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1. Consider a two-level system with E1 < E2. There is a time-dependent potential that
connects the two levels as follows:

V11 = V22 = 0, V12 = γeiωt, V21 = γe−iωt (γ real) , (1)

where Vij = 〈i|V |j〉. At time t = 0, it is known that only the lower level is populated—that
is, c1(0) = 1 and c2(0) = 0. Note that a general state of the system can be expressed as
a linear combination of eigenstates of the unperturbed Hamiltonian (in the Schrodinger
picture):

|ψ(t)〉 =
2
∑

n=1

cn(t)e
−iEnt/~ |n〉 . (2)

(a) Starting with the time-dependent Schrodinger equation, derive the following differ-
ential equation for ck(t):

i~
dck
dt

=
2
∑

n=1

Vkn(t)e
iωkntcn , (k = 1, 2) , (3)

where Vkn(t) ≡ 〈k|V (t)|n〉 and ~ωkn ≡ Ek−En. By solving the above system of differential
equations exactly, find |c1(t)|2 and |c2(t)|2 for t > 0.

The full Hamiltonian is given by

H = H(0) + V ,

where the matrix elements of V are given in eq. (1). The time-dependent Schrodinger
equation is given by

i~
∂

∂t
|ψ(t)〉 =

[

H(0) + V
]

|ψ(t)〉 .

Inserting the expansion for |ψ(t)〉 given in eq. (2) into the above equation, and using
H(0) |n〉 = En |n〉, it follows that1

2
∑

n=1

i~
dcn
dt

e−iEnt/~ |n〉 =
2
∑

n=1

cne
−iEnt/~ V |n〉 .

Next, multiply on the left by 〈k| and use 〈k|n〉 = δkn to obtain:

i~
dck
dt

e−iEkt/~ =
2
∑

n=1

cne
−iEnt/~〈k|V |n〉 . (4)

1For ease in notation, we denote the eigenvalues of the unperturbed Hamiltonian H(0) by En rather

than E
(0)
n .
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Eq. (4) can be rewritten as:

i~
dck
dt

=
2
∑

n=1

Vkn(t)e
iωkntcn , (k = 1, 2) ,

where Vkn(t) ≡ 〈k|V (t)|n〉 and ~ωkn ≡ Ek − En, which confirms eq. (3). In matrix form,

i~
d

dt

(

c1(t)

c2(t)

)

=

(

V11 V12e
iω12t

V21e
iω21t V22

)(

c1(t)

c2(t)

)

,

where ω21 = −ω12 = (E2 − E1)/~ > 0, and the matrix elements of V are given by eq. (1).
That is,

i~
d

dt

(

c1(t)

c2(t)

)

=

(

0 γei(ω−ω21)t

γe−i(ω−ω21)t 0

)(

c1(t)

c2(t)

)

,

Multiplying out the matrix and vector above, one obtains coupled differential equations for
c1(t) and c2(t):

i~
dc1
dt

= γei(ω−ω21)t c2 , i~
dc2
dt

= γe−i(ω−ω21)t c1 . (5)

At this point, it is convenient to define new coefficients,

c ′1(t) ≡ ei(ω21−ω)t/2 c1(t) , c ′2(t) ≡ e−i(ω21−ω)t/2 c2(t) . (6)

We now can express eq. (5) in terms of c ′1(t) and c
′
2(t):

i~
d

dt

[

e−i(ω21−ω)t/2 c ′1
]

= γei(ω−ω21)t
[

ei(ω21−ω)t/2 c ′2
]

,

i~
d

dt

[

ei(ω21−ω)t/2 c ′2
]

= γe−i(ω−ω21)t
[

e−i(ω21−ω)t/2 c ′1
]

.

Expanding out the derivatives, one sees that the exponential factors cancel. The resulting
equations for c ′1(t) and c

′
2(t) are:

i~

[

1
2
i(ω − ω21)c

′
1 +

dc ′1
dt

]

= γc ′2 , i~

[

−1
2
i(ω − ω21)c

′
2 +

dc ′2
dt

]

= γc ′1 . (7)

In matrix form, eq. (7) is given by:

i~
d

dt

(

c ′1(t)

c ′2(t)

)

= A

(

c ′1(t)

c ′2(t)

)

, (8)

where A is the time-independent 2× 2 traceless hermitian matrix,

A ≡
(

1
2
~(ω − ω21) γ

γ −1
2
~(ω − ω21)

)

. (9)
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Denoting the column vector ~c ≡ (c ′1 , c
′
2)

T , eq. (8) is of the form

d~c

dt
= −iA

~
~c . (10)

The solution to this equation is:

~c(t) = e−iAt/~~c0 , where ~c0 ≡ ~c(t = 0) .

This is easily verified by inserting the above solution back into eq. (10).
To compute the matrix exponential, a simple strategy is to write writing A = ~a·~σ,

where the vector ~a is uniquely determined. Such a relation holds for any 2 × 2 traceless
hermitian matrix. It is easy to see that for A given by eq. (9),

A = γσx +
1
2
~(ω − ω21)σz .

Using the well-known result:2

exp
(

1
2
iθn̂·~σ

)

= I cos(θ/2)+in̂·~σ sin(θ/2) =

(

cos(θ/2) + inz sin(θ/2) (inx + ny) sin(θ/2)

(inx − ny) sin(θ/2) cos(θ/2)− inz sin(θ/2)

)

,

where I is the 2× 2 identity matrix, we can identify

exp(−iAt/~) = exp

{

−it
~

(

γσx +
1
2
~(ω − ω21)σz

)

}

= exp
(

1
2
iθn̂·~σ

)

, (11)

where3

n̂ =
1

√

~2(ω − ω21)2 + 4γ2

(

2γ , 0 , ~(ω − ω21)
)

, (12)

and

θ = − t

~

√

~2(ω − ω21)2 + 4γ2 . (13)

We conclude that
(

c ′1(t)

c ′2(t)

)

=

(

cos(θ/2) + inz sin(θ/2) inx sin(θ/2)

inx sin(θ/2) cos(θ/2)− inz sin(θ/2)

)(

c ′1(0)

c ′2(0)

)

,

where θ is defined by eq. (13) and

nx ≡ 2γ
√

~2(ω − ω21)2 + 4γ2
, nz =

~(ω − ω21)
√

~2(ω − ω21)2 + 4γ2
. (14)

2If this result is not well-known to you, please derive it as follows. First note that for any non-negative
integer k, (n̂·~σ)2k = I and (n̂·~σ)2k+1 = n̂·~σ, where n̂ is a unit vector and I is the 2× 2 identity matrix.
Then, using the Taylor series definition of the matrix exponential,

exp
(

1
2 iθn̂·~σ

)

=

∞
∑

k=0

(

1
2 iθn̂·~σ

)k

k!
= I

∑

k even

(

1
2 iθ
)k

k!
+ n̂·~σ

∑

k odd

(

1
2 iθ
)k

k!
= I cos(θ/2) + in̂·~σ sin(θ/2) .

3A common mistake made by students is to neglect the fact that n̂ appearing in eq. (11) must be a unit

vector. Note that n̂ in eq. (12) is properly normalized so that n̂·n̂ = 1.
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In light of eq. (6), it follows that the relevant initial conditions are

c1(0) = c ′1(0) = 1 and c2(0) = c ′2(0) = 0 ,

and

|c1(t)|2 = |c ′1(t)|2 = |cos(θ/2) + inz sin(θ/2)|2 = cos2(θ/2) + n2
z sin

2(θ/2) ,

|c2(t)|2 = |c ′2(t)|2 = n2
x sin

2(θ/2) .

