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Properties of the Wigner d-matrices

The matrix elements of Wigner’s small d-matrix are defined by,

di(8) = (€™M m)

m'm

where j is a non-negative half-integer and m,m' = —j, —j+1,...,7— 1, J.

Property 1: dfj}m(e) are real for all values of m, m’ and j.

Recall the explicit form for the matrix elements of the angular momentum operator J,
obtained in class,

P S [G+m)G—m+ 1] (1)

4 4 , , , 1
(| Tylim) = =5ih| S ma [(G = m) (G + m + 1)]
Thus the matrix elements of i.J, are real. It then follows that the matrix elements of e~%/v/"

are also real.

Property 2: dfg'?m(—e) = d%)m,(é’) for all values of m, m’ and j.

First, note that e~*/»/" is a unitary operator. From property 1, it follows that e=®/s/" ig
real. Hence, e=®/s/" is a real orthogonal operator, which implies that its matrix representation
satisfies d'(0)d(0) = I, where I is the identity matrix, or equivalently, d'(0) = d~*(#). More-
over, the inverse of e=%/s/" is given by ¢/+/" which yields d=*(f) = d(—60). Hence, we conclude
that

d"(0) = d(—-0).

The matrix elements of this equation correspond to Property 2 above.

Property 3: dg?m(ﬁ) = Y

—m,—m/

(0) for all values of m, m’ and j.

This property immediately follows from eq. (1), since J, is invariant under the interchange
m — —m’, m" — —m. In particular, under this interchange,

(j, —ml|Jy|j, —m') = _%m{a_m,_m,ﬂ [GAm') G=m'+1)] =61 [(Gi—m) (4m'+1)] Y 2} .
In the first term above, the Kronecker delta imposes m’ = m+ 1, and in the second term above,

the Kronecker delta imposes m’ = m — 1. Hence,

1/2 /2

— 0 —m/—1 [(] —m+1)(j+m)} ' ]
(2)

Noting that 0, m+1 = 0—m —m+1 and Oy m—1 = d_sm —m/—1, it follows from egs. (1) and (2) that,

<mﬂM@m—mv=—aﬂamwﬂﬂu+m+wu—mﬂ

Gm'yljm) = (j, =ml|Jy|j, —m') .

Upon exponentiation, Property 3 is confirmed.



Property 4: d%?m(e) = (—1)m—m’dfjgn,(9) for all values of m, m’ and j.
From the definition of the raising and lowering operators, J. = J, £+ i.J,, it follows that

o~ i0Ty/h _ o=0(J1=J-)/2

It is easy to check that the matrix representation of J, is antisymmetric. Starting from eq. (1),
. . / 1- . / . / 1/2 . / . / 1/2
(gmlJy|jm’) = —azh{%mm (G =m)G+m' + D] = [(F+m) (G —m' +1)] }

— {5m,,m_1 (G=m+1)G+m)]" = i [G+m+ DG —m)]Y 2}
= —(j,m/|J,l5,m) .

Moreover, the matrix elements of J, are nonzero if and only if [m —m’| = 1. Hence, if follows
that for any positive integer k,

1. The matrix representation of J2* is symmetric and its matrix elements vanish if [m — /|
is an odd integer.

2. The matrix representation of ij“ is antisymmetric and its matrix elements vanish if
|m — m/| is an even integer.
The matrix exponential, e=/s/" is defined via its Taylor series. In light of the two results

obtained above, the validity of Property 4 follows.
Property 5: dV) (21) = (=1)% 8,y for all values of m, m’ and j.

We begin by using Theorem 1, which states that if R is a rotation by an angle # about a
fixed axis f and 4’ = R, then

UIR) J-aU'[R] = J-4' . (3)
The proof of Theorem 1 is given in Appendix A. Exponentiating eq. (3) yields
UIR] e B2/ UH[R] = =0 T-a/1. (4)
In eq. (4), choose § =27, @ = 2 and @' = . Then,
U[R] e *™/=/"UY[R] = =™ /", (5)

We will now evaluate eq. (5) by multiplying on the left by (jm/| and on the right by |jm’).
We first observe that

) o ) o o L Py .
<jm|€ 27erz/h‘jm/> —e 2mim 5mm’ —e 27‘(‘Z]627‘(‘Z(] m)émm’ —e 2mij 5mm’ — (_1)23 5mm’7



after noting that j — m/ is an integer so that e?™U~") = 1. In the final step above, we wrote
e 2™ = (e7™)% = (—1)%. Hence, multiplying on the left by (jm| and on the right by |jm’)
on the left hand side of eq. (5) yields,

