Physics 216 Final Exam Solutions Spring 2012

1. Consider a positively-charged spin-1/2 particle in an external magnetic field, governed by
the Hamiltonian:

H=H,1-~B-8S,
where I is the identity operator in spin space, S is the vector of spin-1/2 spin matrices, and
v is a constant (for a positively-charged particle, v > 0). Hy is spin-independent and is

independent of the magnetic field B. For simplicity, assume that H, possesses exactly one
eigenvalue, which is denoted by E.

(a) If the magnetic field is given by B = Bz (where B > 0), determine the energy
eigenstates and eigenvalues of H.

Since Hy is spin-independent, it follows that the both Hy and H commute with S? and
S.. Consequently, the eigenstates of H can be chosen to be simultaneous eigenstates of S 2
and S.. Under the assumptions of this problem,

HO‘%m5>:E‘%mS>> ms = —

N
_|._
N|—

Using S, ‘%m5> = hmg ‘%m5>, it follows that:
H }% m8> = [HoI — vBS,] ‘%m5> = (F — hmsyB) }%m5>
In what follows, we shall denote the two possible energy eigenvalues by:
E,..=FE—-hhnmsyB, mszﬂ:%.
In particular, the energy difference of the two states is given by:
E_ 1o — Ey12 =B, (1)

which implies that E_y/, > Ei /5 if v > 0.

(b) Assume that the magnetic field is given by B = B2 for time t < 0. The system is
initially observed to be in a spin-up state. At ¢t = 0, a time-dependent perturbation is added
by modifying the magnetic field. The new magnetic field for ¢ > 0 is given by:

B = b (& coswt — §sinwt) + B2,

where b > 0. Using first-order time-dependent perturbation theory, derive an expression for
the probability that the system will be found in a spin-down state at some later time ¢t =T
For what range of values of w is this result reliable?



We shall denote ¢,,, (t) as the probability amplitude for the spin—% to be in an eigenstate
of S, with eigenvalue fimg at time ¢. In particular [cf. eq. (18.2.3) on p. 474 of Shankar],

V() =Y em,(8) 7P [Tmy)

where the sum runs over the two possible values of my, = :t%. Using first-order time-
dependent perturbation theory [cf. eq. (18.2.9) on p. 475 of Shankar],

- t
0_1/2({;) = 0_1/2(0) — %A <% _ %‘ H(l)(t) ‘% %> e’i(Efl/Q_EJrl/Z)t’/ﬁ dt,, (2)

The time-dependent perturbing Hamiltonian is given by:

0 iwt
HW(t) = —b(S, coswt—S, sin wt) = —1hyb(o, coswy—oy, sinwt) = —hyb < St g ) :
e W

0 e\ (1 .
5 — 3| HOW[5 5)=-50(0 1) <e—w ) ( ) = —Lybe=™!

By assumption, the system is observed in a spin-up state at ¢ = 0, so that c_1/2(0) = 0.
Egs. (1) and (2) then yield:

t
. , b .
c_15(1) = Livh / ey B=w)t’ _ v el B—w)t ]
1/2() 27 o 2(’73—&))[ :|

The state is observed at time ¢ = T". The probability that the state will be observed as
spin-down is P11 = |e_1/o(T)[*. Explicitly,
2772

72 b2

P% _% _ |c_1/2(T)|2 _ m [6i(vB—w)T _ 1} [e—i('yB—w)T _ 1}
= % (1= cos(vB — w)T]
Using the identity sin®(6/2) = 1(1 — cos#), it follows that:
202
Pr 1= lean(D = =g sint (J08 —w)T] 3)

First-order perturbation theory is valid if P11 < 1. Since the sine function in eq. (3)

2772
can be as large as 1, it follows that the coefficient of the sine must be small. Hence,

) AL DY (4)

vB —w
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That is, w cannot be too close in value to yB. Assuming that |yB — w| = O(yB), then one
must also satisfy b < B to ensure that the first-order perturbative result is reliable.!

2. Consider the scattering of spinless particles in an attractive exponential spherically sym-
metric potential:

V(r) = =Voexp(=r/ro), ()

with V5 > 0. It is convenient to define two dimensionless variables for this problem: & = krg
and n = 2mVyrg/h?, where h?k?/(2m) is the energy of the incoming beam.

(a) Compute, the scattering amplitude and the differential and total cross sections, in the
Born approximation, in terms of the variables £, n and ry. Evaluate the total cross section
in the low energy limit.

