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1. Consider a two-level system with E; < FE5. There is a time-dependent potential that
connects the two levels as follows:

Vii = Vaa =0, Vig = e, Vor = ye ™! (v real), (1)

where V;; = (i|V]j). At time ¢ = 0, it is known that only the lower level is populated—that
is, ¢1(0) = 1 and c2(0) = 0. Note that a general state of the system can be expressed as
a linear combination of eigenstates of the unperturbed Hamiltonian (in the Schrodinger
picture):

1) = calt)e " n) . (2)

n=1

(a) Starting with the time-dependent Schrodinger equation, derive the following differ-
ential equation for ¢ (t):

m% Zv,m Jernte, (k= 1,2), (3)

where Vi, (t) = (k|V (t)|n) and hwy, = Ex — E,. By solving the above system of differential
equations ezactly, find |ci(t)|* and |cy(t)|* for ¢t > 0.

The full Hamiltonian is given by
H=H9 4V,
where the matrix elements of V' are given in eq. (1). The time-dependent Schrodinger
equation is given by
o (0) = [HO + V] [9(0)

Inserting the expansion for |¢(t)) given in eq. (2) into the above equation, and using
'n) = E, |n), it follows that!

2 2

ZZh% e—iEnt/h ‘n> _ Z Cne—iEnt/h 1% ‘n> )

n=1 n=1

Next, multiply on the left by (k| and use (k|n) = 6, to obtain:

. deg, —iBgt/h __ 2 —iEnt/h

n=1

1For ease in notation, we denote the eigenvalues of the unperturbed Hamiltonian H©) by E,, rather
than ESIO).



Eq. (4) can be rewritten as:

2

ih—r = Vin()e“'e,,  (k=1,2),

n=1

where Vi, (t) = (k|V (t)|n) and hwy, = Ey — E,, which confirms eq. (3). In matrix form,
)
dt \ ¢y(1) Vareait e(t))
where wo; = —wqy = (Ee — E1)/h > 0, and the matrix elements of V' are given by eq. (1).

That is,
d [alt) 0 el L (t)
’LFL— == )
dt \ ey(t) yeilwmwn)t 0 co(t)

Multiplying out the matrix and vector above, one obtains coupled differential equations for
c1(t) and co(t):

d , d ,
zh% = yellwmwnt o) ih% = e tlwwalt e (5)
At this point, it is convenient to define new coefficients,
cl(t) = elwn=2 ¢ (1) cy(t) = emtwn /2 o)1) (6)

We now can express eq. (5) in terms of ¢{(t) and ci(t):

d

iha [

e—i(wzl—w)t/2 /} _ t(w—wa1)t [

2

Zhi [ei(wzl—w)t/2 Cé} _ ’}/6_i(w_w21)t [e—i(wgl—w)t/2 Cll} )

Expanding out the derivatives, one sees that the exponential factors cancel. The resulting
equations for ¢{(t) and cj(t) are:

. 1, !/ dc{ / . 1: !/ dCé /
ih | 5i(w — wa)e] + | = e ih | —5i(w — war)cy + | = e (7)

In matrix form, eq. (7) is given by:

OO
i (Cé(ﬂ) - (cé(ﬂ) | )

where A is the time-independent 2 x 2 traceless hermitian matrix,

S <§h(w—w21) 0l ) ' (9)



Denoting the column vector €= (¢, c3)7, eq. (8) is of the form

dc 1A
— = __"F. 1
it~ h° (10)
The solution to this equation is:
ct) = e gy, where &y = ¢&(t=0).

This is easily verified by inserting the above solution back into eq. (10).

To compute the matrix exponential, a simple strategy is to write writing A = @-&,
where the vector @ is uniquely determined. Such a relation holds for any 2 x 2 traceless
hermitian matrix. It is easy to see that for A given by eq. (9),

A=n~o, + %ﬁ(w — Wo1)0, .
Using the well-known result:?
cos(0/2) + in. sin(0/2) (ing + ny) sin(0/2)
exp (3107-&) =T cos(0/2)+if-& sin(0/2) = ! :
(ing —ny)sin(6/2) cos(0/2) —in, sin(6/2)

where I is the 2 x 2 identity matrix, we can identify

exp(—iAt/h) = exp {—%(7% + Th(w — w21)0z)} = exp (3i0n-G) (11)
where? )
f = 29,0, h(w — wa1)), 12
et e ) "
and

t
0 = —ﬁ\/hQ(w—le)Q—l-élv?. (13)
We conclude that

(c{(t)) B (cos(9/2) + in, sin(0/2) ing sin(0/2) ) (c{(O))
ci(t) - ing sin(6/2) cos(0/2) —in,sin(0/2)) \c5(0) ’
where 6 is defined by eq. (13) and

2 _ h(w — way)
V(W —wan)? + 492 T VR w =)+ 492

2If this result is not well-known to you, please derive it as follows. First note that for any non-negative
integer k, (R-&)%* =1 and (*-&)%*! = A-&, where 7 is a unit vector and I is the 2 x 2 identity matrix.

Then, using the Taylor series definition of the matrix exponential,

(14)

Ny

o & (Ligae) Lgy 1i9)"*
exp(%len.g) :Z%:I Z %‘FTL'O’ Z (2k')

k=0 k even k odd

=TIcos(0/2) +in-&sin(0/2) .

3A common mistake made by students is to neglect the fact that 7 appearing in eq. (11) must be a unit
vector. Note that 7 in eq. (12) is properly normalized so that #-fo = 1.



In light of eq. (6), it follows that the relevant initial conditions are
c1(0) =¢{(0) =1 and ¢(0)=c¢5(0)=0,
and
ler ()% = |ef (t)]? = |cos(8/2) + in. sin(0/2)]* = cos*(8/2) + n?sin?(0/2)
[e2(O)]* = le(t)]* = nZsin(0/2).
An important check of the above result is:
let(B))? + |ca(B)]? = cos?(8/2) + (n2 +n?)sin?(0/2) = 1,

where we have used the fact that n2 +n? = n? + nz +n? = 1, keeping in mind that n, =0
and 7 is a unit vector. Using the explicit forms of n,, n, and 6 given in egs. (13) and (14)
we arrive at:

9 4’}/2 .92 ~2 1 2 1/2 2 2
0P = T o [E—Q—I—Z(w—wm)} ), el =1-|e®)

(15)

Note that the initial conditions ¢;(0) = 1 and c3(0) = 0 are indeed satisfied.