An important check of the above result is:

|c1(t)|2 + |c2(t)|2 = cos2(θ/2) + (n2
x + n2

z) sin
2(θ/2) = 1 ,

where we have used the fact that n2
x + n2

z = n2
x + n2

y + n2
z = 1, keeping in mind that ny = 0

and n̂ is a unit vector. Using the explicit forms of nx, nz and θ given in eqs. (13) and (14)
we arrive at:

|c2(t)|2 =
4γ2

4γ2 + ~2(ω − ω21)2
sin2

(

[

γ2

~2
+ 1

4
(ω − ω21)

2
]1/2

t

)

, |c1(t)|2 = 1− |c2(t)|2

(15)
Note that the initial conditions c1(0) = 1 and c2(0) = 0 are indeed satisfied.

ALTERNATIVE DERIVATION:

Starting from eq. (5), it immediately follows that

i~
d

dt

(

i~

γ
eit(ω−ω21)

dc2
dt

)

= γeit(ω−ω21) c2 .

After evaluating the derivative on the left-hand side of the above equation, the exponential
factors cancel out, resulting in

d2c2
dt2

+ i(ω − ω21)
dc2
dt

+
γ2c2
~2

= 0 .

The solution is obtained by solving the auxiliary equation:

x2 + i(ω − ω21)x+
γ2

~2
= 0 ⇒ x = −i

[

1
2
(ω − ω21)±∆

]

.

where

∆ ≡
√

γ2

~2
+ 1

4
(ω − ω21)2 . (16)

It follows that:

c2(t) = A
[

exp
{

−it
[

1
2
(ω − ω21) + ∆

]}

− exp
{

−it
[

1
2
(ω − ω21)−∆

]}]

, (17)
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after imposing the initial condition c2(0) = 0. To determine the overall coefficient, we make
use of eqs. (5) and (17) to obtain:

γ

i~
e−it(ω−ω21) c1 =

dc2
dt

= −iA
[

1
2
(ω − ω21) + ∆

]

exp
{

−it
[

1
2
(ω − ω21) + ∆

]}

+iA
[

1
2
(ω − ω21)−∆

]

exp
{

−it
[

1
2
(ω − ω21)−∆

]}

. (18)

Setting t = 0 and using c1(0) = 1, one obtains:

A =
γ

2~∆
. (19)

Thus, eqs. (17) and (9) yield:

|c2(t)|2 =
γ2

4~2∆2

[

2− 2Re
(

exp
{

−it
[

1
2
(ω − ω21) + ∆

]}

exp
{

it
[

1
2
(ω − ω21)−∆

]})]

=
γ2

4~2∆2

[

2− 2Re
(

e−2it∆
)]

=
γ2

2~2∆2
[1− cos(2t∆)]

=
γ2

~2∆2
sin2(t∆) .

Finally, we take the absolute square of eq. (18), which yields:

γ2

~2
|c1(t)|2 = A2

[

1
2
(ω − ω21) + ∆

]2
+ A2

[

1
2
(ω − ω21)−∆

]2 − 2A2
[

1
4
(ω − ω21)

2 −∆2
]

Re(e−2it∆)

= 2A2
[

1
4
(ω − ω21)

2 +∆2
]

− 2A2
[

1
4
(ω − ω21)

2 −∆2
]

cos(2t∆)

= A2(ω − ω21)
2 sin2(t∆) + 4A2∆2 cos2(t∆)

= 4A2

(

∆2 − γ2

~2

)

sin2(t∆) + 4A2∆2 cos2(t∆)

= 4A2

[

∆2 − γ2

~2
sin2(t∆)

]

,

where in the penultimate step we used (ω−ω21)
2 = 4(∆2 − γ2/~2), which follows from the

definition of ∆ [cf. eq. (16)]. Noting that 4A2 = γ2/(~2∆2) [cf. eq. (19)], we end up with

|c1(t)|2 = 1− γ2

~2∆2
sin2(t∆) = 1− |c2(t)|2 .

Thus, we have correctly reproduced the results of eq. (15).
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(b) Do the same problem using time-dependent perturbation theory to lowest nonvan-
ishing order. Compare the two approaches for small values of γ. Treat the following two
cases separately: (i) ω very different from ω21, and (ii) ω close to ω21.

Using the results of time-dependent perturbation theory, we identify cn(t) of part (a)
as:

cn(t) = 〈n|UI(t, 0)|i〉 ,
where UI(t, 0) is the time-evolution operator in the interaction representation. The first-
order perturbation theory expression for cn(t) obtained in class is:

cn(t) = δni −
i

~

∫ t

0

eiωnit′ Vni(t
′) dt′ .

Thus, to first order in perturbation theory, c1(t) ≃ 1 and

c2(t) = − i

~

∫ t

0

eiω21t′ γe−iωt′ dt′ =
γ
[

1− ei(ω21−ω)t
]

~(ω21 − ω)
.

Hence,

|c2(t)|2 =
2γ2 [1− cos(ω21 − ω)t]

~2(ω21 − ω)2
=

4γ2

~2(ω21 − ω)2
sin2

(

1
2
(ω21 − ω)t

)

. (20)

We observe that eq. (20) agrees with the exact formula obtained in eq. (15) in the limit
of γ ≪ 1

2
~|ω21 − ω|. Note that the latter inequality is never satisfied near resonance when

ω ≃ ω21. However, if ω ≃ ω21 then the exact formula, eq. (15), reduces to

|c2(t)|2 = sin2(γt/~) , for ω = ω21 .

In contrast, the corresponding first-order perturbative result exhibited in eq. (20) is:

|c2(t)|2 ≃
γ2t2

~2
, for ω = ω21 .

Thus, near the resonance, the exact result for |c2(t)|2 agrees with the first-order perturbative
result in the limit of t≪ ~/γ.

To summarize, the first-order perturbative result is a good approximation to the exact
result in the limit of a weak perturbation (which corresponds to small γ). Away from the
resonance, small γ means γ ≪ 1

2
~|ω21 − ω|, whereas near the resonance (where ω ≃ ω21)

small γ means γ ≪ ~/t. For a fixed value of γ, the latter can be satisfied only at early
times t.
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2. This problem provides a crude model for the photoelectric effect. Consider the hydrogen
atom in its ground state (you may neglect the spins of the electron and proton). At time
t = 0, the atom is placed in a high frequency uniform electric field that points in the
z-direction,

~E(t) = E0ẑ sinωt .

We wish to compute the transition probability per unit time that an electron is ejected into
a solid angle lying between Ω and Ω + dΩ.

(a) Determine the minimum frequency, ω0, of the field necessary to ionize the atom.

The minimum frequency, ω0, of the field necessary to ionize the atom is equal to the
ionization energy divided by ~. The ionization energy of the ground state of hydrogen is
equal to the negative of the bound state energy, and is given by 1 Ry = 13.6 eV. That is,

ω0 =
me4

2~3
. (21)

(b) Using Fermi’s golden rule for the transition rate at first-order in time-dependent
perturbation theory, obtain an expression for the transition rate per unit solid angle as a
function of the polar angle θ of the ejected electron (measured with respect to the direction
of the electric field).

The perturbing Hamiltonian is given by:

H(1)(t) = ezE0 sinωt =
ezE0
2i

(

eiωt − e−iωt
)

. (22)

Fermi’s golden rule for the transition rate for the absorption of energy due to the harmonic
perturbation given in eq. (22) is given by:

Γa→b(t) =
2π

~

∣

∣

〈

b(0)
∣

∣

1
2
ezE0

∣

∣a(0)
〉
∣

∣

2
ρ(E

(0)
b ) , (23)

where ρ(E
(0)
b ) is the density of states of the ionized electron. The state

∣

∣a(0)
〉

is the unper-
turbed wave function for the ground state of hydrogen,

∣

∣a(0)
〉

= Ψ100(r) =
1

(πa30)
1/2

e−r/a0 , a0 ≡
~
2

me2
.

The state
∣

∣b(0)
〉

is the unperturbed wave function for the ionized wave function. This
wave function is actually quite complicated, since one cannot really neglect the effects of
the long-range Coulomb potential. Nevertheless, we shall simplify the computation by
assuming the wave function of the ejected electron is a free-particle plane wave, with wave
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number vector ~k, where the direction of ~k corresponds to that of the ejected electron. That

is,
∣

∣b(0)
〉

= ei
~k ·~x/

√
V . Taking the hermitian conjugate yields,

〈

b(0)
∣

∣ =
1√
V
e−i~k·~x .

