

Properties of the Wigner d -matrices

The matrix elements of Wigner's small d -matrix are defined by,

$$d_{m'm}^{(j)}(\theta) \equiv \langle j m' | e^{-i\theta J_y/\hbar} | j m \rangle,$$

where j is a non-negative half-integer and $m, m' = -j, -j+1, \dots, j-1, j$.

Property 1: $d_{m'm}^{(j)}(\theta)$ are real for all values of m, m' and j .

Recall the explicit form for the matrix elements of the angular momentum operator J_y obtained in class,

$$\langle jm' | J_y | jm \rangle = -\frac{1}{2}i\hbar \left[\delta_{m',m+1} [(j-m)(j+m+1)]^{1/2} - \delta_{m',m-1} [(j+m)(j-m+1)]^{1/2} \right]. \quad (1)$$

Thus the matrix elements of iJ_y are real. It then follows that the matrix elements of $e^{-i\theta J_y/\hbar}$ are also real.

Property 2: $d_{m'm}^{(j)}(-\theta) = d_{mm'}^{(j)}(\theta)$ for all values of m, m' and j .

First, note that $e^{-i\theta J_y/\hbar}$ is a unitary operator. From property 1, it follows that $e^{-i\theta J_y/\hbar}$ is real. Hence, $e^{-i\theta J_y/\hbar}$ is a real orthogonal operator, which implies that its matrix representation satisfies $d^T(\theta)d(\theta) = I$, where I is the identity matrix, or equivalently, $d^T(\theta) = d^{-1}(\theta)$. Moreover, the inverse of $e^{-i\theta J_y/\hbar}$ is given by $e^{i\theta J_y/\hbar}$, which yields $d^{-1}(\theta) = d(-\theta)$. Hence, we conclude that

$$d^T(\theta) = d(-\theta).$$

The matrix elements of this equation correspond to Property 2 above.

Property 3: $d_{m'm}^{(j)}(\theta) = d_{-m,-m'}^{(j)}(\theta)$ for all values of m, m' and j .

This property immediately follows from eq. (1), since J_y is invariant under the interchange $m \rightarrow -m', m' \rightarrow -m$. In particular, under this interchange,

$$\langle j, -m | J_y | j, -m' \rangle = -\frac{1}{2}i\hbar \left[\delta_{-m,-m'+1} [(j+m')(j-m'+1)]^{1/2} - \delta_{-m,-m'-1} [(j-m')(j+m'+1)]^{1/2} \right].$$

In the first term above, the Kronecker delta imposes $m' = m+1$, and in the second term above, the Kronecker delta imposes $m' = m-1$. Hence,

$$\langle j, -m | J_y | j, -m' \rangle = -\frac{1}{2}i\hbar \left[\delta_{-m,-m'+1} [(j+m+1)(j-m)]^{1/2} - \delta_{-m,-m'-1} [(j-m+1)(j+m)]^{1/2} \right]. \quad (2)$$

Noting that $\delta_{m',m+1} = \delta_{-m,-m'+1}$ and $\delta_{m',m-1} = \delta_{-m,-m'-1}$, it follows from eqs. (1) and (2) that,

$$\langle jm' | J_y | jm \rangle = \langle j, -m | J_y | j, -m' \rangle.$$

Upon exponentiation, Property 3 is confirmed.

Property 4: $d_{m'm}^{(j)}(\theta) = (-1)^{m-m'} d_{mm'}^{(j)}(\theta)$ for all values of m , m' and j .

From the definition of the raising and lowering operators, $J_{\pm} \equiv J_x \pm iJ_y$, it follows that

$$e^{-i\theta J_y/\hbar} = e^{-\theta(J_+ - J_-)/2}.$$

It is easy to check that the matrix representation of J_y is antisymmetric. Starting from eq. (1),

$$\begin{aligned} \langle jm|J_y|jm'\rangle &= -\frac{1}{2}i\hbar \left[\delta_{m,m'+1} [(j-m')(j+m'+1)]^{1/2} - \delta_{m,m'-1} [(j+m')(j-m'+1)]^{1/2} \right] \\ &= -\frac{1}{2}i\hbar \left[\delta_{m',m-1} [(j-m+1)(j+m)]^{1/2} - \delta_{m',m+1} [(j+m+1)(j-m)]^{1/2} \right] \\ &= -\langle j, m'|J_y|j, m\rangle. \end{aligned}$$

Moreover, the matrix elements of J_y are nonzero if and only if $|m - m'| = 1$. Hence, it follows that for any positive integer k ,

1. The matrix representation of J_y^{2k} is symmetric and its matrix elements vanish if $|m - m'|$ is an odd integer.
2. The matrix representation of J_y^{2k+1} is antisymmetric and its matrix elements vanish if $|m - m'|$ is an even integer.