ALTERNATIVE DERIVATION:

Starting from eq. (5), it immediately follows that

d (ih dcy .
h_ _ Zt(W_UJZl) e — Zt(w—wgl) )
R (7 € 0t e Co

After evaluating the derivative on the left-hand side of the above equation, the exponential
factors cancel out, resulting in

d?cs . dcy 7202
W%—z(w—wm)%jt? =0.
The solution is obtained by solving the auxiliary equation:
A2
x2+i(w—w21)x+ﬁ:0 = l’:—l[%(w—le)ﬂ:A}
where
A= %;4—%(@—@21)2. (16)
It follows that:
co(t)=A [exp {—z’t [%(w —woy) + A]} — exp {—it [%(w —wo1) — A] }] , (17)



after imposing the initial condition ¢2(0) = 0. To determine the overall coefficient, we make
use of egs. (5) and (17) to obtain:

%e—it(w—wzl) e = % = —iA[H(w —wa) + A exp {—it [2(w — wax) + A}

+iA [ (w—wa) — Al exp {—it [$(w —wxn) — A]} . (18)
Setting ¢ = 0 and using ¢;(0) = 1, one obtains:

_ 0
A= (19)

Thus, egs. (17) and (9) yield:

2

lca(t)]? = ﬁ [2— 2Re(exp {—it [4(w — wa1) + A] } exp {it [3(w — wa) — A]})]

2

i —2i
= m [2—2Re(e 2tA)]

2

7y
= m [1 — COS(2tA)]

2
= A0 sin?(tA).

Finally, we take the absolute square of eq. (18), which yields:

2

%maw:Aqaw—wg+AF+Aqaw—m9—Af—mﬁ[

1
1
= 2A% [1(w — wa)® + A?] — 247 [1(w — w21)® — A?] cos(2tA)

= A%(w — wy)?sin?(tA) + 4A%2A? cos®(tA)

2
= 4A* <A2 — %) sin?(tA) + 4A%A? cos®(tA)

2

= 4A* [A2 - % sinz(tA)} ,

where in the penultimate step we used (w — ws;)? = 4(A? — 42 /h?), which follows from the

definition of A [cf. eq. (16)]. Noting that 4A4% = ~?/(h?A?) [cf. eq. (19)], we end up with
4

h?A?

) =1-— sin?(tA) = 1 — |co(t)]2.

Thus, we have correctly reproduced the results of eq. (15).

(w o w21)2 o A2} Re(e—2z’tA)



(b) Do the same problem using time-dependent perturbation theory to lowest nonvan-
ishing order. Compare the two approaches for small values of v. Treat the following two
cases separately: (i) w very different from wo, and (ii) w close to wo;.

Using the results of time-dependent perturbation theory, we identify ¢, (¢) of part (a)
as:
ca(t) = (n|Us(t, 0)]4)

where U;(t,0) is the time-evolution operator in the interaction representation. The first-
order perturbation theory expression for ¢,(t) obtained in class is:

l

t
Cn(t) = 0pi — = / ent V(1) dt
h Jo

Thus, to first order in perturbation theory, ¢;(t) ~ 1 and

1 — 6i(w21—w)t}

: t
i o, .,
C2(t) = —_/ elw21t ,ye—lwt dt/ _ 7 |:
0

B h(wey — w)
Hence,
292 [1 — cos(way — w)t] 42 .
2 _ — 2(1 —
lea(D)]” = EI—E = (o — ) sin® (4 (wa1 — w)t) . (20)

We observe that eq. (20) agrees with the exact formula obtained in eq. (15) in the limit
of v <« %h|w21 — w|. Note that the latter inequality is never satisfied near resonance when
w =~ wyy. However, if w o~ wy; then the exact formula, eq. (15), reduces to

lca(t)|* = sin?(yt/h), for w=wy .

In contrast, the corresponding first-order perturbative result exhibited in eq. (20) is:

y
lea(t))? ~ Lo, for w=woy .

Thus, near the resonance, the exact result for |cy(t)|* agrees with the first-order perturbative
result in the limit of ¢t < h/~.

To summarize, the first-order perturbative result is a good approximation to the exact
result in the limit of a weak perturbation (which corresponds to small 7). Away from the
resonance, small ¥ means 7 < 1h|ws — w|, whereas near the resonance (where w =~ wo;)
small v means v < h/t. For a fixed value of v, the latter can be satisfied only at early
times .



2. This problem provides a crude model for the photoelectric effect. Consider the hydrogen
atom in its ground state (you may neglect the spins of the electron and proton). At time
t = 0, the atom is placed in a high frequency uniform electric field that points in the
z-direction,

E(t) = Ezsinwt .

We wish to compute the transition probability per unit time that an electron is ejected into
a solid angle lying between ) and §2 + df).

(a) Determine the minimum frequency, wy, of the field necessary to ionize the atom.

The minimum frequency, wy, of the field necessary to ionize the atom is equal to the
ionization energy divided by A. The ionization energy of the ground state of hydrogen is
equal to the negative of the bound state energy, and is given by 1 Ry = 13.6 eV. That is,

me*

= (21)

Wo

(b) Using Fermi’s golden rule for the transition rate at first-order in time-dependent
perturbation theory, obtain an expression for the transition rate per unit solid angle as a
function of the polar angle 6 of the ejected electron (measured with respect to the direction
of the electric field).

The perturbing Hamiltonian is given by:

ez&y , ; -
HWY(t) = ezE sinwt = 2—,0 (e™t —e™™h) . (22)
1
Fermi’s golden rule for the transition rate for the absorption of energy due to the harmonic
perturbation given in eq. (22) is given by:

Tas(t) = 2 [(0] 3e26 [a®) * p(EL) (23)

where p(EIEO)) is the density of states of the ionized electron. The state ‘a(0)> is the unper-
turbed wave function for the ground state of hydrogen,

h2

1
0)\ _ _ —r/ag _
a"’)y =W (r) = —=5 = —.
The state ‘b(o)> is the unperturbed wave function for the ionized wave function. This
wave function is actually quite complicated, since one cannot really neglect the effects of
the long-range Coulomb potential. Nevertheless, we shall simplify the computation by
assuming the wave function of the ejected electron is a free-particle plane wave, with wave



number vector E, where the direction of k corresponds to that of the ejected electron. That
is, ‘b(o)> = ¢**® /\/V. Taking the hermitian conjugate yields,

<b(o)‘ _ L e—u%-a?
vV

Note that we have normalized the free-particle plane wave by placing the system in a very
large box of volume V. Imposing periodic boundary conditions, the possible values of k
are quantized as discussed in class. This will be convenient since we can later use the
expression derived in class for the free-particle density of states.

