

DUE: TUESDAY, APRIL 17, 2012

1. Define the traceless symmetric second-rank Cartesian tensor,

$$T_{ij} = x_i x_j - \frac{1}{3} r^2 \delta_{ij},$$

where $\vec{x} \equiv (x_1, x_2, x_3)$ and $r^2 \equiv x_1^2 + x_2^2 + x_3^2$.

(a) Write T_{12} , T_{13} , and $T_{11} - T_{22}$ as linear combinations of the components of an irreducible spherical tensor of rank 2.

(b) The expectation value,

$$Q = e \langle \alpha, j, m = j | 3x_3^2 - r^2 | \alpha, j, m = j \rangle, \quad (1)$$

is known as the quadrupole moment. In eq. (1), α denotes other unspecified quantum numbers that characterize the state. Evaluate the matrix element,

$$e \langle \alpha, j, m' | x_1^2 - x_2^2 | \alpha, j, m = j \rangle,$$

where $m' = j, j-1, j-2, \dots$, in terms of Q and the appropriate Clebsch-Gordon coefficients.

(c) Using the Wigner-Eckart theorem, prove that a spin- $\frac{1}{2}$ particle cannot possess a static quadrupole moment.

2. Exercise 15.3.3 on p. 420 of Shankar. [In previous printings, this is given as Exercise 15.3.4. This problem asks you to prove the projection theorem.]

3. In quantum mechanics, the time reversal operator Θ acting on a state produces a state that evolves backwards in time. That is, if we write the usual time evolution,

$$|\Psi(t)\rangle = e^{-iHt/\hbar} |\Psi(0)\rangle,$$

then

$$\Theta |\Psi(-t)\rangle = e^{-iHt/\hbar} \Theta |\Psi(0)\rangle.$$

As noted by Shankar, the complex conjugated one-component wave function satisfies the Schrodinger equation with $t \rightarrow -t$. It follows that

$$\Theta = UK,$$

where K is the complex conjugate operator and U is an arbitrary phase. For a $(2j+1)$ -component wave function that describes a particle of spin j , then U is a

$(2j+1) \times (2j+1)$ unitary matrix. The complex conjugate operator is antiunitary; that is, it satisfies

$$\langle K\Psi | K\Phi \rangle = \langle \Psi | \Phi \rangle^* = \langle \Phi | \Psi \rangle.$$

Likewise, the time-reversal operator Θ is antiunitary.

(a) Since the angular momentum changes sign under time reversal, the quantum mechanical angular momentum operator \vec{J} must satisfy

$$\Theta \vec{J} \Theta^{-1} = -\vec{J}.$$

Using this result and the antiunitary nature of K , show that when acting on the $|jm\rangle$ basis,

$$\Theta = \exp(-i\pi J_y/\hbar)K,$$

up to an overall phase factor that can be chosen by convention to be unity.

(b) Show that

$$\Theta^2 |jm\rangle = (-1)^{2j} |jm\rangle.$$

(c) An irreducible tensor is even or odd under time reversal if,

$$\Theta T_q^{(k)} \Theta^{-1} = \pm (-1)^q T_{-q}^{(k)},$$

where even [odd] corresponds to the plus [minus] sign, respectively. Show that if the theory is time-reversal invariant, then the reduced matrix elements of such an operator must satisfy:

$$\langle \alpha j || T^{(k)} || \alpha j \rangle = \pm (-1)^k \langle \alpha j || T^{(k)} || \alpha j \rangle^*.$$

(d) The electric dipole operator is $\vec{\rho} = e\vec{x}$. Prove that if the neutron is observed to have a nonzero electric dipole moment, then both the parity and time reversal symmetries are separately violated.

HINT: Note that \vec{x} is odd under parity and even under time-reversal. For example, $\Theta \vec{x} \Theta^{-1} = \vec{x}$. Use the result of part (c) in showing that a nonzero electric dipole moment of an angular momentum eigenstate violates time reversal invariance.

4. Derive the following path integral representation of the n -point correlation function,

$$\langle x, t | T[X(t_1)X(t_2) \cdots X(t_n)] | x', t' \rangle = \int \mathcal{D}[x(t)] x(t_1)x(t_2) \cdots x(t_n) e^{iS[x(t)]/\hbar},$$

where T is the time-ordered product symbol, $S[x(t)]$ is the action [which depends on the path $x(t)$], $X(t)$ is the position operator in the Heisenberg picture, and $x(t)$ is the eigenvalue of $X(t)$ when acting on the position eigenstate $|x, t\rangle$. Assume that $t \geq t_i$ and $t' \leq t_i$ for all $i = 1, 2, \dots, n$.

5. Exercise 8.6.1 on p. 234 of Shankar.