The matrix exponential, $e^{-i\theta J_y/\hbar}$, is defined via its Taylor series. In light of the two results obtained above, the validity of Property 4 follows.

Property 5: $d_{mm'}^{(j)}(2\pi) = (-1)^{2j} \delta_{mm'}$ for all values of m , m' and j .

We begin by using Theorem 1, which states that if R is a rotation by an angle θ about a fixed axis $\hat{\mathbf{n}}$ and $\hat{\mathbf{u}}' = R\hat{\mathbf{u}}$, then

$$U[R] \vec{\mathbf{J}} \cdot \hat{\mathbf{u}} U^\dagger[R] = \vec{\mathbf{J}} \cdot \hat{\mathbf{u}}'. \quad (3)$$

The proof of Theorem 1 is given in Appendix A. Exponentiating eq. (3) yields

$$U[R] e^{-i\beta \vec{\mathbf{J}} \cdot \hat{\mathbf{u}}/\hbar} U^\dagger[R] = e^{-i\beta \vec{\mathbf{J}} \cdot \hat{\mathbf{u}}'/\hbar}. \quad (4)$$

In eq. (4), choose $\theta = 2\pi$, $\hat{\mathbf{u}} = \hat{\mathbf{z}}$ and $\hat{\mathbf{u}}' = \hat{\mathbf{y}}$. Then,

$$U[R] e^{-2\pi i J_z/\hbar} U^\dagger[R] = e^{-2\pi i J_y/\hbar}. \quad (5)$$

We will now evaluate eq. (5) by multiplying on the left by $\langle jm|$ and on the right by $|jm'\rangle$. We first observe that

$$\langle jm|e^{-2\pi i J_x/\hbar}|jm'\rangle = e^{-2\pi i m'} \delta_{mm'} = e^{-2\pi i j} e^{2\pi i (j-m')} \delta_{mm'} = e^{-2\pi i j} \delta_{mm'} = (-1)^{2j} \delta_{mm'},$$

after noting that $j - m'$ is an integer so that $e^{2\pi i(j-m')} = 1$. In the final step above, we wrote $e^{-2\pi i j} = (e^{-i\pi})^{2j} = (-1)^{2j}$. Hence, multiplying on the left by $\langle jm|$ and on the right by $|jm'\rangle$ on the left hand side of eq. (5) yields,

$$\begin{aligned} \langle jm|U[R]e^{-2\pi i J_z/\hbar}U^\dagger[R]|jm'\rangle &= \sum_{m_1} \sum_{m_2} \langle jm|U[R]|jm_1\rangle \langle jm_1|e^{-2\pi i J_z/\hbar}|jm_2\rangle \langle jm_2|U^\dagger[R]|jm'\rangle \\ &= (-1)^{2j} \sum_{m_1} \sum_{m_2} D_{mm_1}^{(j)}[R] D_{m_2 m'}^{(j)\dagger}[R] \delta_{m_1 m_2} \\ &= (-1)^{2j} (D^{(j)}[R] D^{(j)\dagger}[R])_{mm'} = (-1)^{2j} \delta_{mm'} , \end{aligned}$$

since $D^{(j)}[R]$ is the *unitary* matrix representation of the operator $U[R]$, which implies that $D^{(j)}[R] D^{(j)\dagger}[R] = \mathbf{I}$.

Finally, multiplying on the left by $\langle jm|$ and on the right by $|jm'\rangle$ on the right hand side of eq. (5) yields,

$$\langle jm|e^{-2\pi i J_y/\hbar}|jm'\rangle = d_{mm'}^{(j)}(2\pi) .$$

Hence, we have proved Property 5. In summary, we have established that

$$d_{mm'}^{(j)}(2\pi) = \begin{cases} \mathbf{I}, & \text{for integral values, } j = 0, 1, 2, \dots \\ -\mathbf{I}, & \text{for half-integral values, } j = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots \end{cases}$$

That is, a 2π rotation returns the wave function of a boson to its original value, whereas one must perform a 4π rotation to return the wave function of a fermion to its original value.