(GmlU[R] e”*™=/M UM [R]|jm’) = Y " (jm|ULR]|jma) (Gmale” ™=/ jma) (jma| UT[R] | jm)

= 2] Z Z Dmm1 mgm [R](Smlmz
= (_1)2J’ (D(j)[R)]D(j)T[R])mm, — (_1)2j O’ +

since DU)[R] is the unitary matrix representation of the operator U[R], which implies that
DU)[R)]DU)T[R]) =1

Finally, multiplying on the left by (jm| and on the right by |jm’) on the right hand side of
eq. (5) yields,
B jn) = di),(2m)

Hence, we have proved Property 5. In summary, we have established that

{gmle”

, I, for integral values, j =0,1,2,.

d9)(2m) = s )= L
-1, for half-integral values, 7 = 5 TCIEEE

That is, a 27 rotation returns the wave function of a boson to its original value, whereas one

must perform a 47 rotation to return the wave function of a fermion to its original value.

Property 6: d%?m(ﬂ') = (=1)7"™8,, _p for all values of m, m’ and j.

Starting from eq. (15), we choose V = J and consider a rotation parameterized by n = ¢
and = m. The corresponding 3 x 3 rotation matrix R is given by [cf. eq. (20) of the class
handout entitled Three Dimensional Rotation Matrices]:

-1 0 0
Rgm=| 0o 1 0
0 0 -1

By choosing 4 to be the unit vector that points in the x, y, and z directions, respectively, we
obtain,

exp(inJy/h)J, exp(—inJ,/h) = —J,, (6)
exp(imJ,/h)J, exp(—inJ,/h) = J, , (7)
exp(inJy/h)J, exp(—inJ,/h) = —J,. (8)

If we operate on the state |jm) with eq. (8), we obtain

J. [exp(—my/h)| jm)] = —hm [exp(—iﬁjy/h)\ im)].
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Since J? and J, commute, it follows that
jﬂam—m%ﬁmﬁmy:mu+¢ﬂwm—m%ﬁmﬂmy
Hence, we can conclude that!
exp(—imJy/h)|jm) = e0™|j, —m), (9)

where U™ is a complex phase that can depend in principle on j and m.
To determine ¢™U™) we first note that eqs. (6) and (7) can be rewritten as

exp(imJy/h)Jyexp(—inJy,/h) = —J¢, (10)
where J. = J, £1iJ,. Applying eq. (10) to the state |jm), and making use of eq. (9),
Jo expl(—imd,/B)|j m) = — exp(—imJy /B)J | m)
= —h[(j £m)(j F m+ )] exp(~inJ, /)], mF1).
— [ £ m)(j Fm+ 1)] U —m 1),
However, eq. (9) also yields
Jx exp(—imJy/B)|jm) = €U L1 |j, —m) = h[(j £ m)(j Fm + )] 2 0 —m 1)

Consequently, U™ = —e@UmF) - Given the value of a(j,7), one can obtain «(j,m) for
m=—j3,—3+1,...,5—1,7,
elolii—n) — (_1)meeUd) - forn=0,1,2,...,25.
Thus, writing n = 7 — m, it follows that
el elm) = (—1)immeield) - form=—j, —j+1,...,5—1,7.
Hence, we conclude that
exp(—imJ, /h)|jm) = VD (1)1, —m), (11)

and

49

m/'m

() = (j m/| exp(—imJ,/h)|jm) = ') () i — (12)
In Appendix B, we demonstrate that e’*97) =1 for all values of j. Hence,

d;i?m(ﬂ) = (_1>j_m5m,—m’ )

which completes the proof.
One immediate consequence of ¢*U4) = 1 is that eq. (11) is now completely determined,

exp(—imJy/h)|jm) = (=1)""[j, —m). (13)

!Since |j m) is a normalized state and exp(—im.J,/h) is a unitary operator, it follows that exp(—im.J,/h)|j m)
is also a normalized state, in which case the constant multiplying |j, —m) in eq. (9) must be a complex phase.
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Eq. (13) plays an important role in the behavior of the angular momentum state |jm) under a
time reversal transformation.?