Note that we have normalized the free-particle plane wave by placing the system in a very
large box of volume V . Imposing periodic boundary conditions, the possible values of ~k
are quantized as discussed in class. This will be convenient since we can later use the
expression derived in class for the free-particle density of states.

We are now ready to compute the matrix element,
〈

b(0)
∣

∣

1
2
ezE0

∣

∣a(0)
〉

. Employing spher-
ical coordinates, z = r cos θ and

〈

b(0)
∣

∣

1
2
ezE0

∣

∣a(0)
〉

=
eE0

2(V πa30)
1/2

∫ ∞

0

dr′ r′ 3e−r′/a0

∫

dΩ ′e−i~k ·~x ′

cos θ′ . (24)

In order to perform this integral, we make use of the expansion of the exponential in terms
of spherical harmonics:

ei
~k·~x ′

= 4π
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

iℓjℓ(kr
′)[Y m

ℓ (θ′, φ′)]∗Y m
ℓ (θ, φ) , (25)

where the vector ~x ′ points in a direction with polar and azimuthal angles θ′, φ′ with respect
to a fixed z-axis, and the vector ~k points in a direction with polar and azimuthal angles
θ, φ with respect to a fixed z-axis. Taking the complex conjugate of eq. (25) and inserting
the result into eq. (24) yields:

〈

b(0)
∣

∣

1
2
ezE0

∣

∣a(0)
〉

=
4πeE0

2(V πa30)
1/2

∞
∑

ℓ=0

iℓ
∫ ∞

0

dr′ r′ 3e−r′/a0jℓ(kr
′)

ℓ
∑

m=−ℓ

[Y m
ℓ (θ, φ)]∗

∫

dΩ′ cos θ′ Y m
ℓ (θ′, φ′) .

(26)
Noting that we can write:

cos θ′ =

(

4π

3

)1/2

[Y 0
1 (θ

′, φ′)]∗ ,

the integration over solid angles in eq. (26) can be immediately performed:
∫

dΩ ′ cos θ′ Y m
ℓ (θ′, φ′) =

(

4π

3

)1/2 ∫

dΩ ′ cos θ′ Y m
ℓ (θ′, φ′)[Y 0

1 (θ
′, φ′)]∗ =

(

4π

3

)1/2

δℓ1δm0 ,

(27)
where we have used the orthogonality relations of the spherical harmonics,

∫

dΩY m
ℓ (Ω) [Y m′

ℓ′ (Ω)]∗ = δℓℓ′δmm′ . (28)

Inserting eq. (27) back into eq. (26) collapses both the sums over m and ℓ, respectively.

Only the ℓ = 1, m = 0 term of the sums survives. Thus, using Y 0
1 (θ, φ) =

(

3
4π

)1/2
cos θ,

eq. (27) reduces to:

〈

b(0)
∣

∣

1
2
ezE0

∣

∣a(0)
〉

=
2πieE0 cos θ
(V πa30)

1/2

∫ ∞

0

dr r3e−r/a0

(

sin kr

k2r2
− cos kr

kr

)

,

8



where we have used j1(y) = (sin y − y cos y)/y2. (For notational convenience, I have now
dropped the primes on the integration variable r.) My integral tables provide the following
results:4

∫ ∞

0

r e−r/a0 sin kr dr =
2ka30

(1 + k2a20)
2
,

∫ ∞

0

r2 e−r/a0 cos kr dr =
2a30(1− 3k2a20)

(1 + k2a20)
3

.

Thus,
∫ ∞

0

dr r3e−r/a0

(

sin kr

k2r2
− cos kr

kr

)

=
8ka50

(1 + k2a20)
3
.

Hence, it follows that:

〈

b(0)
∣

∣

1
2
ezE0

∣

∣a(0)
〉

= 16ieE0 cos θ
(

πa50
V

)1/2
ka0

(1 + k2a20)
3
.

We are now ready to compute the transition rate. Using the density of states derived
in class,

ρ(E) =
V m~k

(2π~)3
dΩ ,

the transition rate [see eq. (23)] is given by:

Γa→b =
2π

~

V m~k

(2π~)3
dΩ

(

256πe2E2
0a

5
0 cos

2 θ

V

)

(ka0)
2

(1 + k2a20)
6
.

Simplifying the above result, and noting that me2/~2 = 1/a0, we end up with:

dΓa→b

dΩ
=

64E2
0a

3
0 cos

2 θ

π~

(ka0)
3

(1 + k2a20)
6

The factors of the volume V have canceled out, which indicates that the transition rate for
ionization is a physical quantity.

Fermi’s golden rule also imposes energy conservation. The initial energy is the ground
state energy of hydrogen, which is given by E

(0)
a = −~ω0, as noted in part (a). The final

state energy is E
(0)
b = ~

2k2/(2m). Since this is an absorption process, a quantum of energy
~ω from the harmonic perturbation must account for the energy difference between the
final and initial state energies. Therefore,

~ω =
~k2

2m
+ ~ω0 .

4For simple integrals, my reference table of choice is H.B. Dwight, Table of Integrals and other Mathe-

matical Data (Macmillan Publishing Co., Inc., New York, 1961).
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Solving for k2, we can write:

k2a20 =
2ma20
~

(ω − ω0) =
2~3

me4
(ω − ω0) =

ω − ω0

ω0

,

where we have used the definition of the Bohr radius, a0 ≡ ~
2/(me2), and the results of

part (a). Thus, we can rewrite the differential transition rate for ionization as:

dΓa→b

dΩ
=

64E2
0a

3
0

π~

(ω0

ω

)6
(

ω

ω0
− 1

)3/2

cos2 θ

Note that as ω0 is the minimum frequency of the field necessary to ionize the hydrogen
atom, it follows that ω ≥ ω0.

(c) Integrate the result of part (b) over all solid angles to obtain the total ionization
rate as a function of the frequency of the field. Determine the value of ω [in terms of ω0

obtained in part (a)] for which the total ionization rate is maximal.

Integrating over solid angles [using
∫

dΩcos2 θ = 4π/3], we find that the total ionization
rate is given by:

Γa→b =
256E2

0a
3
0

3~

(ω0

ω

)6
(

ω

ω0

− 1

)3/2

Note that the ionization rate approaches zero both in the limit of ω → ω0 and in the limit
of ω → ∞. Moreover, the ionization rate (which is a physical observable) must be non-
negative for ω0 ≤ ω < ∞. Thus, there must be some value of ω in the range ω0 ≤ ω < ∞
for which the ionization rate is maximal. To find this value of ω, take the derivative of the
expression above with respect to ω and set it to zero. Thus, we solve:

− 6

ω7

(

ω

ω0

− 1

)3/2

+
3

2ω6ω0

(

ω

ω0

− 1

)1/2

= 0 .

This can be easily simplified, and one finds that the the above equation is satisfied for
only one value, ω = 4

3
ω0. We conclude that at this frequency, the ionization rate must be

maximal.5

5Of course, one can also verify this by computing the sign of the second derivative.
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3. Consider the spontaneous emission of an E1 photon by an excited atom. The magnetic
quantum numbers (m andm′) of the initial and final atomic state are measured with respect
to a fixed z-axis. Suppose the magnetic quantum number of the atom decreases by one
unit.

(a) Compute the angular distribution of the emitted photon.

The transition rate for spontaneous E1 emission is given by:

dΓif

dΩ
=

e2ω3

2π~c3

∑

λ

|~dif ·~ǫ
∗
λ |2 , where ~dif = 〈f |~x|i〉 .