Property 6: $d_{m'm}^{(j)}(\pi) = (-1)^{j-m} \delta_{m,-m'}$ for all values of m , m' and j .

Starting from eq. (15), we choose $\vec{V} = \vec{J}$ and consider a rotation parameterized by $\hat{\mathbf{n}} = \hat{\mathbf{y}}$ and $\theta = \pi$. The corresponding 3×3 rotation matrix R is given by [cf. eq. (20) of the class handout entitled *Three Dimensional Rotation Matrices*]:

$$R(\hat{\mathbf{y}}, \pi) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} .$$

By choosing $\hat{\mathbf{u}}$ to be the unit vector that points in the x , y , and z directions, respectively, we obtain,

$$\exp(i\pi J_y/\hbar) J_x \exp(-i\pi J_y/\hbar) = -J_x , \quad (6)$$

$$\exp(i\pi J_y/\hbar) J_y \exp(-i\pi J_y/\hbar) = J_y , \quad (7)$$

$$\exp(i\pi J_y/\hbar) J_z \exp(-i\pi J_y/\hbar) = -J_z . \quad (8)$$

If we operate on the state $|jm\rangle$ with eq. (8), we obtain

$$J_z \left[\exp(-i\pi J_y/\hbar) |jm\rangle \right] = -\hbar m \left[\exp(-i\pi J_y/\hbar) |jm\rangle \right] .$$

Since \vec{J}^2 and J_y commute, it follows that

$$\vec{J}^2 \left[\exp(-i\pi J_y/\hbar) |j m\rangle \right] = \hbar j(j+1) \left[\exp(-i\pi J_y/\hbar) |j m\rangle \right].$$

Hence, we can conclude that¹

$$\exp(-i\pi J_y/\hbar) |j m\rangle = e^{i\alpha(j,m)} |j, -m\rangle, \quad (9)$$

where $e^{i\alpha(j,m)}$ is a complex phase that can depend in principle on j and m .

To determine $e^{i\alpha(j,m)}$, we first note that eqs. (6) and (7) can be rewritten as

$$\exp(i\pi J_y/\hbar) J_{\pm} \exp(-i\pi J_y/\hbar) = -J_{\mp}, \quad (10)$$

where $J_{\pm} \equiv J_x \pm iJ_y$. Applying eq. (10) to the state $|j m\rangle$, and making use of eq. (9),

$$\begin{aligned} J_{\pm} \exp(-i\pi J_y/\hbar) |j m\rangle &= -\exp(-i\pi J_y/\hbar) J_{\mp} |j m\rangle \\ &= -\hbar [(j \pm m)(j \mp m + 1)]^{1/2} \exp(-i\pi J_y/\hbar) |j, m \mp 1\rangle. \\ &= -\hbar [(j \pm m)(j \mp m + 1)]^{1/2} e^{i\alpha(j,m \mp 1)} |j, -m \pm 1\rangle. \end{aligned}$$

However, eq. (9) also yields

$$J_{\pm} \exp(-i\pi J_y/\hbar) |j m\rangle = e^{i\alpha(j,m)} J_{\pm} |j, -m\rangle = \hbar [(j \pm m)(j \mp m + 1)]^{1/2} e^{i\alpha(j,m)} |j, -m \pm 1\rangle.$$

Consequently, $e^{i\alpha(j,m)} = -e^{i\alpha(j,m \mp 1)}$. Given the value of $\alpha(j,j)$, one can obtain $\alpha(j,m)$ for $m = -j, -j+1, \dots, j-1, j$,

$$e^{i\alpha(j,j-n)} = (-1)^n e^{i\alpha(j,j)}, \quad \text{for } n = 0, 1, 2, \dots, 2j.$$

Thus, writing $n = j - m$, it follows that

$$e^{i\alpha(j,m)} = (-1)^{j-m} e^{i\alpha(j,j)}, \quad \text{for } m = -j, -j+1, \dots, j-1, j.$$

Hence, we conclude that

$$\exp(-i\pi J_y/\hbar) |j m\rangle = e^{i\alpha(j,j)} (-1)^{j-m} |j, -m\rangle, \quad (11)$$

and

$$d_{m'm}^{(j)}(\pi) = \langle j m' | \exp(-i\pi J_y/\hbar) |j m\rangle = e^{i\alpha(j,j)} (-1)^{j-m} \delta_{m,-m'}. \quad (12)$$

In Appendix B, we demonstrate that $e^{i\alpha(j,j)} = 1$ for all values of j . Hence,

$$d_{m'm}^{(j)}(\pi) = (-1)^{j-m} \delta_{m,-m'},$$

which completes the proof.