An explicit form for the Wigner d-matrix

Julian Schwinger developed the connection between the algebra of angular momentum oper-
ators and the algebra of two independent harmonic oscillators, which you explored on problems
1 and 2 of Problem Set 4. Schwinger was then able to use this formalism to derive an explicit
expression for d%?m(ﬁ) The derivation is given in Section 3.9 of Sakurai and Napolitano. For
completeness, we provide the final expression here.

0 - X VTG =G )G — )]
fronl0) = k:;mm(_l)k G+m—=k (G —k—=m)(k—m+m)!k

0 2j—2k+m—m’ 0 2k—m-~+m/’
X (cos 5) (sin 5) : (14)

where k is an integer such that
Kmin = min{0, m —m'} > =25, kmax = max{0, j+m, j—m'} <2j.

That is, in eq. (14) we sum over integer values of k such that none of the arguments of the
factorials in the denominator are negative.
One can now use eq. (14) to check explicitly that Properties 1-6 are satisfied.

APPENDIX A: Proof of Theorem 1

Consider the unitary operator, U[R] = e—i0R-J/h For any vector operator, V = (Vi, Vi, V3),
U'R)V;U[R] = R;;V;, (15)

where there is an implicit sum over the repeated index j. In eq. (15), R;; are the matrix
elements of the matrix R corresponding to a rotation by an angle § about an axis 7.3

Theorem 1: Suppose that R rotates a unit vector @ into @’; i.e., @’ = R@. Then,

U[R) J-aU'[R] = J-u'. (16)

Proof of Theorem 1: Since J is a vector operator, it follows from eq. (15) that

U'R] J;UIR] = Ry J; . (17)

2For details, see the class handout entitled Implications of Time-Reversal Symmetry in Quantum Mechanics.
3See, e.g., eq. (3.11.3) of Sakurai and Napolitano.



Multiplying eq. (17) by @}, we obtain

UT[R] J-4' U[R] = R;i.J; . (18)
But R is a real orthogonal matrix, which implies that RT = R~!, Hence,
Ryju; = Rji; = (R™'4); = iy, (19)

where we used 4 = R™'4’, as specified by Theorem 1. Inserting the result of eq. (19) back into
eq. (18) yields,

U'R)J-@ UR] = J-a. (20)
Finally, we shall make use of the fact that U[R] is unitary, i.e., U[R]UT[R] = I, where I is the

identity operator. Hence, if one multiplies eq. (20) on the left by U[R] and on the right by
U'[R], one obtains eq. (16).

APPENDIX B: Proof that €0 = 1

We shall evaluate ') by considering the Clebsch-Gordan series for the product of two
d-functions [cf. eq. (14) of the class handout entitled Clebsch-Gordan coefficients and the tensor
spherical harmonics]. Choosing the appropriate values for the relevant parameters,
d(_];»z,jl () d(ﬁ;h(ﬁ) = (J1j2s —Jis —J2 | Jijes J1 + g2 — (1 + J2)) Grdzs Juda | Jug2s g1+ Ja, Ji + J2)

-
ng;l;];g »J1t32 (W) : (21>
The Clebsch-Gordan factors above are trivial. In particular, the relation,
(Jrja; Jijeldrjes 1 +Ja, 1+ J2) =1
is the convention used to fix the phases of the Clebsch-Gordan coefficients. Moreover, one can
show that the Clebsch-Gordan coefficients satisfy the following relation,
(1ga ;s mama | jrga s gm) = (=127 (Gigy s —ma, —ma | jijas 4, —m) .

It therefore follows that

(Jijes Juge | Jijes 1+ J2, g1+ J2) = (ujes —du, —Jeljije; i +i2, —(1 +J2)) =1. (22

Hence, using eq. (12), we conclude that

elalingt) pia(jz.gz) — pia(jitiz,ji+iz) (23)
Finally, we consider the case of j = 5. Then,*
) = lespl—imd, WlEm) = e = —io, = (1 7).

This means that d(%ly/f Qi (1) = —1. Comparing with eq. (12), it follows that e**(z'2) = 1. In light
of eq. (23), we conclude that

U9 =1, for all values of j = 0, 51,5, (25)

In deriving eq. (24), we employed exp(—i30f - &) = Lcos(30) —ifi - & sin(36) [cf. part (b)-(iii) of problem 7

on Problem Set 1] with 7 = ¢ and 0 = .