We are now ready to compute the matrix element, <b(0)} %ezé’o }a(0)>. Employing spher-
ical coordinates, z = rcos# and

(b0 Lez&|a) = %)1/2/ dr'r'3e™" /“O/dQ'e_iE'flcosé". (24)

In order to perform this integral, we make use of the expansion of the exponential in terms
of spherical harmonics:

9] l
T =dmy Y k) YO Y0, 6). (25)
(=0 m=—/(
where the vector £’ points in a direction with polar and azimuthal angles ¢, ¢’ with respect
to a fixed z-axis, and the vector k points in a direction with polar and azimuthal angles
0, ¢ with respect to a fixed z-axis. Taking the complex conjugate of eq. (25) and inserting
the result into eq. (24) yields:

4

4dre&
(b0 Lez€y o) = VZZ T Z / dr' 3¢ 1 Gy (kr') Y mm(e,¢)]*/d9' cos 0 Y0, &) .
m=—/
(26)
Noting that we can write:
A\ V2
st = () 0
the integration over solid angles in eq. (26) can be immediately performed:
1/2 1/2
4 4
/dQ’ cos@ Y0, &) = ( ;) /dQ’ cos 0 Y (0, )Y (0, ¢)]* = (g) 5010mo
(27)
where we have used the orthogonality relations of the spherical harmonics,
/dQ YZ”(Q) [YZTI(Q)]* = g0 Oy - (28)

Inserting eq. (27) back into eq. (26) collapses both the sums over m and ¢, respectively.

Only the £ = 1, m = 0 term of the sums survives. Thus, using Y(0, ¢) = (%)1/2 cos b,
eq. (27) reduces to:

2mie&ycosd [ 3 _p/ag [ SiNKkT  coskr
< }zezé'o}a >:7(V7m8)1/2 /0 dr r3e="/a0 ( P ) ’

8



where we have used j;(y) = (siny — ycosy)/y?. (For notational convenience, I have now
dropped the primes on the integration variable r.) My integral tables provide the following
results:*

2ka}

> —r/ap o _
/0 re "/sinkrdr = 7(1 FyERICE

2a3(1 — 3k%a?)
(11 K2a2)?

o0
/ r2e7"/% cos kr dr =
0

Thus,

0 : 5
3 —rjay [ SILKT  coskr _ 8kag
/0 drre ( k?r? kr (1+ k2a3)3"

Hence, it follows that:

rad\"? kag
(00 ezt () = 16igcost (T2) e

We are now ready to compute the transition rate. Using the density of states derived
in class,

Vmhk
E) = Q
p(E) ) ds2,
the transition rate [see eq. (23)] is given by:
s 21 Vmhk 40 256me?E2a cos® 0 (kag)?
PR (2nh)? % (1+ k2a2)s "

Simplifying the above result, and noting that me?/h? = 1/ag, we end up with:

dlasy  64&Faicos® 0 (kag)®

aQ 7h (1 + k2a3)S

The factors of the volume V' have canceled out, which indicates that the transition rate for
ionization is a physical quantity.

Fermi’s golden rule also imposes energy conservation. The initial energy is the ground
state energy of hydrogen, which is given by EY = —hwy, as noted in part (a). The final
state energy is Eéo) = h?k?/(2m). Since this is an absorption process, a quantum of energy
hw from the harmonic perturbation must account for the energy difference between the
final and initial state energies. Therefore,

ﬁ2
hw=—+ hwy .
2m

4For simple integrals, my reference table of choice is H.B. Dwight, Table of Integrals and other Mathe-
matical Data (Macmillan Publishing Co., Inc., New York, 1961).



Solving for k2, we can write:

2ma? 2h3 W—w
ho(w—wo)z—(w—wo)z ¢,

k*al = I
me Wo

where we have used the definition of the Bohr radius, ag = h?/(me?), and the results of
part (a). Thus, we can rewrite the differential transition rate for ionization as:

dloy, _ 64E5a3 (ﬂ)ﬁ Y _q v cos? 0
dS mh \w/ \wo

Note that as wp is the minimum frequency of the field necessary to ionize the hydrogen
atom, it follows that w > wy.

(c) Integrate the result of part (b) over all solid angles to obtain the total ionization
rate as a function of the frequency of the field. Determine the value of w [in terms of wy
obtained in part (a)] for which the total ionization rate is maximal.

Integrating over solid angles [using [ d§2cos® § = 47/3], we find that the total ionization

rate is given by:
. __25653a8(u@>6 w 3/2
T3 \w/ \w

Note that the ionization rate approaches zero both in the limit of w — wy and in the limit
of w — 00. Moreover, the ionization rate (which is a physical observable) must be non-
negative for wy < w < oo. Thus, there must be some value of w in the range wy < w < 0o
for which the ionization rate is maximal. To find this value of w, take the derivative of the
expression above with respect to w and set it to zero. Thus, we solve:

3/2 1/2
O () e 2 (2 ) o
wT \wp 2wbwy \ wo

This can be easily simplified, and one finds that the the above equation is satisfied for
only one value, w = %wo. We conclude that at this frequency, the ionization rate must be
maximal.’

50f course, one can also verify this by computing the sign of the second derivative.

10



3. Consider the spontaneous emission of an E'1 photon by an excited atom. The magnetic
quantum numbers (m and m’) of the initial and final atomic state are measured with respect
to a fixed z-axis. Suppose the magnetic quantum number of the atom decreases by one
unit.

(a) Compute the angular distribution of the emitted photon.

The transition rate for spontaneous E1 emission is given by:

dFZ e2w? - o
f =573 Z |d,f e, where d;; = (f|Z]i) .