One immediate consequence of $e^{i\alpha(j,j)} = 1$ is that eq. (11) is now completely determined,

$$\exp(-i\pi J_y/\hbar) |j m\rangle = (-1)^{j-m} |j, -m\rangle. \quad (13)$$

¹Since $|j m\rangle$ is a normalized state and $\exp(-i\pi J_y/\hbar)$ is a unitary operator, it follows that $\exp(-i\pi J_y/\hbar) |j m\rangle$ is also a normalized state, in which case the constant multiplying $|j, -m\rangle$ in eq. (9) must be a complex phase.

Eq. (13) plays an important role in the behavior of the angular momentum state $|jm\rangle$ under a time reversal transformation.²

An explicit form for the Wigner d -matrix

Julian Schwinger developed the connection between the algebra of angular momentum operators and the algebra of two independent harmonic oscillators, which you explored on problems 1 and 2 of Problem Set 4. Schwinger was then able to use this formalism to derive an explicit expression for $d_{m'm}^{(j)}(\theta)$. The derivation is given in Section 3.9 of Sakurai and Napolitano. For completeness, we provide the final expression here.

$$d_{m'm}^{(j)}(\theta) = \sum_{k=k_{\min}}^{k_{\max}} (-1)^{k-m+m'} \frac{\sqrt{(j+m)!\,(j-m)!\,(j+m')!\,(j-m')!}}{(j+m-k)!\,(j-k-m')!\,(k-m+m')!\,k!} \times \left(\cos \frac{\theta}{2}\right)^{2j-2k+m-m'} \left(\sin \frac{\theta}{2}\right)^{2k-m+m'}, \quad (14)$$

where k is an integer such that

$$k_{\min} = \min\{0, m - m'\} \geq -2j, \quad k_{\max} = \max\{0, j + m, j - m'\} \leq 2j.$$

That is, in eq. (14) we sum over integer values of k such that none of the arguments of the factorials in the denominator are negative.

One can now use eq. (14) to check explicitly that Properties 1–6 are satisfied.

APPENDIX A: Proof of Theorem 1

Consider the unitary operator, $U[R] = e^{-i\theta\hat{\mathbf{n}}\cdot\vec{J}/\hbar}$. For any vector operator, $\vec{V} = (V_1, V_2, V_3)$,

$$U^\dagger[R] V_i U[R] = R_{ij} V_j, \quad (15)$$

where there is an implicit sum over the repeated index j . In eq. (15), R_{ij} are the matrix elements of the matrix R corresponding to a rotation by an angle θ about an axis $\hat{\mathbf{n}}$.³

Theorem 1: Suppose that R rotates a unit vector $\hat{\mathbf{u}}$ into $\hat{\mathbf{u}'}$; i.e., $\hat{\mathbf{u}'} = R\hat{\mathbf{u}}$. Then,

$$U[R] \vec{J} \cdot \hat{\mathbf{u}} U^\dagger[R] = \vec{J} \cdot \hat{\mathbf{u}}'. \quad (16)$$

Proof of Theorem 1: Since \vec{J} is a vector operator, it follows from eq. (15) that

$$U^\dagger[R] J_i U[R] = R_{ij} J_j. \quad (17)$$

²For details, see the class handout entitled *Implications of Time-Reversal Symmetry in Quantum Mechanics*.

³See, e.g., eq. (3.11.3) of Sakurai and Napolitano.

