−iπJy/~)|j m〉 = (−1)j−m|j , −m〉 . (13)

1Since |j m〉 is a normalized state and exp(−iπJy/~) is a unitary operator, it follows that exp(−iπJy/~)|j m〉
is also a normalized state, in which case the constant multiplying |j , −m〉 in eq. (9) must be a complex phase.
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Eq. (13) plays an important role in the behavior of the angular momentum state |jm〉 under a
time reversal transformation.2

An explicit form for the Wigner d-matrix

Julian Schwinger developed the connection between the algebra of angular momentum oper-
ators and the algebra of two independent harmonic oscillators, which you explored on problems
1 and 2 of Problem Set 4. Schwinger was then able to use this formalism to derive an explicit
expression for d

(j)
m′m(θ). The derivation is given in Section 3.9 of Sakurai and Napolitano. For

completeness, we provide the final expression here.

d
(j)
m′m(θ) =

kmax
∑

k=kmin

(−1)k−m+m′

√

(j +m)! (j −m)! (j +m′)! (j −m′)!

(j +m− k)! (j − k −m′)! (k −m+m′) !k!

×

(

cos
θ

2

)2j−2k+m−m′ (

sin
θ

2

)2k−m+m′

, (14)

where k is an integer such that

kmin = min
{

0 , m−m′
}

≥ −2j , kmax = max
{

0 , j +m, j −m′
}

≤ 2j .

That is, in eq. (14) we sum over integer values of k such that none of the arguments of the
factorials in the denominator are negative.

One can now use eq. (14) to check explicitly that Properties 1–6 are satisfied.

APPENDIX A: Proof of Theorem 1

Consider the unitary operator, U [R] = e−iθn̂· ~J/~. For any vector operator, ~V = (V1, V2, V3),

U †[R]Vi U [R] = RijVj , (15)

where there is an implicit sum over the repeated index j. In eq. (15), Rij are the matrix
elements of the matrix R corresponding to a rotation by an angle θ about an axis n̂.3

Theorem 1: Suppose that R rotates a unit vector û into û′; i.e., û′ = Rû. Then,

U [R] ~J ·ûU †[R] = ~J ·û′ . (16)

Proof of Theorem 1: Since ~J is a vector operator, it follows from eq. (15) that

U †[R] Ji U [R] = RijJj . (17)

2For details, see the class handout entitled Implications of Time-Reversal Symmetry in Quantum Mechanics.
3See, e.g., eq. (3.11.3) of Sakurai and Napolitano.
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Multiplying eq. (17) by û′
i, we obtain

U †[R] ~J ·û′ U [R] = Rij û
′
iJj . (18)

But R is a real orthogonal matrix, which implies that RT = R−1, Hence,

Rij û
′
i = RT

jiû
′
i = (R−1û′)j = ûj , (19)

where we used û = R−1û′, as specified by Theorem 1. Inserting the result of eq. (19) back into
eq. (18) yields,

U †[R] ~J ·û′ U [R] = ~J ·û . (20)

Finally, we shall make use of the fact that U [R] is unitary, i.e., U [R]U †[R] = I, where I is the
identity operator. Hence, if one multiplies eq. (20) on the left by U [R] and on the right by
U †[R], one obtains eq. (16).

APPENDIX B: Proof that eiα(j,j) = 1

We shall evaluate eiα(j,j) by considering the Clebsch-Gordan series for the product of two
d-functions [cf. eq. (14) of the class handout entitled Clebsch-Gordan coefficients and the tensor

spherical harmonics ]. Choosing the appropriate values for the relevant parameters,

d
(j1)
−j1,j1

(π) d
(j2)
−j2,j2

(π) = 〈j1j2 ; −j1 , −j2 | j1j2 ; j1 + j2 , −(j1 + j2)〉〈j1j2 ; j1j2 | j1j2 ; j1 + j2 , j1 + j2〉

×d
(j1+j2)
−j1−j2 , j1+j2

(π) . (21)

The Clebsch-Gordan factors above are trivial. In particular, the relation,

〈j1j2 ; j1j2 | j1j2 ; j1 + j2 , j1 + j2〉 = 1

is the convention used to fix the phases of the Clebsch-Gordan coefficients. Moreover, one can
show that the Clebsch-Gordan coefficients satisfy the following relation,

〈j1j2 ; m1m2 | j1j2 ; jm〉 = (−1)j1+j2−j〈j1j2 ; −m1,−m2 | j1j2 ; j,−m〉 .

It therefore follows that

〈j1j2 ; j1j2 | j1j2 ; j1 + j2 , j1 + j2〉 = 〈j1j2 ; −j1 , −j2 | j1j2 ; j1 + j2 , −(j1 + j2)〉 = 1 . (22)

Hence, using eq. (12), we conclude that

eiα(j1,j1) eiα(j2,j2) = eiα(j1+j2 , j1+j2) . (23)

Finally, we consider the case of j = 1
2
. Then,4

d
(1/2)
m′m (π) = 〈1

2
m′| exp(−iπJy/~)|

1
2
m〉 = e−iπσy/2 = −iσy =

(

0 −1
1 0

)

. (24)

This means that d
(1/2)
1
2 ,−

1
2
(π) = −1. Comparing with eq. (12), it follows that eiα(

1
2 ,

1
2 ) = 1. In light

of eq. (23), we conclude that

eiα(j,j) = 1 , for all values of j = 0, 1
2
, 1, 3

2
, . . . (25)

4In deriving eq. (24), we employed exp(−i 1
2
θn̂ · ~σ) = I cos(1

2
θ)− in̂ · ~σ sin(1

2
θ) [cf. part (b)-(iii) of problem 7

on Problem Set 1] with n̂ = ŷ and θ = π.
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