The sum over polarizations can be performed by computing:

5 125 = i)y ), = ity (3 - 5

—d;-d; e : (29)
where there is an implicit sum over the repeated indices ¢ and j above. Thus
Ay 0’ (o o (dyR)(d) k)
_ Y N d.d— ,
Q2 orhed \ TS k? (30)

We shall denote the initial state by |i) = |jm) and |f) = |j’m — 1). The z-axis in this
problem is the quantization axis which is used to define the magnetic quantum numbers of
the atomic states. (Other attributes of the atomic states are suppressed.)

We can evaluate he non-zero components of J;f with the help of the Wigner-Eckart
theorem, which states that the matrix elements of a spherical tensor Tq(k)
definite angular momentum states must satisfy®

with respect to

G| TPim)y =0 if m' #q+m. (31)

One can apply this result to the matrix elements of & by recognizing the latter as a
spherical tensor of rank-one. That is, certain linear combinations of the components of
& = (z,y,2z) = r(sin@ cos ¢, sin @' sin ¢, cos §') are proportional to the components of the
rank-one spherical tensor rYiy (¢, ¢'), for M = +1,0, —1. In particular,

rYi(0,¢") = \/gz, rY141(0',¢") = IF\/SEW(:E +iy). (32)

6Eq. (31) can be interpreted as saying that the the spherical tensor Tq(k) imparts angular momentum

when acting on a state. Conservation of the z-component of angular momentum then requires that m’ =

g+ m. If this is not satisfied, then the states |[j’ m’) and Tq(k) |7 m) are orthogonal states, in which case the
matrix element given in eq. (31) vanishes.

11



Eq. (31) implies that if m’ = m — 1, then (j'm — 1|Tq(1)|j m) = 0 if ¢ = 0,+1. Using
eq. (32), we therefore conclude that:

(dif). =0, (dif)e +i(dig)y = 0. (33)

Hence, it follows that ci;f must have the following form:

-

dy=d(1,i,0) (34)

where d is some (complex) constant. Writing k= k(sin @ cos ¢, sin 0 sin ¢, cos @), where the
polar angle # and the azimuthal angle ¢ measure the direction of the emitted photon with
respect to the z-axis, it follows that

dis-k = ke sing. (35)

Inserting eqs. (34) and (35) into eq. (30) then yields:”

dlip  e*w?|df?

6 = e L+ cos’d)

That is, the angular distribution of the emitted photon is proportional to 1 + cos? 6.

ADDED NOTE: The derivation of eq. (34) given above is very simple, as it follows
immediately from eq. (31). If one ignores spin, then one can also derive eq. (34) by explicitly
evaluating

-

@qum—uammszmwﬂmndmam

It is convenient to express & as a rank-one spherical tensor, rY;,/(2), as in eq. (32). Then,
one must compute:

3(20+1)

/ Vina () Yo () Yin () d2 = | 257

(¢m; 1 M|¢"m —1){¢0;10[¢'0),
where we have used eq. (17-36) on p. 365 of Baym and the orthogonality relation of the
spherical harmonics [cf. eq. (28)]. We immediately notice that conservation of L, yields:

(m; 1 M|¢'m—1) =0, if M =0,+1,

which implies that only the M = —1 component of Ci;f (when expressed as a spherical
rank-one tensor) is non-vanishing. This result immediately implies eq. (33) and it then
follows that ci; F=d(1,4,0). In this calculation, we can explicitly evaluate the constant d
in terms of non-vanishing Clebsch-Gordon coefficients:

- 2(2¢+1) ' , ' , »
d= [Ty s 1 =1 m = 1) (0101 0) {1

-

"Using egs. (34) and (35), d_;f-d;} — (ci;fl_c’)(ci?}l_c’)/kQ = |d|*(2 —sin? ) = |d|?(1 + cos?H).

12



where (f|r|i) is the remaining radial integral (which is independent of the angular mo-
mentum quantum numbers m and m’ of the initial and final atomic state). Note that
(€0;10[€'0) = 0 if |¢ — ¢'| # 1, so that one must only consider the two cases where
¢" = (418 To make further progress, one would have to know the details of the atomic
wave functions in order to evaluate (f|r|i). However, it is not necessary to evaluate the
constant d to answer any of the questions posed in this problem.

(b) Determine the polarization of the photon emitted in the z-direction.

A

Define the following (complex) orthonormal set of vectors: {é1, éa, és}, where é3 = k.
Any complex three-vector can be expanded in terms of this orthonormal set. In particular,

-

dif = (dif)lél + (dz’f)zéz + (dz’f)SéS .

Since k-€& = 0, it follows that:

-

i€ = [(dig)181 + (dip)28a] - & = (dif) 1€y ,

where (cz; 7)1 is the component of cZ; 7 that is perpendicular to k. It then follows that € 18
proportional to (d;f) | .
Applying this result to the present problem, we note that if k = k2, then eq. (34) yields:

- -

(dif). =d;y =4d(1,1i,0). Hence, the polarization vector of the outgoing photon is:

eoc(dif)L:%(l,z, 0)=¢€r.
That is, the photon emitted in the 2-direction is left-circularly polarized (in the optics
convention). It is easy to check that a right circularly polarized photon, €z = %(1 , —1i,0)

does not contribute, since d;;-€5 = 0.

(c) Verify that the result of part (b) is consistent with angular momentum conservation
for the whole (atom plus photon) system.

In the optic convention adopted in part (b), a left-circularly polarized photon traveling in
the 2-direction carries away orbital angular momentum L, = +h, whereas a right-circularly
polarized photon traveling in the 2-direction carries away orbital angular momentum L, =
—h. We have shown in parts (a) and (b) that if the initial atomic state has L, = mh
and the final atomic state has L, = (m — 1)h, then the photon emitted in the 2-direction
is left-circularly polarized. Thus, we see that L, is conserved, since mh = (m — 1)h+ h,
i.e. the photon emitted in the z-direction carries away orbital angular momentum L, = +h.

8The fact that d; ¢ =0if £/ = ¢ also follows from parity considerations, since & is a parity-odd operator,

whereas the state [¢m) is an eigenstate of parity with eigenvalue (—1)°.

13



4. Consider the elastic scattering of photons off electrons in atoms, assuming that the
incident photon energies are large compared to the atomic binding energies. However, you
should assume that the photon wavelength is still substantially larger than a typical atomic
radius.

(a) Using the quantum theory of radiation, argue that the A field operator must occur
at least twice in the matrix element in order that there be a non-zero contribution in
perturbation theory.