The scattering amplitude in the Born approximation, in the case of a spherically sym-
metric potential, depends only on the scattering angle 6, and is given by [cf. eq.(19.3.8) on
p. 531 of Shankar]:

f(0) = —him / su;qr V(r)rdr, where ¢ = 2ksin(60/2) .
0

Using eq. (5) for V(r) and defining n = 2mVyr2 /h?, it follows that:

f(0) = %/ re”"/" sin qr dr
0

B qry
U - ro.
:—21m/ Texp{———i—zqr} dr
qrg 0 To

" Im e { ! +1 } ! L
=—3 Xp § —— +gr —
qre ro 1 ( 1)2

To Zq_,,a_o
1 2
_ilm;_ilmm_@;
g (. 1\ g L 1Y o, 1Y
Zq—r— q+7"_2 Q+r_2
0 0 0
2nro

(1+g%rg)*

I'Normally, one might have guessed that the reliability of the first-order perturbation theory result should
depend only on the magnitude of b, since the perturbing Hamiltonian is proportional to b. This is true as
long as one is far from the resonance condition. As noted above, if |yB — w| ~ O(yB), then the first-order
perturbation theory result is reliable if b < B. However, if the resonance condition is exactly satisfied, then
eq. (4) cannot be satisfied no matter how small b is, in which case the first-order perturbation theory result
can never be reliable.



Inserting ¢ = 4k?sin?(0/2) = 2k?*(1 — cos ) into the above result yields:

_ 2nro
1) = 14 2£2(1 — cos 9)]2 (6)

where & = kry.
Using eq. (6), we can compute the differential cross-section:

do
ds?

dnrd
(14 262(1 — cosh)]’

=|f(O)]° =

Integrating over angles,

= Sy /1 dcosf _ 8mn*ry
—OTT | 1 2€2 — 2€2cosB)t 6E3(1 + 2€2 — 262 cos 0)3

1

)
-1

which yields

A ) 1
7T T3 <_<1+4£2>3)

In the low energy limit, £ — 0 and

1—@:1—(1—12g2)+0(g4):12g2.

Hence,

o~ 16mn*rg, as £ —0 (8)

(b) Using the scattering amplitude obtained in part (a), calculate the s-wave and p-wave
phase shifts. [NOTE: it is sufficient to evaluate ¢ sin d, for £ = 0, 1.]

The partial wave expansion for f(6) is given by eq. (19.5.17) on p. 548 of Shankar:

2(26 + 1) € sin §; Py(cos ) . 9)
=0

1) =

| =

By using the orthogonality relation of the Legendre polynomials,

1
2
/_1 Py(cos @) P, (cos@)dcos = Y duer

we can project out €®¢sind, from eq. (9) by multiplying both sides of eq. (9) by P(cos6)
and integrating over cos using the orthogonality relation above. We then obtain:

1
¢ sin 6, = %k‘/ f(0) Py(cos®)dcosb. (10)
-1
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Inserting the expression for f(f) obtained in eq. (6) for the cases of £ = 0 (s-wave) and ¢ = 1
(p-wave), we obtain:
1

€% gin &, = 5/1 deos? - .
Y Y U ()
o, 1 2
Y (1 1+4§2) 1448 "
and
1
. B cosf@dcosb
€' sin 6, —775/_1 (1+2§2—2§2COS6’)2
_ 1
o 2 o 1+ 2&2
=& _ln(l + 28" —2¢ cosb) + 14262 —2€2cos0 ||
_ _(1+2£2) 1— 1 — In(1 + 4€?)
453 I 1 —l—4§2

B 14 2¢? 1
_”Lu+49>_&?m“+4gﬂ’

In summary, we have obtained:

i80 o 2
e sin §p = e (12)
and
5 1+ 267 1
(& J Sll’lél =1 [m - 4—53 hl(l + 452):| (13)

An alternative method for deriving the above results can be found in Appendices 1 and 2.

(c) Using the results of part (b), compute both the s-wave and p-wave phase shifts in the
low energy limit. Do you find the expected behavior at low energies?

In the low energy limit, & — 0, eq. (12) reduces to:

€' sin dy ~ §y ~ 2n¢ , as &€ —0 (14)
For the case of ¢ = 1, we must expand:
14262 1 9y 14287 2 4 1 2 1422 1(4e2\3
Hi i 4—§3ln(1—|—4§)— [1— 48+ 166"+ - -] 4—53[495 $(48%)% + 3 (48%)° +
1 3 1 16 ¢3
= |2 2488 4| - |- —2e 4 08
3 3
=358+ 0(¢7).



Hence, eq. (13) yields:

el sindy ~ &) ~ %7753, as £ —0 (15)

As expected, d, o< £¥F1 as € — 0 so that §; < Jy < 1 at low-energies, in which case the
s-wave scattering dominates.

(d) At low energies, the angular distribution of scattering is approximately given by

do
d—Q—A+BCOSQ. (16)

Using the results of parts (b) and (c), compute the leading behavior of B/A as k — 0. Are
your results consistent with the differential cross section obtained in part (a)?