The sum over polarizations can be performed by computing:

∑

λ

|~dif ·~ǫ
∗
λ |2 = (dif)i(d

∗
if)j

∑

λ

(ǫ∗λ)i(ǫλ)j = (dif)i(d
∗
if )j

(

δij −
kikj
k2

)

= ~dif ·
~d ∗
if −

(~dif ·
~k)(~d ∗

if ·
~k)

k2
, (29)

where there is an implicit sum over the repeated indices i and j above. Thus,

dΓif

dΩ
=

e2ω3

2π~c3

(

~dif ·
~d ∗
if −

(~dif ·
~k)(~d ∗

if ·
~k)

k2

)

. (30)

We shall denote the initial state by |i〉 = |j m〉 and |f〉 = |j′m− 1〉. The z-axis in this
problem is the quantization axis which is used to define the magnetic quantum numbers of
the atomic states. (Other attributes of the atomic states are suppressed.)

We can evaluate he non-zero components of ~dif with the help of the Wigner-Eckart

theorem, which states that the matrix elements of a spherical tensor T
(k)
q with respect to

definite angular momentum states must satisfy6

〈j′m′|T (k)
q |j m〉 = 0 if m′ 6= q +m. (31)

One can apply this result to the matrix elements of ~x by recognizing the latter as a
spherical tensor of rank-one. That is, certain linear combinations of the components of
~x ≡ (x, y, z) = r(sin θ′ cos φ′, sin θ′ sinφ′, cos θ′) are proportional to the components of the
rank-one spherical tensor rY1M(θ′, φ′), for M = +1, 0,−1. In particular,

rY10(θ
′, φ′) =

√

3

4π
z , rY1,±1(θ

′, φ′) = ∓
√

3

8π
(x± iy) . (32)

6Eq. (31) can be interpreted as saying that the the spherical tensor T
(k)
q imparts angular momentum

when acting on a state. Conservation of the z-component of angular momentum then requires that m′ =

q+m. If this is not satisfied, then the states |j′ m′〉 and T
(k)
q |j m〉 are orthogonal states, in which case the

matrix element given in eq. (31) vanishes.
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Eq. (31) implies that if m′ = m − 1, then 〈j′m − 1|T (1)
q |j m〉 = 0 if q = 0,+1. Using

eq. (32), we therefore conclude that:

(dif )z = 0 , (dif)x + i(dif)y = 0 . (33)

Hence, it follows that ~dif must have the following form:

~dif = d(1 , i , 0) (34)

where d is some (complex) constant. Writing ~k = k(sin θ cosφ, sin θ sinφ, cos θ), where the
polar angle θ and the azimuthal angle φ measure the direction of the emitted photon with
respect to the z-axis, it follows that

~dif ·
~k = keiφ sin θ . (35)

Inserting eqs. (34) and (35) into eq. (30) then yields:7

dΓif

dΩ
=
e2ω3|d|2
2π~c3

(1 + cos2 θ)

That is, the angular distribution of the emitted photon is proportional to 1 + cos2 θ.

ADDED NOTE: The derivation of eq. (34) given above is very simple, as it follows
immediately from eq. (31). If one ignores spin, then one can also derive eq. (34) by explicitly
evaluating

~dif = 〈ℓ ′ , m− 1|~x |ℓm〉 =
∫

~xY ∗
ℓ ′ m−1(Ω) Yℓm(Ω) dΩ .

It is convenient to express ~x as a rank-one spherical tensor, rY1M(Ω), as in eq. (32). Then,
one must compute:

∫

Y ∗
ℓ ′ m−1(Ω) Yℓm(Ω) Y1M(Ω) dΩ =

√

3(2ℓ+ 1)

4π(2ℓ ′ + 1)
〈ℓm; 1M |ℓ ′m− 1〉〈ℓ 0; 1 0|ℓ ′ 0〉 ,

where we have used eq. (17-36) on p. 365 of Baym and the orthogonality relation of the
spherical harmonics [cf. eq. (28)]. We immediately notice that conservation of Lz yields:

〈ℓm; 1M |ℓ ′m− 1〉 = 0 , if M = 0,+1 ,

which implies that only the M = −1 component of ~dif (when expressed as a spherical
rank-one tensor) is non-vanishing. This result immediately implies eq. (33) and it then

follows that ~dif = d(1 , i , 0). In this calculation, we can explicitly evaluate the constant d
in terms of non-vanishing Clebsch-Gordon coefficients:

d =

√

2(2ℓ+ 1)

(2ℓ ′ + 1)
〈ℓm; 1 ,−1|ℓ ′m− 1〉〈ℓ 0; 1 0|ℓ ′ 0〉 〈f |r|i〉 ,

7Using eqs. (34) and (35), ~dif ·
~d ∗
if − (~dif ·

~k)(~d ∗
if ·

~k)/k2 = |d|2(2− sin2 θ) = |d|2(1 + cos2 θ).
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where 〈f |r|i〉 is the remaining radial integral (which is independent of the angular mo-
mentum quantum numbers m and m′ of the initial and final atomic state). Note that
〈ℓ 0; 1 0|ℓ ′ 0〉 = 0 if |ℓ − ℓ ′| 6= 1, so that one must only consider the two cases where
ℓ ′ = ℓ ± 1.8 To make further progress, one would have to know the details of the atomic
wave functions in order to evaluate 〈f |r|i〉. However, it is not necessary to evaluate the
constant d to answer any of the questions posed in this problem.

(b) Determine the polarization of the photon emitted in the z-direction.

Define the following (complex) orthonormal set of vectors: {ê1, ê2, ê3}, where ê3 ≡ k̂.
Any complex three-vector can be expanded in terms of this orthonormal set. In particular,

~dif = (dif)1ê1 + (dif)2ê2 + (dif)3ê3 .

Since k̂·~ǫ
∗
λ = 0, it follows that:

~dif ·~ǫ
∗
λ = [(dif)1ê1 + (dif )2ê2] ·~ǫ ∗

λ ≡ (~dif)⊥ ·~ǫ ∗
λ ,

where (~dif)⊥ is the component of ~dif that is perpendicular to ~k. It then follows that ~ǫλ is

proportional to (~dif )⊥.

Applying this result to the present problem, we note that if ~k = kẑ, then eq. (34) yields:

(~dif)⊥ = ~dif = d(1 , i , 0) . Hence, the polarization vector of the outgoing photon is:

~ǫ ∝ (~dif )⊥ =
−1√
2
(1 , i , 0) = ~ǫL .

That is, the photon emitted in the ẑ-direction is left-circularly polarized (in the optics
convention). It is easy to check that a right circularly polarized photon, ~ǫR = 1√

2
(1 , −i , 0)

does not contribute, since ~dif ·~ǫ
∗
R = 0.

(c) Verify that the result of part (b) is consistent with angular momentum conservation
for the whole (atom plus photon) system.

In the optic convention adopted in part (b), a left-circularly polarized photon traveling in
the ẑ-direction carries away orbital angular momentum Lz = +~, whereas a right-circularly
polarized photon traveling in the ẑ-direction carries away orbital angular momentum Lz =
−~. We have shown in parts (a) and (b) that if the initial atomic state has Lz = m~

and the final atomic state has Lz = (m− 1)~, then the photon emitted in the ẑ-direction
is left-circularly polarized. Thus, we see that Lz is conserved, since m~ = (m − 1)~ + ~ ,
i.e. the photon emitted in the z-direction carries away orbital angular momentum Lz = +~.

8The fact that ~dif = 0 if ℓ ′ = ℓ also follows from parity considerations, since ~x is a parity-odd operator,
whereas the state |ℓm〉 is an eigenstate of parity with eigenvalue (−1)ℓ.
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4. Consider the elastic scattering of photons off electrons in atoms, assuming that the
incident photon energies are large compared to the atomic binding energies. However, you
should assume that the photon wavelength is still substantially larger than a typical atomic
radius.

(a) Using the quantum theory of radiation, argue that the ~A field operator must occur
at least twice in the matrix element in order that there be a non-zero contribution in
perturbation theory.