The quantized electromagnetic vector potential is given by:

- orhic?\ '/ 1 P .
A(a‘f t) = ( ) |:€>\ 6zk~w—zwt ar . + & 6—zk-w+zwt a]: (36)
) Vv kX A PN
P Vv Wk
where a% , creates one photon in the mode (E, A) and ag , annihilates one photon in the
mode (E, A). The process of interest for this problem is the elastic scattering:
V(RN +em — (k' N) e, (37)

where |k| = |k'| = k. The latter implies that wy, = wy = ke. Since eq. (37) implies that
one photon in the mode (E, A) is annihilated and one photon in the mode (E ' X) is created,
the A-field operator must appear at least twice in the matrix element that is evaluated
using Fermi’s Golden Rule (one time is not enough). To see why this is true, note that the
relevant matrix element is of the form

(31570 s O Hintli5 07 ys 1500 5 (38)

where |7) is the initial state of the electron and |f) is the final state of the electron. Note
that we have specified explicitly the photon occupation numbers for the modes (E, A) and
(k',N). All other photon modes [which are suppressed in eq. (38)] are absent and thus their
photon occupation numbers are zero. Thus, the only way for the matrix element exhibited

in eq. (38) to be non-zero is if Hiy, contains the terms aj_c.,’)\,a,—é’/\ and/or a,—a/\a%,’)\,. That is,’
<1l_$/,)\’ , OE,A|G£‘/7A/CLE,A‘OE’,X , 11_5,)\) =1, (39)
(Lgr s Ogalagaals 075, 1,0 =1, (40)

while all other matrix elements vanish if the operators that appear consist of other combi-
nations of @ and a' taken either singly or in pairs. We conclude that Hj, must contain A
exactly twice.

9Recall that the commutation relations for the creation and annihilation operators are:

[aE7A7 ;%',)\’] = 5]‘5/}.’/5))\/-

Thus, for k # k', it follows that aE,Aaj;/,x = a;f.c.,_),ag_).
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(b) Treating the quadratic A. A term in the interaction Hamiltonian to first order in
perturbation theory, compute the differential cross-section in the dipole approximation.

Show that:
do

dQ
where 79 = €2 /(mc?) is the classical radius of the electron.

= ’l"g|€)\'€;/|2,

The interaction Hamiltonian is given by

2
Hi = =5 [ @rF- A+ 5o [ @ p() A2,

2mc?

where

p(F) = 0°(F = &), J(7) = o— [PO(F— &)+ 8°(F - )P .
To first order in perturbation theory, only the A? term of the interaction Hamiltonian
contributes a non-zero result to the matrix element given by eq. (38). Using Fermi’s Golden
rule, it follows that

2m ,
P = o Huli) 5 (B — B,

where the superscript (1) indicates that this is a first-order perturbation theory result. The
initial and final energies are given by:

E,=FE,+hw, E;=FE.+ ',

where F, is the electron energy'® and hw and Aw’ are the initial and final state photon
energies. Thus,

1y _ 2m 2

2 2
e _ 29, Ny
Fz‘f =7 (W) ‘<6f , 11_5’,)\” OE7>\|A (Z,t)e; , OE’,A” 1,-5’)\> 5(hw’ — hw) . (41)

As noted in part (a), only the ajz VA and the ag /\aj.c. )y Cross-terms arising from A-A
contribute to the matrix element above. In detail, inserting the expansion for the quantized
vector potential [cf. eq. (36)] yields only one non-zero term:

o 2w hc?
2/ = - —
<1E/,x= OE,A‘A (:c,t)\O,-m,, 11_5,>\> = 2'7‘/\/@ Ex-EN <1ié/,xv OEA‘CL;[}’/,)\IGE,)\ME/,X? 1E,A>

Athe® L L aElEN.3
— & esle® B2y (42)

where we have used the fact that the energy-conserving delta function in eq. (41) sets

w’ = w. Note that an overall factor of 2 in eq. (42) has been included since the matrix

10Tn the case of elastic scattering, the initial and final state electron energies are the same. That is, the
photon scatters elastically off the electron without altering the atomic state.
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elements of aj_c. /a5 and ag Aa% ,, Yield the same result if k + k' as shown in eqs. (39)

and (40)]. Therefore, eq. (41) yields:

or (€2 \? [4rhA\® L iRz -
) =5 () () B e RS ot — ),

2mc? wV

after noting that §(hw’ — hiw) = A7 10 (w’ — w).
The problem states that we may assume that the photon wavelength is substantially
larger than a typical atomic radius. This means that we can work in the dipole approxi-

mation, in which case

."_"/'-.
Rk Z

Since |i) and |f) represent the same normalized atomic states (since the electron energy is
unchanged in the elastic scattering), it follows that (f]i) = 1. Hence,

21 2 \? [4rhc®\?
sz = _h2 <2m02) < wV ) |€)\-€>\/| 6((,4},_(,0) (43)

We are now in position to compute the cross section,

> Tis
f

incident flux

O;f = (44)
Since the incident photon has velocity ¢, the incident flux is given by ¢/V. The sum over

final states f is a sum over the outgoing photon momenta k'. Taking the infinite volume
limit, we may take

Z—> v E'2dk'dQ = v w2dw' dQ)
= (2m)3 (2mc)3 ’

where we have used w’ = k’c. Inserting eq. (43) into eq. (44) and taking the infinite volume

limit,
o (e \° (AxhA\® (VN L L ., V )
Ty = ﬁ <2mc2) ( wv ) (;) |€)\-6)\/‘ W/w/ dw/dQ(S(w/—W)

As expected, the volume factors cancel out. The integral over w’ is trivial (it just enforces
energy conservation). Hence, we end up with:

2 2
doxy [ e 18,-& |2
dQ  \me? exrext

Denoting the classical radius of the electron by ry = ¢2/(mc?), the differential cross-section
can be written as:

do

o= rEEl (45)
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BONUS MATERIAL:

Proof that the second order perturbative contribution to the transition rate
is negligible compared to the first-order transition rate

At second order in perturbation theory, the ; A term of the interaction Hamiltonian also
yields a non-zero contribution to the transition rate. However, if the energy of the incident
photon is large compared to the electron energy, then the A- A term of the interaction
Hamiltonian, taken at first order in the perturbation expansion, will dominate the second
order contribution due to the ;K term.