Multiplying eq. (17) by \hat{u}'_i , we obtain

$$U^\dagger[R] \vec{J} \cdot \hat{\mathbf{u}}' U[R] = R_{ij} \hat{u}'_i J_j. \quad (18)$$

But R is a real orthogonal matrix, which implies that $R^\top = R^{-1}$, Hence,

$$R_{ij} \hat{u}'_i = R_{ji}^\top \hat{u}'_i = (R^{-1} \hat{\mathbf{u}}')_j = \hat{u}_j, \quad (19)$$

where we used $\hat{\mathbf{u}} = R^{-1} \hat{\mathbf{u}}'$, as specified by Theorem 1. Inserting the result of eq. (19) back into eq. (18) yields,

$$U^\dagger[R] \vec{J} \cdot \hat{\mathbf{u}}' U[R] = \vec{J} \cdot \hat{\mathbf{u}}. \quad (20)$$

Finally, we shall make use of the fact that $U[R]$ is unitary, i.e., $U[R] U^\dagger[R] = \mathbf{I}$, where \mathbf{I} is the identity operator. Hence, if one multiplies eq. (20) on the left by $U[R]$ and on the right by $U^\dagger[R]$, one obtains eq. (16).

APPENDIX B: Proof that $e^{i\alpha(j,j)} = 1$

We shall evaluate $e^{i\alpha(j,j)}$ by considering the Clebsch-Gordan series for the product of two d -functions [cf. eq. (14) of the class handout entitled *Clebsch-Gordan coefficients and the tensor spherical harmonics*]. Choosing the appropriate values for the relevant parameters,

$$d_{-j_1, j_1}^{(j_1)}(\pi) d_{-j_2, j_2}^{(j_2)}(\pi) = \langle j_1 j_2; -j_1, -j_2 | j_1 j_2; j_1 + j_2, -(j_1 + j_2) \rangle \langle j_1 j_2; j_1 j_2 | j_1 j_2; j_1 + j_2, j_1 + j_2 \rangle \times d_{-j_1 - j_2, j_1 + j_2}^{(j_1 + j_2)}(\pi). \quad (21)$$

The Clebsch-Gordan factors above are trivial. In particular, the relation,

$$\langle j_1 j_2; j_1 j_2 | j_1 j_2; j_1 + j_2, j_1 + j_2 \rangle = 1$$

is the convention used to fix the phases of the Clebsch-Gordan coefficients. Moreover, one can show that the Clebsch-Gordan coefficients satisfy the following relation,

$$\langle j_1 j_2; m_1 m_2 | j_1 j_2; jm \rangle = (-1)^{j_1 + j_2 - j} \langle j_1 j_2; -m_1, -m_2 | j_1 j_2; j, -m \rangle.$$

It therefore follows that

$$\langle j_1 j_2; j_1 j_2 | j_1 j_2; j_1 + j_2, j_1 + j_2 \rangle = \langle j_1 j_2; -j_1, -j_2 | j_1 j_2; j_1 + j_2, -(j_1 + j_2) \rangle = 1. \quad (22)$$

Hence, using eq. (12), we conclude that

$$e^{i\alpha(j_1, j_1)} e^{i\alpha(j_2, j_2)} = e^{i\alpha(j_1 + j_2, j_1 + j_2)}. \quad (23)$$

Finally, we consider the case of $j = \frac{1}{2}$. Then,⁴

$$d_{m'm}^{(1/2)}(\pi) = \langle \frac{1}{2} m' | \exp(-i\pi J_y/\hbar) | \frac{1}{2} m \rangle = e^{-i\pi\sigma_y/2} = -i\sigma_y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \quad (24)$$

This means that $d_{\frac{1}{2}, -\frac{1}{2}}^{(1/2)}(\pi) = -1$. Comparing with eq. (12), it follows that $e^{i\alpha(\frac{1}{2}, \frac{1}{2})} = 1$. In light of eq. (23), we conclude that

$$e^{i\alpha(j,j)} = 1, \quad \text{for all values of } j = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots \quad (25)$$

⁴In deriving eq. (24), we employed $\exp(-i\frac{1}{2}\theta \hat{\mathbf{n}} \cdot \vec{\sigma}) = \mathbf{I} \cos(\frac{1}{2}\theta) - i\hat{\mathbf{n}} \cdot \vec{\sigma} \sin(\frac{1}{2}\theta)$ [cf. part (b)-(iii) of problem 7 on Problem Set 1] with $\hat{\mathbf{n}} = \hat{\mathbf{y}}$ and $\theta = \pi$.