Keeping only the s and p wave contributions to the scattering amplitude, eq. (9) yields
1 ) )
f(0) ~ z [ sin 6y + 3¢ sin &y cos 4] .

For a consistent expansion, we need to keep terms up to an including O(£3). Hence, eq. (11)
implies that

€0 sin 0y ~ 6y =~ 2né(1 — 4€%), as&—0. (17)
Using the results from eqs. (15) and (17), it follows that
f(0) ~ % [1—4€*(1 — cosb)] .
Hence,
j—g - 4’3:252 [1—8¢2(1 — cosf) + O(¢Y)] . (18)

Noting that £ = kry, we see that eq. (18) coincides with the O(k?) expansion of eq. (7).
Finally, by comparing with eq. (16), it follows that

B 8¢?

171 8§228k27’8, as k — 0.

3. Consider the hydrogen atom, where the fine structure and the Lamb shift are included, but
the hyperfine structure is neglected. The three lowest energy states (in order of increasing
energy) are: 1512, 2p1/2, and 2515, where the notation nf; is used to label the states. The
latter two states are separated by the Lamb shift (v = 1057 MHz).

(a) Using selection rules, determine to which state the 2s;,, state can decay via an E1
transition.



The selection rules for an E1 decay, A — B + y are:
Aj=ja—jp==xlor0 (ja=jp =0 prohibited), and TII(A)= —II(B),

where j4 is the total angular momentum of the state A and II(A) = (—1)% is the parity
of the state A (which depends on the orbital angular momentum ¢4 of the state A). The
restrictions on the total angular momentum are a consequence of the Wigner-Eckart theorem,

since the dipole operator d = & is a spherical tensor or rank 1. Note that a convenient way
to summarize the angular momentum selection rule is:

l7a— 7Bl <1<ja+jB-

The parity selection rule follows from the fact that d is odd under inversion, & — —&.
We apply these considerations to the energy levels of hydrogen that lie below the 25/,

state: In both cases, we have j4, = jp = %, so the angular momentum selection rule is

Energy level | Parity change? | Aj

2p1/2 yes 0
1s1/2 no 0

satisfied. Invoking the parity selection rule, we conclude that the only possible E1 decay is
28172 = 2p12 + -

(b) Compute the E1 transition rate for the decay of the 2s,/, state and determine the
numerical value of the corresponding lifetime. Compare this result with the lifetime of the
2p state of hydrogen computed in class.

In class, we obtained the following expression for the decay rate (or equivalently the
inverse lifetime) of an E1 transition,

43?1 -
_ 1 _ 2
b= = 5,11 > il (19)

mi,mg

where we have averaged over the 2j; + 1 possible m; values and summed over the 2j; + 1
possible final m; values. Energy conservation implies that hw = Ey — E;, where E; is the
energy of the 2sy/, state and Ey is the energy of the 2p, /, state.

The calculation of the decay rate for 2s;/, — 2p;/2 + 7 is nearly identical to the one
presented in class for the decay 2p,, — 1s1/2 + 7. In class, we ignored the electron spin,
and we shall do so here as well.2 Then, we can employ the result obtained in class,

S 1t = | [ B )R 01

mi,mg

2>< £Z+1, forﬁf:&-—l—l,
62‘, fOI‘gf:&—l

’In Appendix 3, the following calculation is repeated, where the electron spin is explicitly taken into
account.



In the present case, ¢; = 0 and ¢y = 1. The corresponding radial wave functions are

1 T 1 T
Ron(r) = 92 6—7“/(2110) , Roq (1) = o 6—7’/(2a0) ]
o) VR3a ( ao) ) = g ao
Thus,
oorgR R = / <2——) e_r/“odr:—ao 24" — 51 = —3v3aq .
/0 20( ) 21( 8a0f 8\/3[ ( ) ] 0

(20)
It follows that

> |dil* = 27a5.

my=+1,0

Since ¢; = 0, no average over initial states is necessary (since we are neglecting spin), so
eq. (19) yields
36w3e?al  36w3h?
['(2s = 2p+~) = 0 — , 21
(2= 2p+9) = g = (21)
where we have used ag = h?/(me?) and a = €/(he) to write I in a more convenient form.
The transition rate for 2s — 2p-++ obtained in Eq. (21) is not the same as transition rate
for 2s1/5 — 2py/2 + . In particular, the 2ps/, state lies above the 2s;/, state and therefore
does not participate in the actual 2s — 2p + v decay process. Since the 2p state consists of
four 2ps/, states and two 2p; /o states, it follows that

['(25172 = 2p1j2 +7) = %F(Qs —2p+7), (22)

since only 1/3 of the 2p states actually participate in this decay process. Hence, we conclude

that:3
12w3h?

e (23)

F(2Sl/2 — 2p1/2 + ”Y) =
If this E'1 decay is responsible for the 2s;, lifetime, then

(mc?)2ah
12(hw)3

T =
We can now plug in the numbers. Since w = Ey — E; = hv, where v = 1057 Mhz is the
Lamb shift frequency, it follows that
hiw = 2mhv = (27)(6.6 x 107'% eV - sec)(1.056 x 10° sec™) = 4.38 x 107% eV .
Using mc? = 5.11 x 105 eV and a ~ 1/137, we end up with

11 x 105 eV)2(1/1 6x 1076 eV -
T = (B> 10 el\;)(4(3/8 i?fﬁfe?/)g eV - sec) = 1.25 x 10? sec = 39.6 years .