To verify this assertion, consider the second-order version of Fermi’s Golden Rule. The
the transition rate at second order in perturbation theory is given by:

r@ _ 2T

Hintk kHinti ?
@ 2 2[5 Ul Wl )

k

Thus, it follows that:

(€7 s Lgry Og |- A(Z, 1) k) (k|- A(Z, t)]e; , Oy 1) |

7= |
- E.+ hw — Ej, +ic

i m2h

We can compare the magnitudes of the first-order and second-order contributions to the
transition rates by employing the following estimates. In light of eq. (36), we shall replace
A with

2mhc?

Hence, the first-order transition rate behaves as,

21 2 \? /2nhc?\? N
F(l)N_< ) ( ) |E\-E3|20(E; — ),

h \ 2mc? wV

To estimate the second-order transition rate, we approximate E, + hw — Fj, + i€ ~ hw, since
the photon energy is by assumption much larger than the electron energy. The sum over
intermediate states can now be performed using completeness. Thus, we estimate:

or (€2 \* (2rh®\? |(P-&)\)(P-&)|?
r® ~ N §(Er — Ey).
m2h <2mc2) ( wV ) h2w? (Es )

Thus, roughly we have:
r® E,

o~ g <

in terms of the electron energy E. = p'?/(2m) and the photon energy E, = hw. By

assumption, the former is much smaller than the latter. Therefore in this limit, we expect
the first-order perturbative contribution to the transition rate to be the dominant one.
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(c) Compute the total cross-section, assuming that the initial photon beam is unpolar-
ized and the polarization of the final state photon is not measured.

Assuming that the initial and final photons are unpolarized, we average over the initial
polarizations and sum over the final polarizations. Thus

daunpol _1 Z dO’)\)\/ ‘ (46)

AN/

Using the polarization sum formula,

SIS E e E) = b - S

A
it follows that
ik, KEN 1| (k)
Z| €)* 6)\/ (62]—]{:—2]) <5U_k—/2j) 25 ll—f—w :%(1+COS29), (47)
AN

where 6 is the angle between k and k'. In deriving eq. (47), we noted for example that:
9;;0;j = 0 = 3 (where there is an implicit sum over repeated indices, which run over the

values 1,2,3), ;;k;k; = k*, and Oijhik = k-k' = kk'cos?. Hence, egs. (45) and (46) yield:

do unpol

<)

= 1r5(1 + cos®6) .

Integrating over solid angles,

1
/dQ(1+cos2«9):27r/ dcos@(1+cos2«9):1677r.
-1

Hence, the total unpolarized cross-section is given by:

This is called the Thomson cross-section. Although the energies of the atomic electrons
were taken to be negligible as compared with the photon energies, we still assumed that
the photon wavelength was long compared to typical atomic scales. Thus, the Thomson
cross-section is a long-wavelength limit of photon scattering.

18



5. Consider a non-interacting gas of NV fermions that occupies a cubical box of volume V.
Assume that V' and N are macroscopically large. Let W (&) be the field operator that
annihilates a fermion of spin orientation s at position €. The particle number density

operator is given by
Z (&)W, (2) (48)

and the total number operator is N = [ d3x n(&) . The Fourier transform of the number
density operator is defined by

ng = /d?’x n(&) e T

(a) Show that ng can be expressed in terms of fermion creation and annihilation oper-

ators as follows:
Z Z ak s k:+q s

The field operators W, (&) and Wi (&) are given by

=
8
J
=
8

1k

B e . e .-’.—ﬁ
\I]S(‘r) = Z W aE,s’ \Ifl(-’E) - Z W a}%,s ’

E

We have taken space to be a cubical box of length L = V'/3 and volume V and imposed
periodic boundary conditions, so that the possible discrete value of k are given by

where 7 = (n,, ny,n,) is a vector of integer values. The creation and annihilation operators
satisfy anticommutation relations,

{054r afr ) = Oggr dssr (49)

The density operator defined in eq. (48) is therefore given by

& (k—k')
- e
n(@ =Y > % — a;é’,sa’?,s : (50)
AT
The Fourier transform of n(&) is given by

ng — / P n(&)e TE . (51)

Plugging in for n(&) above using eq. (50) then yields

—

ng = VZZZCL_., aks/d?):ceiﬁ (e
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The above integral is easily evaluated using

and we end up with

as required.

(b) The static structure function for non-interacting fermions is defined as:

1
So(q@) = v (Do| ngn_g |Po) , (53)

where |®g) is the N-particle ground state of the fermion gas (cf. Baym pp. 424-425).
Evaluate Sp(q') explicitly in the continuum limit.

We consider separately the cases § = 0 and ¢ # 0. First, in the case of § = 0 we note
that egs. (51) and (52) yield

n._, = /dgxn ZZCL S = ZZNE@ =N, (54)
k s

where N is the total number operator. Moreover, |®q) is an eigenstate of N' whose eigen-
value is equal to the number of fermions in the ground state, N. That is,

N |®g) = N [o) . (55)

Since |Pg) is a normalized state, i.e. (Po|Pg) = 1, it immediately follows from eqs. (53)—(55)
that

So(@ = 0) = - (B0l N2 [g) = N (56)

Next, we consider the case of §# 0. Using eq. (52),
So(@) = — ZZZZ (®ol af; a5,q..0%0 05 4 o Do) -

-/ - .
Note that aj;, AR g g |®o) is a state where one fermion with wave number k — ¢ and spin
sS )

s’ is removed from the ground state of the N-fermion system and one fermion with wave

number K and spin & is added. If (q)o\a% OFiq, a%, agr - ., |Po) # 0, then the state
T )
s OF g, |®g) must not be orthogonal to the state ak’+q,sakvs |(I>0), which corresponds to

a state with one fermion with wave number k and spin s removed and one fermion with
wave number k 4+ ¢ and spin s added.
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T T
i, o |®o) and g, o TR |®o) are orthogonal unless the fol-

lowing three conditions are satlsﬁed

However, the states a

-/

i) k=k—-q, (i) k+g=k , (i) s=¢"
Note that conditions (i) and (ii) are consistent. We conclude that

<(I>o|a£-78a,;+q Saj;, a =/ |(I>0> = E I-c—/_q,(ssé,/ (¢0|a£.78a5+q75a£+678a575 |(I>0> . (57)