The quantized electromagnetic vector potential is given by:

~A(~x, t) =

(

2π~c2

V

)1/2
∑

~k,λ

1√
ωk

[

~ǫλ e
i~k ·~x−iωt a~k,λ +~ǫ ∗

λ e
−i~k ·~x+iωt a†~k,λ

]

, (36)

where a†~k,λ creates one photon in the mode (~k, λ) and a~k,λ annihilates one photon in the

mode (~k, λ). The process of interest for this problem is the elastic scattering:

γ(~k, λ) + e− −→ γ(~k
′
, λ′) + e− , (37)

where |~k| = |~k ′| ≡ k. The latter implies that ωk = ωk′ = kc. Since eq. (37) implies that

one photon in the mode (~k, λ) is annihilated and one photon in the mode (~k
′
, λ′) is created,

the ~A-field operator must appear at least twice in the matrix element that is evaluated
using Fermi’s Golden Rule (one time is not enough). To see why this is true, note that the
relevant matrix element is of the form

〈f ; 1~k ′,λ′ , 0~k,λ|Hint|i ; 0~k ′,λ′ , 1~k,λ〉 , (38)

where |i〉 is the initial state of the electron and |f〉 is the final state of the electron. Note

that we have specified explicitly the photon occupation numbers for the modes (~k, λ) and

(~k
′
, λ′). All other photon modes [which are suppressed in eq. (38)] are absent and thus their

photon occupation numbers are zero. Thus, the only way for the matrix element exhibited
in eq. (38) to be non-zero is if Hint contains the terms a†~k ′,λ′

a~k,λ and/or a~k,λa
†
~k ′,λ′

. That is,9

〈1~k ′,λ′ , 0~k,λ|a
†
~k ′,λ′

a~k,λ|0~k ′,λ′ , 1~k,λ〉 = 1 , (39)

〈1~k ′,λ′ , 0~k,λ|a~k,λa†~k ′,λ′
|0~k ′,λ′ , 1~k,λ〉 = 1 , (40)

while all other matrix elements vanish if the operators that appear consist of other combi-
nations of a and a† taken either singly or in pairs. We conclude that Hint must contain ~A

exactly twice.

9Recall that the commutation relations for the creation and annihilation operators are:

[a~k,λ , a
†
~k ′,λ′

] = δ~k~k ′δλλ ′ .

Thus, for ~k 6= ~k ′, it follows that a~k,λa
†

~k ′,λ′
= a†

~k ′,λ′
a~k,λ.
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(b) Treating the quadratic ~A· ~A term in the interaction Hamiltonian to first order in
perturbation theory, compute the differential cross-section in the dipole approximation.
Show that:

dσ

dΩ
= r20|~ǫλ ·~ǫ ∗

λ′ |2 ,

where r0 ≡ e2/(mc2) is the classical radius of the electron.

The interaction Hamiltonian is given by

Hint = −e
c

∫

d3r~j(~r)· ~A(~r, t) +
e2

2mc2

∫

d3r ρ(~r) ~A 2(~r, t) ,

where

ρ(~r) = δ3(~r − ~x) , ~j(~r) =
1

2m

[

~p δ3(~r − ~x) + δ3(~r − ~x) ~p
]

.

To first order in perturbation theory, only the ~A 2 term of the interaction Hamiltonian
contributes a non-zero result to the matrix element given by eq. (38). Using Fermi’s Golden
rule, it follows that

Γ
(1)
if =

2π

~
|〈f |Hint|i〉|2δ(Ef − Ei) ,

where the superscript (1) indicates that this is a first-order perturbation theory result. The
initial and final energies are given by:

Ei = Ee + ~ω , Ef = Ee + ~ω ′ ,

where Ee is the electron energy10 and ~ω and ~ω ′ are the initial and final state photon
energies. Thus,

Γ
(1)
if =

2π

~

(

e2

2mc2

)2
∣

∣

∣
〈e−f , 1~k ′,λ′ , 0~k,λ| ~A 2(~x, t)|e−i , 0~k ′,λ′ , 1~k,λ〉

∣

∣

∣

2

δ(~ω ′ − ~ω) . (41)

As noted in part (a), only the a†~k ′,λ′
a~k,λ and the a~k,λa

†
~k ′,λ′

cross-terms arising from ~A· ~A

contribute to the matrix element above. In detail, inserting the expansion for the quantized
vector potential [cf. eq. (36)] yields only one non-zero term:

〈1~k ′,λ′ , 0~k,λ| ~A 2(~x, t)|0~k ′,λ′ , 1~k,λ〉 = 2· 2π~c2

V
√
ωω ′

~ǫλ ·~ǫλ′ 〈1~k ′,λ′ , 0~k,λ|a
†
~k ′,λ′

a~k,λ|0~k ′,λ′ , 1~k,λ〉

×〈e−f |ei(
~k−~k ′)·~x e−i(ω−ω ′)t|e−i 〉

=
4π~c2

ωV
~ǫλ ·~ǫλ′〈e−f |ei(

~k−~k ′)·~x|e−i 〉 , (42)

where we have used the fact that the energy-conserving delta function in eq. (41) sets
ω ′ = ω. Note that an overall factor of 2 in eq. (42) has been included since the matrix

10In the case of elastic scattering, the initial and final state electron energies are the same. That is, the
photon scatters elastically off the electron without altering the atomic state.
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elements of a†~k ′,λ′
a~k,λ and a~k,λa

†
~k ′,λ′

yield the same result if ~k 6= ~k ′ [as shown in eqs. (39)

and (40)]. Therefore, eq. (41) yields:

Γ
(1)
if =

2π

~2

(

e2

2mc2

)2(
4π~c2

ωV

)2

|~ǫλ ·~ǫλ′|2 |〈e−f |ei(
~k−~k ′)·~x|e−i 〉|2 δ(ω ′ − ω) ,

after noting that δ(~ω ′ − ~ω) = ~
−1δ(ω ′ − ω).

The problem states that we may assume that the photon wavelength is substantially
larger than a typical atomic radius. This means that we can work in the dipole approxi-
mation, in which case

ei(
~k−~k ′)·~x ≃ 1 .

Since |i〉 and |f〉 represent the same normalized atomic states (since the electron energy is
unchanged in the elastic scattering), it follows that 〈f |i〉 = 1. Hence,

Γ
(1)
if =

2π

~2

(

e2

2mc2

)2(
4π~c2

ωV

)2

|~ǫλ ·~ǫλ′|2 δ(ω ′ − ω) . (43)

We are now in position to compute the cross section,

σif =

∑

f

Γif

incident flux
. (44)

Since the incident photon has velocity c, the incident flux is given by c/V . The sum over

final states f is a sum over the outgoing photon momenta ~k ′. Taking the infinite volume
limit, we may take

∑

~k ′

−→ V

(2π)3

∫

k ′ 2dk ′dΩ =
V

(2πc)3

∫

ω ′ 2dω ′ dΩ ,

where we have used ω ′ = k ′c. Inserting eq. (43) into eq. (44) and taking the infinite volume
limit,

σλ λ ′ =
2π

~2

(

e2

2mc2

)2(
4π~c2

ωV

)2 (
V

c

)

|~ǫλ ·~ǫλ′ |2 V

(2πc)3

∫

ω ′ 2 dω ′dΩ δ(ω ′ − ω) .

As expected, the volume factors cancel out. The integral over ω ′ is trivial (it just enforces
energy conservation). Hence, we end up with:

dσλλ ′

dΩ
=

(

e2

mc2

)2

|~ǫλ ·~ǫλ′ |2 .

Denoting the classical radius of the electron by r0 ≡ e2/(mc2), the differential cross-section
can be written as:

dσ

dΩ
= r20|~ǫλ ·~ǫ ∗

λ′ |2 (45)
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BONUS MATERIAL:

Proof that the second order perturbative contribution to the transition rate
is negligible compared to the first-order transition rate

At second order in perturbation theory, the~j · ~A term of the interaction Hamiltonian also
yields a non-zero contribution to the transition rate. However, if the energy of the incident
photon is large compared to the electron energy, then the ~A· ~A term of the interaction
Hamiltonian, taken at first order in the perturbation expansion, will dominate the second
order contribution due to the ~j · ~A term.