This is considerably longer than 7(2p — 1s + ) = 1.6 x 107 sec, which we computed in
class.

3As shown in Appendix 3, one can confirm the result of eq. (23) by including the electron spin directly
into the calculations.



REMARK: For obvious reasons, the 2s; 5 state is called “metastable”. In fact, the dominant
decay mode of this state is into the 1s;/, ground state with the simultaneous emission of two
photons. This decay rate can be computed by second order perturbation theory, although
the calculation is more involved and will not be considered here. The resulting lifetime,
7 = 0.14 sec is in good agreement with experiment.* As a result, the E1 decay into a single
photon is never observed in practice, as the decay 2s;/ — 1s1/2 + 7y will take place long
before the 2s;/, state has a chance to decay via 251/ — 2p;1/2 + 7.

(c) Can the 254y state decay via an 2 transition? Explain.

The selection rules for an E2 decay, A — B + y are:
lja—jel <2< ja+jp, and II(A)=1I(B),

The restrictions on the total angular momentum is a consequence of the Wigner-Eckart the-
orem, since the quadrupole operator is a spherical tensor or rank 2. The angular momentum
selection rule forbids the decay of the 2s;/, state into either the 2p;/, or the 1s;/, states
since j4 = Jgp = % in both cases. In particular, the electric quadrupole operator imparts two
units of angular momentum to the initial state, which implies that the final state can only
have total angular momentum % or g

Indeed, the above argument generalizes to higher multipoles. The 2s;/, cannot decay via

any 2‘-pole with ¢ > 2.

(d) Using selection rules, determine to which state the 2s;/, state can decay via an M1
transition. By using explicit wave functions, evaluate the matrix element of the magnetic
dipole operator, (f|f|i), and show that the M1 transition rate vanishes.

The selection rules for an M1 decay, A — B + ~ are:

l7a —jBl <1< ja+jp, and II(A)=1II(B),

The angular momentum selection rule is the same as for E'1 decay. The parity selection rule
arises since

= [ — —

b= -— (L + gS) ;
2me

is even under the inversion of the coordinate system. Thus, the decay

28172 = 1sip + 1,

satisfies both the angular momentum and parity quantum numbers.

4Thus, the lifetime of the 2s; /2 state of hydrogen is a factor of 10® longer than the corresponding lifetime
of the 2p, /5 state.



Nevertheless, it turns out that (f|fi|i) = 0 for the 25,5 — 1s1/5 + v transition. To see
this, we note that the initial and final state wave functions are:

1 1
|251/2) = ERm(T)Xi, |Ls12) = ERlo(T)Xf,

where x; and x; are the spin parts of the corresponding hydrogenic wave functions. Thus,
using S = %h&', it follows that:

o h
F171) = 2 (7151) = g (a1 ) [ o Ruo(r) 1)
h o0
— % (G [P Ra B dr. (21

Note that I does not contribute to (f| & |i) since both the initial and final states are s-states.
We can now invoke the orthogonality of the radial wave functions, which implies that

/ Tang(T’)Rn/gl(’l“) dr = 5nn/ 5@@/ .
0

Consequently,

(flE]e) =
due to the orthogonality of the 1s;,, and 2s,/, radial wave functions. Thus, the rate for the
M1 transition vanishes.

REMARK: When relativistic effects are included (via the Dirac equation), one finds that
(f| f£]7) is no longer zero, and the M1 decay 2si — 1s1/2 + 7 can occur. In fact, the
corresponding lifetime is shorter than the E'1 decay obtained in part (b), since fiw is consid-
erably larger for the 25,/ — 15/, transition as compared with the 2s;/, — 2p; /o transition.
Nevertheless, because the M1 decay rate is suppressed by a relativistic factor, it turns out
that the rate for two-photon decay, 2s;/5 — 15/ +7y dominates over the one-photon decay
28179 — 1sy0 + 7.