To simplify eq. (57), we shall employ the anticommutation relations given in eq. (49). Since
q # 0 by assumption, it follows that k # k + ¢. Hence,

f - = —al - L oqf — 2abl a- t
O O+q, % g, s = ~O% Okrg, s My g o — Ok YR MR+d, s g
—al ap |1—al _ ap . |=Ng (1-Ng - (58)
k:,s kvs k:+tj',s k+q7s kys k+q75 ’

where we have introduced the number operators at the last step,
ks

Using egs. (57) and (58), it follows that
(@) = ZZ (@] Ng. (1= Ng ) [0) (59)

In light of egs. (54) and (55),

Z (Dol Ni s | Do) = (Po| N |Pg) = N .

k,s

Hence, we can rewrite eq. (59) as

Sol —1——Z<I>o| Nirg,s 10) - (60)

In order to evaluate the matrix element given in eq. (60), recall that the Fermi momen-
tum ky is defined such that

1, if]{?<]€f,

61
0, ifk> ks, (61)

ng. = (@] Ng. |90) = O(ky — k) = {

where k = |E|, and ©(k; — k) is the step function. Applying eqgs. (54) and (55), we sum
eq. (61) over all modes to obtain,

N = (| N | D) ZZ (Bo| Nz, |®o) = ZZ@(kf—k). (62)
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We shall evaluate sums over the discrete modes {E, s} by taking the continuum limit,

; — 2 (2‘;)3 / Pk, (63)

where the factor of 2 above corresponds to the two possible spin orientations, s = =+
Applying the continuum limit in eq. (62), it follows that

1
5

v
(27)?

where the integral has been evaluated using spherical coordinates. Note that eq. (64) yields

32N\ 2
k;f:< = ) . (65)

Similarly, employing egs. (63) and (61), it follows that

N =2

3 V kf 2 Vk?
/@(k:f — k) dk =2 O -47r/0 Kk = 55 (64)

v " —_
5030 (00l Ng Ny o0 = 25 [ Ol =R Oy = [+ 2 % (66)
k s
Thus, to evaluate eq. (60), we focus on the integral,
Zlhy.0) = [ Ok~ 0Ol ~ IF + ) k. (67)

The integral Z(ks,q) can be interpreted geometrically as the volume of the overlapping
region of two spheres of radius ky, one centered at the origin and the other centered at —g.
In particular, one must determine the range of integration in which the two step functions
are simultaneously non-zero. A direct evaluation of Z(ky, ¢) can be found in the Appendix.
Here, we shall employ an alternative technique that makes use of the relation between the
step function and the delta function,

d
T Oky — k) = d(ks — k). (68)

We can use eq. (68) to evaluate the derivative of Z(ky,q) with respect to ky,

9, e e
a—kfI(kf,q)E/d(k:f—k)@(kf—|k+Q|)d3k+/@(kf—k)6(kf—|k+q|)d3k.

In the second integral above, we can change the integration variable to E'=Fk+ qg. The
second integral above then becomes

[ sty = )00y - [B- g @'
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Since k_is an integration variable, we can simply rename it E, in which case it follows that

8 —_ N —_ -
S Ztk0) = [ otk =) [0k~ [F+ 7)) + Ok — £ = )] .

We can evaluate the above integral in spherical coordinates. We choose a coordinate
system such that k-q§ = kqcos . Then after performing the free integral over the azimuthal
angle,

1 0o
9 Tk, q) :27r/ dcose/ K2 dk 6(ky — k)
Ok 1 0

X |:@<kf - \/k2+q2—|—2qk‘cos9) +@<k:f —VE2+ ¢ —2chosé’)] .

In fact, the two step functions contribute equally, since one can simply redefine the inte-
gration variable cos @ — — cos 6 in the second term above. Hence,

0

1 oo
—Z(ky,q) :47r/ dcosé’/ K dk§(k; —k)O( ky — \/l{:?%—q? —2qkscosf ). (69)
Ok -1 0

Note that we have set k = k; inside the square root factor in eq. (69) due to the presence
of the delta function. The integration over k is now trivial due to the presence of the delta
function, and we are left with

o 1
a—kfl(kf,q) = 4mk} /_1 dcos® @(kf — \/kj% + ¢ — 2qky cos 9) . (70)

The step function above is zero unless the argument is positive. This condition implies
that k7 > k% + ¢° — 2qk cos 6 or equivalently,

cos 6 > 2;% .
Hence, eq. (70) yields

a 1
——ZI(ky, q) = 4mk; O(2k; —q)/ dcosf .
Oky a/(2ky)
where the factor of ©(2k; — ¢) above arises since for values of ¢ > 2k, the argument of
the step function in eq. (70) is always negative which implies that it vanishes. The final
integration is now trivial, and we end up with

d q
—T(ky,q) = 47k7 |1 — = | ©(2k; —q). 71
- Ttk ) = ani (1 5L ) o2k~ ()
We can now determine Z(ky, q) by performing an indefinite integration over ky. Note
that Z(ky, q) = 0 for ¢ > 2k, and Z(ky, q) must be a continuous function of ky at k; = 3q.
Integrating eq. (71) for g < 2k yields
k;’c qk?

I(ks,q) =4m (5—7)—#0((1), for 0 < ¢ < 2ky,
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where C'(q) is the integration “constant,” which can depend on q. However, C(q) is deter-
mined by the continuity condition, Z(k; = %q) = 0. It follows that C' = 7¢3/12. Hence,

™

(167 — 12qk7 + ¢°] ©(2k; —q) . (72)

Plugging in this result for the integral in eq. (66), it follows that
V .
DD (ol N Niy g [0) = g [16kF — 12gk3 + ¢°] ©(2k; —q)  for §#0. (73)
k s

It is convenient to introduce the dimensionless variable,

q
= — 4
o=k, (74)
and rewrite eq. (73) as:
®o| Ni: N, Dg) = Vs 1—2)%(2 o(1 f 0
ZZ(M FsVisg,s | 0>—@( —z)°(2+2)0(1 —12), orx >0.
k S
Employing eq. (65) for the Fermi momentum then yields
D) (ol N Nig s [P0) = 3N(1 = 2)*2+2)0(1—x),  forz>0. (75)
k s
Hence, using eq. (60),
So(@) =1-11—-2)*2+2)0(l—2), forg#0. (76)

The derivation of eq. (76) was based on the assumption that ¢ # 0 (or equivalently
x # 0), since this latter assumption was invoked following eq. (57). However, we have
already determined Sp(g = 0) in eq. (56). Hence, after substituting for = using eq. (74) the
final answer takes the following form:

(

N, for g=0,

2

q q
H=1{-L(3-L f 2%k
So(q 4k s (3 4]4;?)’ or0<a< 2y,

1

\ Y

for ¢ > 2k,

where ¢ = |q]. For all values of ¢ # 0, So(q) expresses the correlation of the Fourier modes
of n(&) for two different values of ¢, namely ¢ and —q. Clearly, § = 0 is a special point
since for this case alone, § = —q. Consequently, it is not surprising that Sy(q) is not
continuous at ¢ =0, i.e. S(§ = 0) # lim, 0 S0(q)."!