To verify this assertion, consider the second-order version of Fermi’s Golden Rule. The
the transition rate at second order in perturbation theory is given by:

Γ
(2)
if =

2π

~

∣

∣

∣

∣

∣

∑

k

〈f |Hint|k〉〈k|Hint|i〉
Ei − Ek + iǫ

∣

∣

∣

∣

∣

2

δ(Ef − Ei) .

Thus, it follows that:

Γ
(2)
if =

2π

m2~

∣

∣

∣

∣

∣

∑

k

〈e−f , 1~k ′,λ′ , 0~k,λ|~p· ~A(~x, t)|k〉〈k|~p· ~A(~x, t)|e−i , 0~k ′,λ′ , 1~k,λ〉
Ee + ~ω − Ek + iǫ

∣

∣

∣

∣

∣

2

.

We can compare the magnitudes of the first-order and second-order contributions to the
transition rates by employing the following estimates. In light of eq. (36), we shall replace
~A with

2m~c2

(ωV )1/2
~ǫλ .

Hence, the first-order transition rate behaves as,

Γ(1) ∼ 2π

~

(

e2

2mc2

)2(
2π~c2

ωV

)2

|~ǫλ ·~ǫ ∗
λ′ |2δ(Ef − Ei) ,

To estimate the second-order transition rate, we approximate Ee+~ω−Ek+ iǫ ≃ ~ω, since
the photon energy is by assumption much larger than the electron energy. The sum over
intermediate states can now be performed using completeness. Thus, we estimate:

Γ(2) ∼ 2π

m2~

(

e2

2mc2

)2(
2π~c2

ωV

)2 |(~p·~ǫλ)(~p·~ǫ ∗
λ′)|2

~2ω2
δ(Ef − Ei) .

Thus, roughly we have:
Γ(2)

Γ(1)
∼ Ee

Eγ
≪ 1 ,

in terms of the electron energy Ee = ~p 2/(2m) and the photon energy Eγ = ~ω. By
assumption, the former is much smaller than the latter. Therefore in this limit, we expect
the first-order perturbative contribution to the transition rate to be the dominant one.
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(c) Compute the total cross-section, assuming that the initial photon beam is unpolar-
ized and the polarization of the final state photon is not measured.

Assuming that the initial and final photons are unpolarized, we average over the initial
polarizations and sum over the final polarizations. Thus

dσunpol
dΩ

= 1
2

∑

λλ ′

dσλλ ′

dΩ
. (46)

Using the polarization sum formula,

∑

λ

[ǫ∗λ(~k)]i[ǫλ(~k)]j = δij −
kikj
k2

,

it follows that

1
2

∑

λλ ′

|~ǫλ ·~ǫ ∗
λ′ |2 = 1

2

(

δij −
kikj
k2

)(

δij −
k ′
ik

′
j

k ′ 2

)

=
1

2

[

1 +
(~k·~k ′)2

k2k ′ 2

]

= 1
2
(1 + cos2 θ) , (47)

where θ is the angle between ~k and ~k ′. In deriving eq. (47), we noted for example that:
δijδij = δii = 3 (where there is an implicit sum over repeated indices, which run over the

values 1,2,3), δijkikj = k2, and δijkik
′
j =

~k·~k ′ = kk ′ cos θ. Hence, eqs. (45) and (46) yield:

dσunpol
dΩ

= 1
2
r20(1 + cos2 θ) .

Integrating over solid angles,

∫

dΩ (1 + cos2 θ) = 2π

∫ 1

−1

d cos θ (1 + cos2 θ) =
16π

3
.

Hence, the total unpolarized cross-section is given by:

σunpol =
8πr20
3

This is called the Thomson cross-section. Although the energies of the atomic electrons
were taken to be negligible as compared with the photon energies, we still assumed that
the photon wavelength was long compared to typical atomic scales. Thus, the Thomson
cross-section is a long-wavelength limit of photon scattering.
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5. Consider a non-interacting gas of N fermions that occupies a cubical box of volume V .
Assume that V and N are macroscopically large. Let Ψs(~x) be the field operator that
annihilates a fermion of spin orientation s at position ~x. The particle number density
operator is given by

n(~x) =
∑

s

Ψ†
s(~x)Ψs(~x) , (48)

and the total number operator is N =
∫

d3xn(~x) . The Fourier transform of the number
density operator is defined by

n~q =

∫

d3xn(~x) e−i~q ·~x .

(a) Show that n~q can be expressed in terms of fermion creation and annihilation oper-
ators as follows:

n~q =
∑

~k

∑

s

a†~k,sa~k+~q , s
.

The field operators Ψs(~x) and Ψ†
s(~x) are given by

Ψs(~x) =
∑

~k

ei
~k ·~x

√
V
a~k,s , Ψ†

s(~x) =
∑

~k

e−i~k ·~x

√
V

a†~k,s .

We have taken space to be a cubical box of length L ≡ V 1/3 and volume V and imposed
periodic boundary conditions, so that the possible discrete value of ~k are given by

~k =
2π~n

V 1/3
,

where ~n = (nx, ny, nz) is a vector of integer values. The creation and annihilation operators
satisfy anticommutation relations,

{a~k,s , a
†
~k

′

,s′
} = δ~k~k ′ δss′ . (49)

The density operator defined in eq. (48) is therefore given by

n(~x) =
∑

~k

∑

~k
′

∑

s

ei~x·(~k−~k
′

)

V
a†
~k

′

,s
a~k,s . (50)

The Fourier transform of n(~x) is given by

n~q =

∫

d3xn(~x)e−i~q ·~x . (51)

Plugging in for n(~x) above using eq. (50) then yields

n~q =
1

V

∑

~k

∑

~k
′

∑

s

a†
~k

′

,s
a~k,s

∫

d3x ei~x·(~k−~k
′−~q) .
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The above integral is easily evaluated using

∫

d3x ei~x·(~k−~k
′−~q) = δ~k ,~k

′

+~q
,

and we end up with

n~q =
∑

~k

∑

s

a†~k,sa~k+~q , s , (52)

as required.

(b) The static structure function for non-interacting fermions is defined as:

S0(~q ) ≡ 1

N
〈Φ0| n~q n−~q |Φ0〉 , (53)

where |Φ0〉 is the N -particle ground state of the fermion gas (cf. Baym pp. 424–425).
Evaluate S0(~q ) explicitly in the continuum limit.

We consider separately the cases ~q = 0 and ~q 6= 0. First, in the case of ~q = 0 we note
that eqs. (51) and (52) yield

n
~q=0

=

∫

d3xn(~x) =
∑

~k

∑

s

a†~k,sa~k,s =
∑

~k

∑

s

N~k,s = N , (54)

where N is the total number operator. Moreover, |Φ0〉 is an eigenstate of N whose eigen-
value is equal to the number of fermions in the ground state, N . That is,

N |Φ0〉 = N |Φ0〉 . (55)

Since |Φ0〉 is a normalized state, i.e. 〈Φ0|Φ0〉 = 1, it immediately follows from eqs. (53)–(55)
that

S0(~q = 0) =
1

N
〈Φ0| N 2 |Φ0〉 = N . (56)

Next, we consider the case of ~q 6= 0. Using eq. (52),

S0(~q) =
1

N

∑

~k

∑

s

∑

~k
′

∑

s′

〈Φ0| a†~k,sa~k+~q , sa
†
~k

′

,s′
a~k ′−~q , s′

|Φ0〉 .