4. Two electrons are in plane wave states in a cubical box of length L and volume V = L3.
The Hamiltonian governing this system is
g_P B
=5 -t -t ==
2m  2m  |& — &y

where the last term above is a result of the Coulomb interactions of the electrons. The
second-quantized Hamiltonian for this system in terms of creation and annihilation operators
is given by

H = E—ags apet 3 S0 N abal ag paq. (55| V|T.@)

-;/ —/

p.q s Pds
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where the spin variables s and s’ can take on two possible values (:t%) and

—/ —/ -/

1 e? I, .
<ﬁ’ﬁ" Y ‘q*/’q—'> — W /d3x d3.§(3/ |_’7_’ e—z(p—zj')-m/he—z(p —-q')-& /h. (25)
A two-particle electron state is given by
A A G J |
‘p> S;P,S > - a’ﬁ,sa'ﬁ’7g’ |O> ’
where |0) is the state with no electrons.
(a) Compute the expectation value,
(p,s; P, | H|P.s; P',5')

in the case where e = 0 (i.e. where the Coulomb interactions are switched off). Explain the
behavior of your result in the case of p = p’ and s = s'.

In the absence of interactions,
<ﬁ7 S ﬁlu 3/‘ H ‘15: S ﬁlv S/> = <O| aﬁ',s’aﬁ,sHa;r-,zsa;CS/ ‘O>

—// 2

= Z <0|aﬁ,78,aﬁsa;,,78,,aﬁ//78,,a;’sa;,7s, |O> -

. (29)

=!I

p 78

We can evaluate the matrix element above by employing the anticommutation relations,
T _
{azs, aﬁ,ﬁ,} = 05" Osst (27)
to push the a;,, . to the left and the az~ ;v to the right until we can make use of

(Olak, ., =0, agn g |0) = 0.
Using eq. (27) to write
afﬁ75&;/7s, = 0pp’ Oss’ — &;/78,&1‘;‘75 ,
it follows that:
(0] aﬁgslaﬁ,sa;,,ﬁ,,aﬁfgsua;sa;,ﬁ, |0)

,10)

= (0] g o (g Sosr — AL 15.) (g Sosr — aly agn )al,,

e 551-7-// 588” |:<0‘ aﬁ/ﬁ/a;,,’s, ‘O> — <O| aﬁ/ﬁ/a;,,’s,,aﬁ,sa;,’s, |O> — <O| aﬁ/’s/ag7saﬁll’s//a;/’s, ‘0)

T T T
(0] Ap’ s/ A oA, (A" 51 Qg o 0)
_ T
= 5-;_;// 588" |:1 — 25ﬁ/ﬁ// 55151/5ﬁoﬁl 588’] + (Sﬁ/ﬁ// 5515// <O| aﬁvsaﬁ,s |O> 5

= 551-7'// 583” + 55/5// 63/8” - 2555// 55/5// 688” 63/8” .
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Inserting this result in eq. (26), it follows that

—2 —/2 —2
<ﬁ,s;ﬁ/,s"H}ﬁ,s;ﬁ/,s'>=g—m—l—g—m—%dﬁﬁréw/. (28)

In the limit of = p’ and s = &', eq. (28) yields <15', s P, s" H ‘15', s, P, s’> = 0, which
is a consequence of the Pauli principle, since two identical electrons cannot occupy the same
state.

(b) Treating the Coulomb interactions to first-order in perturbation theory, compute the
energy difference of the parallel (s = ') and antiparallel (s # s') spin alignments of the two
electrons. Express your answer as a volume integral over the box.

Using first-order in perturbation theory,
EY =(p,s; p'.s'| HV|p,s; §',5')

where /
(1) = l T T R o —/ =
= 2 aE,slaE’ 82a¢7l752aq:31 <k7 k ‘V|q 7q> s
Elvq‘,752 E7q’731

Thus, we must evaluate:

(0] aﬁ-/,s/aﬁ7sa£’81a£,782a6/,32aqjslaiisag,ﬁ, 0)
= (0] ap’ o (057 0551 — a£781aﬁ’s)a£l,82aql’82(65_‘6881 — a;7sa¢81)a;,7s, |0)
= 07 05 Oss, (0] aﬁ—/,s/a%,782aq-/,s2a;,’s, |0) — 05 9ss1 (O] aﬁ—/,s/a;,’sza5/,32ag7saisla;,7s, |0)
05 0ss1 (0] 0, 00); | agsals g g,abs 10) + (Olag gap | apsal, aggahazsals ,|0)

= 85 0 Os10 i O Outss — 05 G010zt O30y Oy O B

p'k P4 7'k ‘P'd
—0pq 65815ﬁ,,; 05/ Os'sy Oty 65Er 0ss, + 55,,; 053055, 5513/65(7/ Osso

Summing over s; and s, yields

Tt P
E (0] Up's' APl O 00" 52081 05,505 o 0)

51,52

— 0 00 S + O O g O — Ouw (OO OO + Oma O O O )

Hence, we end up with

B0 — é{<ﬁ, FVIF.B) + (8, FIVIB.F) — 6w B8 VIF.B') + <ﬁ’,mV|ﬁ',ﬁ>}} (20)
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Using eq. (25), it follows that (p, p'|V|p",B) = (B, B|V|p, P’ ) and (p, P’ |V|P, B’ ) = (B, p|V|P", P).