HIndeed, lim,— So(q) = 0 is a consequence of the Pauli exclusion principle!
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The static structure function Sy(q) arises in the study of correlations of fermi systems. It
can also be defined for an interacting systems of fermions and can be measured in scattering
processes. For further details, you may wish to consult Chapter 2.4 of David Pines and
Philippe Nozieres, The Theory of Quantum Liquids, Volumes I (Westview Press, Boulder,
CO, 1994). In this section, the authors show how to evaluate the integral Z(ky, q) using
an elegant geometric anlaysis that directly computes the overlapping volume of the two
spheres of radius ks [cf. eq. (67) and the text that follows].

In an advanced course on the quantum theory of many-particle systems (often called
“many-body theory”), you will learn how to compute Sy(qg) for a system of interacting
fermions using perturbative techniques. In general, an exact analytic expression for Sy(q)
cannot be obtained in an interacting theory.

APPENDIX: A direct evaluation of Z(ky, q)

We computed Z(ky, q) [defined in eq. (67)] by first evaluating the derivative of Z(ky, q)
and then computing an indefinite integral of the result (using the appropriate boundary
condition to fix the constant of integration). In this Appendix, we will compute Z(ky, q)
directly by carefully examining the effect of the delta functions on the limits of integration.

By definition,

Z(kys,q) E/G(kf—k)@(kf—|12+ q|) k. (77)

Geometrically, Z(ky, ¢) is the volume of the overlapping region of two spheres of radius ks
whose centers are separated by a distance ¢ = |q]. Employing spherical coordinates,

I(ky, q) / k;%zk;/ dcosef d¢/ (ks — k) O(k; — |k + q))

ky 1
= 27r/ kzdk/ dcos O(ky — \/k2 + ¢* + 2gk cos §) , (78)
0 —1

where we have invoked the ©(k; — k) function to restrict the integration range of k. The
remaining step function will constrain the integration regions of k and cosf. Note that
@(k;f — k2 + ¢* + 2qk cos 9) = 0 unless

k]% > k? 4 ¢* + 2qk cos 0,

which is equivalent to the condition that
kff R

2kq )
Since ¢ is a variable, we shall consider three separate cases.

cosf < (79)

Case 1: If 0 < g < ky, then
ky 1
/ k2dk/ dcosf @(kf—\//f2+q2+2chosﬁ)
0 -1

kf—q 1 ky (k}—k?*—q°)/(2kq)
:/ k:2dk/ dcos@+/ k:2dk:/ dcosf. (80)
0 — k —

1 —q 1
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The upper limit of the cos@ integration in the second integral on the right hand side of
eq. (80) is a consequence of the condition derived in eq. (79). One can check that for Case 1,
if kf —q <k < kythen —1 < (kff — k* — ¢*)/(2kq) < 1, whereas if 0 < k < k; — ¢, then
| cosf| < 1 is consistent with the inequality given in eq. (79). The integrations in eq. (80)
are straightforward, and the end result is:

ks 1
/ k:2dk:/ dcos O (ky — \/l{:2+q2—|—2chosé’) = %(kf—q)3+£q3—2qu2+%k‘]2cq
0 -1

= o (¢* — 12qk7 + 16k3) . (81)

Case 2: If ky < g < 2ky, then

(k—k>—q?)/(2kq)

ks 1 ks
/ k2dk/ dcos @ @(k:f—\/k2+q2+2chos«9):/ k2dk/ dcosf.
0 —1 q—k; -

1

(82)

One can check that for Case 2, if g—ky < k < ky then —1 < (k§—k*—¢%)/(2kq) < 1, whereas

if 0 <k < q— ky, then |cosf| <1 is inconsistent with the inequality given in eq. (79). In

particular, for 0 < k < g — ky (with ¢ > ky) it follows that (k7 — k* — ¢%)/(2kq) < —1, in

which case eq. (79) cannot be satisfied in the region where |cos@| < 1. Thus, there is only
one integral to perform in eq. (82) and we obtain

ky 1
/ k:zdk:/ dcost O (ks — /K2 + ¢2 + 2qkcos0) = L (¢* — 12¢k7 + 16k7) . (83)
0 -1
Remarkably the result for the integral in Cases 1 and 2 coincide!

Case 3: If ¢ > 2k, then'?

ks 1
/ k2dk/ dcos® O(ky — /k2+ 2 + 2qk cos§) = 0, (84)
0 -1

since for Case 3, if 0 < &k < ky (with ¢ > 2kj) it follows that (kF — k* — ¢*)/(2kq) < —1,
in which case eq. (79) cannot be satisfied in the region where |cos@| < 1. This is easily
checked by observing that

kP =k — ¢
2kq

Since 0 < k < ky and q > 2ky, it follows that k; > ¢ — k, or equivalently k > ¢ — k;. But
this last condition is not compatible with 0 < k < k¢ and ¢ > 2k;. Hence, the condition
(k7 —k*—q*)/(2kq) > —1 cannot be satisfied. In light of eq. (79), this means that the step
function in eq. (84) is always equal to zero.

Combining the results of egs. (80), (82) and (84), it follows that
T
Z(ks,q) = o [@° — 12qk7 + 16k3] ©(2k; — q) ,

>1 = ki>(q—k)7?,

which confirms the result obtained in eq. (72).

12Geometrically, eq. (84) is the statement that two spheres of radius ks whose centers are separated by
a distance larger than 2k do not overlap (and hence the volume of the overlapping region is zero).
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