Note that a†
~k

′

,s′
a~k ′−~q , s′

|Φ0〉 is a state where one fermion with wave number ~k
′− ~q and spin

s′ is removed from the ground state of the N -fermion system and one fermion with wave
number ~k

′

and spin s′ is added. If 〈Φ0| a†~k,sa~k+~q , sa
†
~k

′

,s′
a~k ′−~q , s′

|Φ0〉 6= 0, then the state

a†
~k

′

,s
a~k ′−~q , s′

|Φ0〉 must not be orthogonal to the state a†~k+~q , s
a~k,s |Φ0〉, which corresponds to

a state with one fermion with wave number ~k and spin s removed and one fermion with
wave number ~k + ~q and spin s added.
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However, the states a†
~k

′

,s′
a~k ′−~q , s′

|Φ0〉 and a†~k+~q , s
a~k,s |Φ0〉 are orthogonal unless the fol-

lowing three conditions are satisfied:

(i) ~k = ~k
′− ~q , (ii) ~k + ~q = ~k

′

, (iii) s = s′ .

Note that conditions (i) and (ii) are consistent. We conclude that

〈Φ0| a†~k,sa~k+~q , sa
†
~k

′

,s′
a~k ′−~q , s′

|Φ0〉 = δ~k ,~k
′−~q
δss′ 〈Φ0| a†~k,sa~k+~q , sa

†
~k+~q , s

a~k,s |Φ0〉 . (57)

To simplify eq. (57), we shall employ the anticommutation relations given in eq. (49). Since

~q 6= 0 by assumption, it follows that ~k 6= ~k + ~q. Hence,

a†~k,sa~k+~q , sa
†
~k+~q , s

a~k,s = −a†~k,sa~k+~q , sa~k,sa
†
~k+~q , s

= +a†~k,sa~k,sa~k+~q , sa
†
~k+~q , s

= a†~k,sa~k,s

[

1− a†~k+~q , s
a~k+~q , s

]

= N~k,s

(

1−N~k+~q , s

)

, (58)

where we have introduced the number operators at the last step,

N~k,s ≡ a†~k,sa~k,s , N~k+~q , s ≡ a†~k+~q , s
a~k+~q , s .

Using eqs. (57) and (58), it follows that

S0(~q) =
1

N

∑

~k

∑

s

〈Φ0|N~k,s

(

1−N~k+~q , s

)

|Φ0〉 . (59)

In light of eqs. (54) and (55),

∑

~k,s

〈Φ0|N~k,s |Φ0〉 = 〈Φ0| N |Φ0〉 = N .

Hence, we can rewrite eq. (59) as

S0(~q) = 1− 1

N

∑

~k,s

〈Φ0|N~k,sN~k+~q , s |Φ0〉 . (60)

In order to evaluate the matrix element given in eq. (60), recall that the Fermi momen-
tum kf is defined such that

n~k,s ≡ 〈Φ0|N~k,s |Φ0〉 = Θ(kf − k) =

{

1 , if k < kf ,

0 , if k > kf ,
(61)

where k ≡ |~k|, and Θ(kf − k) is the step function. Applying eqs. (54) and (55), we sum
eq. (61) over all modes to obtain,

N = 〈Φ0| N |Φ0〉 =
∑

~k

∑

s

〈Φ0|N~k,s |Φ0〉 =
∑

~k

∑

s

Θ(kf − k) . (62)
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We shall evaluate sums over the discrete modes {~k, s} by taking the continuum limit,

∑

~k,s

−→ 2
V

(2π)3

∫

d3k , (63)

where the factor of 2 above corresponds to the two possible spin orientations, s = ±1
2
.

Applying the continuum limit in eq. (62), it follows that

N = 2
V

(2π)3

∫

Θ(kf − k) d3k = 2
V

(2π)3
· 4π

∫ kf

0

k2fdkf =
V k3f
3π2

, (64)

where the integral has been evaluated using spherical coordinates. Note that eq. (64) yields

kf =

(

3π2N

V

)1/3

. (65)

Similarly, employing eqs. (63) and (61), it follows that

∑

~k

∑

s

〈Φ0|N~k,sN~k+~q , s |Φ0〉 = 2
V

(2π)3

∫

Θ(kf − k) Θ(kf − |~k + ~q |) d3k . (66)

Thus, to evaluate eq. (60), we focus on the integral,

I(kf , q) ≡
∫

Θ(kf − k) Θ(kf − |~k + ~q |) d3k . (67)

The integral I(kf , q) can be interpreted geometrically as the volume of the overlapping
region of two spheres of radius kf , one centered at the origin and the other centered at −~q.
In particular, one must determine the range of integration in which the two step functions
are simultaneously non-zero. A direct evaluation of I(kf , q) can be found in the Appendix.
Here, we shall employ an alternative technique that makes use of the relation between the
step function and the delta function,

d

dkf
Θ(kf − k) = δ(kf − k) . (68)

We can use eq. (68) to evaluate the derivative of I(kf , q) with respect to kf ,

∂

∂kf
I(kf , q) ≡

∫

δ(kf − k) Θ(kf − |~k + ~q |) d3k +
∫

Θ(kf − k) δ(kf − |~k + ~q |) d3k .

In the second integral above, we can change the integration variable to ~k
′

= ~k + ~q. The
second integral above then becomes

∫

δ(kf − k′) Θ(kf − |~k ′− ~q |) d3k′
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Since ~k
′

is an integration variable, we can simply rename it ~k, in which case it follows that

∂

∂kf
I(kf , q) =

∫

δ(kf − k)
[

Θ(kf − |~k + ~q |) + Θ(kf − |~k− ~q |)
]

d3k .

We can evaluate the above integral in spherical coordinates. We choose a coordinate
system such that ~k·~q = kq cos θ. Then after performing the free integral over the azimuthal
angle,

∂

∂kf
I(kf , q) = 2π

∫ 1

−1

d cos θ

∫ ∞

0

k2 dk δ(kf − k)

×
[

Θ

(

kf −
√

k2 + q2 + 2qk cos θ

)

+Θ

(

kf −
√

k2 + q2 − 2qk cos θ

)]

.

In fact, the two step functions contribute equally, since one can simply redefine the inte-
gration variable cos θ → − cos θ in the second term above. Hence,

∂

∂kf
I(kf , q) = 4π

∫ 1

−1

d cos θ

∫ ∞

0

k2 dk δ(kf − k) Θ

(

kf −
√

k2f + q2 − 2qkf cos θ

)

. (69)

Note that we have set k = kf inside the square root factor in eq. (69) due to the presence
of the delta function. The integration over k is now trivial due to the presence of the delta
function, and we are left with

∂

∂kf
I(kf , q) = 4πk2f

∫ 1

−1

d cos θ Θ

(

kf −
√

k2f + q2 − 2qkf cos θ

)

. (70)

The step function above is zero unless the argument is positive. This condition implies
that k2f > k2f + q2 − 2qkf cos θ or equivalently,

cos θ >
q

2kf
.

Hence, eq. (70) yields

∂

∂kf
I(kf , q) = 4πk2f Θ(2kf − q)

∫ 1

q/(2kf )

d cos θ .

where the factor of Θ(2kf − q) above arises since for values of q > 2kf , the argument of
the step function in eq. (70) is always negative which implies that it vanishes. The final
integration is now trivial, and we end up with

∂

∂kf
I(kf , q) = 4πk2f

(

1− q

2kf

)

Θ(2kf − q) . (71)

We can now determine I(kf , q) by performing an indefinite integration over kf . Note
that I(kf , q) = 0 for q > 2kf , and I(kf , q) must be a continuous function of kf at kf = 1

2
q.

Integrating eq. (71) for q < 2kf yields

I(kf , q) = 4π

(

k3f
3

− qk2f
4

)

+ C(q) , for 0 < q < 2kf ,
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where C(q) is the integration “constant,” which can depend on q. However, C(q) is deter-
mined by the continuity condition, I(kf = 1

2
q) = 0. It follows that C = πq3/12. Hence,

I(kf , q) =
π

12

[

16k3f − 12qk2f + q3
]

Θ(2kf − q) . (72)

Plugging in this result for the integral in eq. (66), it follows that

∑

~k

∑

s

〈Φ0|N~k,sN~k+~q , s |Φ0〉 =
V

48π2

[

16k3f − 12qk2f + q3
]

Θ(2kf − q) for ~q 6= 0 . (73)

It is convenient to introduce the dimensionless variable,

x ≡ q

2kf
, (74)

and rewrite eq. (73) as:

∑

~k

∑

s

〈Φ0|N~k,sN~k+~q , s |Φ0〉 =
V k3f
6π2

(1− x)2(2 + x) Θ(1− x) , for x > 0 .