Therefore, eq. (29) simplifies to
E(l) _ <—» ——/‘V| > _5ss’<ﬁﬁ/|v‘ﬁ:ﬁ,>

It follows that the energy difference between the parallel (s = s’) and antiparallel (s # ')
spin alignments is

1 e? . " - .
AFE = —<ﬁ,ﬁ/|V|ﬁ ﬁ,> — d3 d3 /7 i(p'—p)-&E/h e—z(p -p)-&'/h
v EEr
L [ o’ —C i —)-@5")n
= P d’y P —P) (% )
v 77

To evaluate the above integral, it is convenient to change variables to B = S(Z+&') and

—

7 =& — &'. The Jacobian of this transformation is equal to 1. Using

/d3R:V,

2 i(5'—5) /1
E:—%/dgr%. (30)

it follows that

(c) Calculate the energy difference AE of the parallel and antiparallel spin alignments by
evaluating the volume integral obtained in part (b) assuming that |p— $"|L > 1, where L is
the length of a side of the cubical box. How does AE depend on V in the limit of p = p’?

Assuming that | — p’|L > 1, we can evaluate the volume integral in eq. (30) to good
approximation by taking the volume of the integration region to be infinite (while maintaining
the factor of 1/V that appears in the coefficient of the integral). In this case, we recognize
the volume integral as the Fourier transform of 1/r, which should be well-known to you.
Although the Fourier transform of 1/r does not technically exist in the infinite volume limit,
it is common practice to insert a convergence factor and evaluate

_ 1

. [ er . =3 . o0 _ =

lim [ d®r —— @ —P7/h — |im 27T/ e “"rdr / P —PlreosO/h o5
0 -1

e—0 r e—0

= lim 27 / R W (eﬂﬁ'—fﬂr/h _ 6—i|ﬁ'—iﬂr/h>

i 2R 2mh |:6i(|ﬁ/—fﬂ+i5)r/ﬁ . e—i(|ﬁ’—z‘ﬂ—i6)r/ﬁ] dr
e—0 |p m

i 2w h? ( 1 N 1 )
= lim = = - e :
=0 |p’ — k| |p’ — Pl +ie [P — P —ic

A h?
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Inserting this result into eq. (30) yields

AE = e
Vip"—pJ?

In the case of = p”, the computation above breaks down. In this case, we cannot take
the infinite volume limit. To get a sense of the V' dependence of AFE, consider the volume
integral given in eq. (30) in the case where the volume is a sphere of radius R. In this case,
if = p’ then

AE = — = 31

v (31)
after using V = §7TR3. For a cubical box with a side of length L, the volume integral in
eq. (30) cannot be performed exactly. However, in light of eq. (31), dimensional analysis
suggests that if p= p”, then AE must be of the form

4re? /R p 2me? R? 3e?
rdr=—
0

ke? ke?
A= =yl
where k is a constant of order unity.
APPENDICES

1. An alternative derivation of the phase shifts in the Born approximation

To solve part (c) of problem 2, one can employ the Born approximation to the phase

shifts,

2;;’{ /0 Lok 2V () 2 dr

et gin dy = —

Applying this result to problem 2,

et gin 6, = 5_2] PRAL [je(kr))2 v dr . (32)
o Jo

First, we examine the cases of £ =0 and ¢ = 1. Using eq. (12.6.31) on p. 348 of Shankar,

. sin z ) sinz cosz
jO(z> = PR .]1(2) - 2 - s
It follows that: -
"% sin 5y = kg—:‘]g’/o e~/ sin?(kr) dr
Defining x = kr and using & = krg,
. > 2
€% sin §y = % /0 e™¢ sin? x do = 1 +§Z€2 ; (33)

14



after using eq. (44), which is derived in Appendix 2. Thus, we have recovered eq. (12).

Likewise,
§_f;]/°° J— sinkr  coskr ? 2 0y
re Jo (kr)? kr
0 . 2
= %/0 e~2/¢ (812x —cosx) dx . (34)
Integrating by parts,

© o=2/¢ gin? 1 [ e /¢ gin’x * o=%/€ gin x cos &
S ——dx + 2
0 0

e gin §; =

dz.  (35)

xr =

x? &y x x

The second term on the right hand side of eq. (35) cancels the cross-term of eq. (34). We
are left with:

) oo —x/& S'l'l2 oo
el sin §; = —%/ € ame dx + %/ ¢ cos® zdx
& Jo & Jo

x
Ui oy, (1 +26%)
=——1In(1+4 e
(14 + T, (36)
after using eqs. (41) and (42), which are derived in Appendix 2. Thus, we have recovered

eq. (13).
It is interesting to note that the integral in eq. (32) can be evaluated in closed form for
arbitrary ¢. We begin with the following integral involving Bessel functions:®

* 1 a? 4 0% + ¢
~ T, (bt) g, (ct)dt = <7) , 37
/0 LBt = —=Q, 1 { =5 (37)

assuming that Re(a 4+ ib £+ ic) > 0 and Re(2v 4+ 1) > 0. On the right-hand side of eq. (37),
Q(z) is the Legendre function of the second kind.® Taking the derivative of this result with
respect to a yields:

o0 — 240?42
ST (b), (et tdt = ———= Q' (T TS
/0 e bt) T, (ct) 7(be)3/? Qu—% ( 2bc ’

d

Qi(a) = = Qula)

We now express the spherical Bessel functions as:

. [ T
]g(kf’f’) = %Jg_i_%(k'r’) .

5See eq. (2) on p. 389 of G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University
Press, London, 1966).

6You are probably more familiar with the Legendre function of the first kind, which for non-negative
integer ¢ is the Legendre polynomial, P;(x). For more details on the properties of the Legendre function of
the second kind, Q¢(z), see see Chapter 7 of N.N. Lebedev, Special Functions and Their Applications (Dover
Publications, Inc., New York, 1972).

where
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It then follows that:

o — 24024
—ati (b)ig(ct) 2 dt = ——0! [ 2 .
e titeniten) e = st 0r (g

Applying this last result to eq. (32), one immediately obtains:

. 1
e sin §p = 253 Qz < 2§2) (38)

We can again rederive the cases of £ = 0 and ¢ = 1 by using’

Qo(x):§1n<“1), Ql(x):§x1n<“1)—1,

r—1 T —

which are single-valued real functions for x > 1. Taking derivatives with respect to =z,

1 1 z+1 T
Ao -2 Qi = (E) e

Thus,

W0 o " L - 2ng
€' sin d 2§3Q <1+2€2) T ag2’

W01 o Ui 1 2né 1
g, = gl (145 ) =~ M+ + 17 (14 0)

which reproduces once again the results of egs. (12) and (13).

Finally, we can provide one more check of eq. (38) by returning to egs. (6) and (10),
which yields

Py(cos ) dcost
zée §) = 5
S1.0¢ 775/ (14282 — 282 cos0)?

n /1 Py(cos ) dcost 1

= 4—53 (Z ~ cos 9)2 , where z =1+ 2—52 (39)

At this point, we can employ Neumann’s integral for Q,(z), which is given by®

Oulz) = %/_1 Py(t) dt’

z—1

for non-negative integer ¢ and |z| > 1. Taking the derivative of this result with respect to z
yields

Py(t) dt

Q) = / : e(t >t)2 : for non-negative integer ¢ and |z| > 1. (40)
1 (®

"See N.N. Lebedev, op. cit., p. 185.

8See, e.g. Nico M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical
Physics (John Wiley & Sons, Inc., New York, 1996), eq. (8.33) on p. 201.
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Comparing egs. (39) and (40), one immediately obtains:

. 1
0¢ o2
etsin §y = 253 Qe( 22 ) )

which confirms the result obtained in eq. (38).

2. An explicit computation of the integrals in egs. (33) and (36)

In deriving egs. (33) and (36), the following integrals were employed:

/ e~ /¢ sin? & v _ LIn(1+ 487, (41)
0 x
[e's) 2
e cos“xdr =& — / Ssinade = 2—22 42
/0 14 4&2 (42)

Of course, these integrals can be found in any good table of integrals.® Nevertheless, just for
the fun of it, I shall provide a derivation of these integrals below.
Our strategy is to make use of the power series expansion for sin® z,
0 2:(: 2k
sinz = (1 — cos 2x) :%Z k“ )

k=1

1
2

Thus,

00 da 00 k+122k
/ e~ sin?y — = % Z / e %/E 2R g
0 X e 0

1

Z 1)F+1(2 5)%/ . yy2k_1dy
0

k=1

N[

after setting x = £y. The remaining integral is straightforward:
/ e Vy?ldy = (2k —1)!
0
Writing (2k)! = 2k(2k — 1)!, it follows that:

& dz
/ e /¢ sin®x — =
0

T

(=DFHae)r

7 In(1 + 4£?),

P
Mg

B
Il

1

after recognizing the well known power series of the logarithm. Thus, eq. (41) is proven.