Employing eq. (65) for the Fermi momentum then yields

∑

~k

∑

s

〈Φ0|N~k,sN~k+~q , s |Φ0〉 = 1
2
N(1− x)2(2 + x) Θ(1− x) , for x > 0 . (75)

Hence, using eq. (60),

S0(~q) = 1− 1
2
(1− x)2(2 + x) Θ(1− x) , for ~q 6= 0 . (76)

The derivation of eq. (76) was based on the assumption that ~q 6= 0 (or equivalently
x 6= 0), since this latter assumption was invoked following eq. (57). However, we have
already determined S0(~q = 0) in eq. (56). Hence, after substituting for x using eq. (74) the
final answer takes the following form:

S0(~q) =



























N , for ~q = 0 ,

q

4kf

(

3− q2

4k2f

)

, for 0 < q < 2kf ,

1 , for q ≥ 2kf ,

where q ≡ |~q|. For all values of ~q 6= 0, S0(~q) expresses the correlation of the Fourier modes
of n(~x) for two different values of ~q, namely ~q and −~q. Clearly, ~q = 0 is a special point
since for this case alone, ~q = −~q. Consequently, it is not surprising that S0(~q) is not
continuous at ~q = 0, i.e. S(~q = 0) 6= limq→0 S0(~q).

11

11Indeed, limq→0 S0(~q) = 0 is a consequence of the Pauli exclusion principle!
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The static structure function S0(~q) arises in the study of correlations of fermi systems. It
can also be defined for an interacting systems of fermions and can be measured in scattering
processes. For further details, you may wish to consult Chapter 2.4 of David Pines and
Philippe Nozières, The Theory of Quantum Liquids, Volumes I (Westview Press, Boulder,
CO, 1994). In this section, the authors show how to evaluate the integral I(kf , q) using
an elegant geometric anlaysis that directly computes the overlapping volume of the two
spheres of radius kf [cf. eq. (67) and the text that follows].

In an advanced course on the quantum theory of many-particle systems (often called
“many-body theory”), you will learn how to compute S0(~q) for a system of interacting
fermions using perturbative techniques. In general, an exact analytic expression for S0(~q)
cannot be obtained in an interacting theory.

APPENDIX: A direct evaluation of I(kf , q)

We computed I(kf , q) [defined in eq. (67)] by first evaluating the derivative of I(kf , q)
and then computing an indefinite integral of the result (using the appropriate boundary
condition to fix the constant of integration). In this Appendix, we will compute I(kf , q)
directly by carefully examining the effect of the delta functions on the limits of integration.

By definition,

I(kf , q) ≡
∫

Θ(kf − k) Θ(kf − |~k + ~q |) d3k . (77)

Geometrically, I(kf , q) is the volume of the overlapping region of two spheres of radius kf
whose centers are separated by a distance q ≡ |~q|. Employing spherical coordinates,

I(kf , q) =
∫ ∞

0

k2dk

∫ 1

−1

d cos θ

∫ 2π

0

dφ

∫

Θ(kf − k) Θ(kf − |~k + ~q |)

= 2π

∫ kf

0

k2dk

∫ 1

−1

d cos θ Θ
(

kf −
√

k2 + q2 + 2qk cos θ
)

, (78)

where we have invoked the Θ(kf − k) function to restrict the integration range of k. The
remaining step function will constrain the integration regions of k and cos θ. Note that
Θ
(

kf −
√

k2 + q2 + 2qk cos θ
)

= 0 unless

k2f ≥ k2 + q2 + 2qk cos θ ,

which is equivalent to the condition that

cos θ ≤
k2f − k2 − q2

2kq
. (79)

Since q is a variable, we shall consider three separate cases.

Case 1: If 0 < q < kf , then
∫ kf

0

k2dk

∫ 1

−1

d cos θ Θ
(

kf −
√

k2 + q2 + 2qk cos θ
)

=

∫ kf−q

0

k2dk

∫ 1

−1

d cos θ +

∫ kf

kf−q

k2dk

∫ (k2
f
−k2−q2)/(2kq)

−1

d cos θ . (80)
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The upper limit of the cos θ integration in the second integral on the right hand side of
eq. (80) is a consequence of the condition derived in eq. (79). One can check that for Case 1,
if kf − q ≤ k ≤ kf then −1 ≤ (k2f − k2 − q2)/(2kq) ≤ 1, whereas if 0 ≤ k ≤ kf − q, then
| cos θ| ≤ 1 is consistent with the inequality given in eq. (79). The integrations in eq. (80)
are straightforward, and the end result is:
∫ kf

0

k2dk

∫ 1

−1

d cos θ Θ
(

kf −
√

k2 + q2 + 2qk cos θ
)

= 2
3
(kf − q)3 + 17

24
q3 − 2kfq

2 + 3
2
k2fq

= 1
24

(

q3 − 12qk2f + 16k3f
)

. (81)

Case 2: If kf < q < 2kf , then
∫ kf

0

k2dk

∫ 1

−1

d cos θ Θ
(

kf −
√

k2 + q2 + 2qk cos θ
)

=

∫ kf

q−kf

k2dk

∫ (k2
f
−k2−q2)/(2kq)

−1

d cos θ .

(82)
One can check that for Case 2, if q−kf ≤ k ≤ kf then−1 ≤ (k2f−k2−q2)/(2kq) ≤ 1, whereas
if 0 ≤ k ≤ q − kf , then | cos θ| ≤ 1 is inconsistent with the inequality given in eq. (79). In
particular, for 0 ≤ k ≤ q − kf (with q > kf) it follows that (k

2
f − k2 − q2)/(2kq) < −1, in

which case eq. (79) cannot be satisfied in the region where | cos θ| ≤ 1. Thus, there is only
one integral to perform in eq. (82) and we obtain

∫ kf

0

k2dk

∫ 1

−1

d cos θ Θ
(

kf −
√

k2 + q2 + 2qk cos θ
)

= 1
24

(

q3 − 12qk2f + 16k3f
)

. (83)

Remarkably the result for the integral in Cases 1 and 2 coincide!

Case 3: If q > 2kf , then
12

∫ kf

0

k2dk

∫ 1

−1

d cos θ Θ
(

kf −
√

k2 + q2 + 2qk cos θ
)

= 0 , (84)

since for Case 3, if 0 ≤ k ≤ kf (with q > 2kf) it follows that (k
2
f − k2 − q2)/(2kq) < −1,

in which case eq. (79) cannot be satisfied in the region where | cos θ| ≤ 1. This is easily
checked by observing that

k2f − k2 − q2

2kq
≥ 1 =⇒ k2f ≥ (q − k)2 ,

Since 0 ≤ k ≤ kf and q ≥ 2kf , it follows that kf ≥ q − k, or equivalently k ≥ q − kf . But
this last condition is not compatible with 0 ≤ k ≤ kf and q ≥ 2kf . Hence, the condition
(k2f −k2− q2)/(2kq) ≥ −1 cannot be satisfied. In light of eq. (79), this means that the step
function in eq. (84) is always equal to zero.

Combining the results of eqs. (80), (82) and (84), it follows that

I(kf , q) =
π

12

[

q3 − 12qk2f + 16k3f
]

Θ(2kf − q) ,

which confirms the result obtained in eq. (72).

12Geometrically, eq. (84) is the statement that two spheres of radius kf whose centers are separated by
a distance larger than 2kf do not overlap (and hence the volume of the overlapping region is zero).
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