9My reference of choice is I.S. Gradshteyn and .M. Ryzhik, Table of Integrals, Series and Products (Tth
edition), edited by Alan Jeffrey and Daniel Zwillinger (Academic Press, Burlington, MA, 2007).
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To prove eq. (42), we write:

/ e/ cos? v dx = / “o/8 (1 —sinx) de = € — / ¢ sin®w dx . (43)
0 0

The last integral in eq. (43) can be evaluated by the same technique employed above. Fol-
lowing the same steps as before, we find:

[e.e]

00 e k+1 25)21@
/0 e /8 sin%cdxz% Z /0 e yy%dy:% Z k“ 25

- 1 263
=Le 11 =) (—4)F| =11 - - 44
s[ }kzox O =kl s w @
after summing the geometric series. Inserting this result back into eq. (43) yields:

& 1 4 22
/ e /¢ cos? xdr = 75( +287)
0

1+482 7

and eq. (42) is proven.

3. Including spin in the computation of the decay rate of 25,/ — 2py/2 +

In order to include spin in the computation, we must employ the spin spherical harmonics
in the hydrogenic wave functions,

01

?/)(73 97 ¢) = Rnﬂ(r)yjnzl(ea ¢) )

where the spin spherical harmonics are given by

1 £\ lEm+ 5 Y1 (0,0)

iy 0.0)= (00]j = (£, m) = (45)
=ty m T T J 27 V20 + 1 S
+ e:Fm"i_% n,m+%(97¢)
If ¢ = 0, there is only one spin spherical harmonic,
V3 +m Yo 1(0,9)
03 — S 1 1 :
W (6.0)=(00]5=1,m)= (46)

V20 +1
+ L — m Yb,m—i-%(ea ¢)

2

We apply the spin spherical harmonics to the following states:

2p1p: L=1, jzg—%:%>
281/23 EZO, j:£+% %
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The relevant spin spherical harmonics are:

0y _ 1 (1 0y _ 1 (0
y_VE(O) Vi m(l)
yl% 1 <—Y10(97¢)> 1 < cos f )

YT 3 \WaYn(0,0)) T i \e“sind)
prio_ L <_\/§Y1,—1(‘97 ¢)) 1 (e‘m5 sine)

A BV Yio(0, ¢) © VAx \ cos® )

We shall compute

% Z ‘d;va

mi,mg
where we average over the two possible m;-values of the initial state and sum over the two
possible m; values of the final state. In the coordinate basis,

7 0% A\ — 1% ~ / / 'I'l% ~ —/ / 0% ~
>yl = > / d?’ngo(r)y£7Mi(r)me(r)y%’mf(r)- / da' R ()Y, (7") &' Rao(r')Vy 2, (7')

mi, My mg,my
(47)
Inserting
Pb (%w%,mi—;(ﬂ) Yo (‘v%myl,mf—;(f))
%,mi A /%—m %7m2+%(72) ’ %’mf 1/ %—er }/l,mf—l—%—('fa) 7

into eq. (47), we obtain

Z |d;f|2: Z /dgxdgxlR20(7’)R20(T/)R21(T)Rm(?“'):i'-:ﬁ"

mi,my mi,mg

2

{18+ M = 1]V a4 = [ = )3 m)] 7y (Vi)
{1+ M =m0 7Yy oy 5 = [ = )3 ] Vi, (Yoo ().

It is straightforward to perform the sums over m; and my. The product of the two factors
in braces above consists of four pieces:

1 1
1. mzsz:% {_ECOSH} {—ECOSQ/} 5
1 . 1 .,
{—Ee_w Sine} {—Ee“’b Sine/} s
3 _ 1 _ 1, 1 ip 0 1 —i¢’ _: 9/
.m; = —3, my = 7" —Efi Sin —Ee S s



Summing up the four pieces yields

1 1
52 [cos 6 cos @ + sin @ sin @' cos(p — ¢')] = @fﬁ '

=<

Y

The last step above follows from the definition of the unit vectors,

7 = (sinfcos ¢, sinfsin ¢, cosb), 7 = (sin@ cos ¢, sinf sing’, cos).

Hence,
- 1 A
Z |dif|2 = @ /dgl' dgl'/RQo(T)Rgo(’f’,)Rgl (’I“)Rgl (7“/)7“7’,(’)"-7"/)2 .
mg,my

To perform the integrals above, we employ spherical coordinates and choose the z-axis
to lie along &'. Then, #-7#’ = cos @ and the integral over d{' is free. It follows that

. 1 0o )
Z |d2f|2 = %/0 T3d7’ /0 TlsdT/ RQ(](’T’)RQQ(T/)Rgl(T’)Rgl(’f’/) /dQ COS2 0

mg,my

2
= 18a2,

/O h 73 Rao (1) Ry (1) drr

where we have used eq. (20) in the final step. Finally, we average over the two initial m;
values to obtain,
1) |dy P = 9a5.
mg,my
Inserting this result into eq. (19) yields

12w3e?af  12w3h?

F@2s1y2 = 2p12+7) = Aho (me)2a’

which reproduces the result of eq. (23). Indeed, this computation justifies the factor of %
that was employed in eq. (22).
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