
Physics 216 Final Exam Solutions Spring 2012

1. Consider a positively-charged spin-1/2 particle in an external magnetic field, governed by
the Hamiltonian:

H = H0 I− γ ~B ·~S ,

where I is the identity operator in spin space, ~S is the vector of spin-1/2 spin matrices, and
γ is a constant (for a positively-charged particle, γ > 0). H0 is spin-independent and is

independent of the magnetic field ~B. For simplicity, assume that H0 possesses exactly one
eigenvalue, which is denoted by E.

(a) If the magnetic field is given by ~B = Bẑ (where B > 0), determine the energy
eigenstates and eigenvalues of H .

Since H0 is spin-independent, it follows that the both H0 and H commute with ~S
2
and

Sz. Consequently, the eigenstates of H can be chosen to be simultaneous eigenstates of ~S
2

and Sz. Under the assumptions of this problem,

H0

∣

∣

1
2
ms

〉

= E
∣

∣

1
2
ms

〉

, ms = −1
2
, +1

2
.

Using Sz

∣

∣

1
2
ms

〉

= ~ms

∣

∣

1
2
ms

〉

, it follows that:

H
∣

∣

1
2
ms

〉

= [H0I− γBSz]
∣

∣

1
2
ms

〉

= (E − ~msγB)
∣

∣

1
2
ms

〉

In what follows, we shall denote the two possible energy eigenvalues by:

Ems = E − ~msγB , ms = ±1
2
.

In particular, the energy difference of the two states is given by:

E−1/2 − E+1/2 = ~γB , (1)

which implies that E−1/2 > E+1/2 if γ > 0.

(b) Assume that the magnetic field is given by ~B = Bẑ for time t < 0. The system is
initially observed to be in a spin-up state. At t = 0, a time-dependent perturbation is added
by modifying the magnetic field. The new magnetic field for t > 0 is given by:

~B = b (x̂ cosωt− ŷ sinωt) +Bẑ ,

where b > 0. Using first-order time-dependent perturbation theory, derive an expression for
the probability that the system will be found in a spin-down state at some later time t = T .
For what range of values of ω is this result reliable?
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We shall denote cms(t) as the probability amplitude for the spin-1
2
to be in an eigenstate

of Sz with eigenvalue ~ms at time t. In particular [cf. eq. (18.2.3) on p. 474 of Shankar],

|ψ(t)〉 =
∑

ms

cms(t) e
−iEms t/~

∣

∣

1
2
ms

〉

,

where the sum runs over the two possible values of ms = ±1
2
. Using first-order time-

dependent perturbation theory [cf. eq. (18.2.9) on p. 475 of Shankar],

c−1/2(t) = c−1/2(0)−
i

~

∫ t

0

〈

1
2
− 1

2

∣

∣H(1)(t)
∣

∣

1
2

1
2

〉

ei(E−1/2−E+1/2)t
′/~ dt′ , (2)

The time-dependent perturbing Hamiltonian is given by:

H(1)(t) = −γb(Sx cosωt−Sy sinωt) = −1
2
~γb(σx cosωy−σy sinωt) = −1

2
~γb

(

0 eiωt

e−iωt 0

)

.

Thus,

〈

1
2
− 1

2

∣

∣H(1)(t)
∣

∣

1
2

1
2

〉

= −1
2
γb
(

0 1
)

(

0 eiωt

e−iωt 0

)(

1

0

)

= −1
2
γbe−iωt .

By assumption, the system is observed in a spin-up state at t = 0, so that c−1/2(0) = 0.
Eqs. (1) and (2) then yield:

c−1/2(t) =
1
2
iγb

∫ t

0

ei(γB−ω)t′dt′ =
γb

2(γB − ω)

[

ei(γB−ω)t − 1
]

.

The state is observed at time t = T . The probability that the state will be observed as
spin-down is P1

2
→−

1
2
= |c−1/2(T )|2. Explicitly,

P1
2
→−

1
2
= |c−1/2(T )|2 =

γ2b2

4(γB − ω)2
[

ei(γB−ω)T − 1
] [

e−i(γB−ω)T − 1
]

=
γ2b2

2(γB − ω)2
(1− cos(γB − ω)T ]

Using the identity sin2(θ/2) ≡ 1
2
(1− cos θ), it follows that:

P1
2
→−

1
2
= |c−1/2(T )|2 =

γ2b2

(γB − ω)2
sin2

[

1
2
(γB − ω)T

]

(3)

First-order perturbation theory is valid if P1
2
→−

1
2
≪ 1. Since the sine function in eq. (3)

can be as large as 1, it follows that the coefficient of the sine must be small. Hence,
∣

∣

∣

∣

γb

γB − ω

∣

∣

∣

∣

≪ 1 . (4)
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That is, ω cannot be too close in value to γB. Assuming that |γB − ω| = O(γB), then one
must also satisfy b≪ B to ensure that the first-order perturbative result is reliable.1

2. Consider the scattering of spinless particles in an attractive exponential spherically sym-
metric potential:

V (r) = −V0 exp(−r/r0) , (5)

with V0 > 0. It is convenient to define two dimensionless variables for this problem: ξ ≡ kr0
and η ≡ 2mV0r

2
0/~

2, where ~
2k2/(2m) is the energy of the incoming beam.

(a) Compute, the scattering amplitude and the differential and total cross sections, in the
Born approximation, in terms of the variables ξ, η and r0. Evaluate the total cross section
in the low energy limit.

The scattering amplitude in the Born approximation, in the case of a spherically sym-
metric potential, depends only on the scattering angle θ, and is given by [cf. eq.(19.3.8) on
p. 531 of Shankar]:

f(θ) =
−2m

~2

∫ ∞

0

sin qr

q
V (r)r dr , where q = 2k sin(θ/2) .

Using eq. (5) for V (r) and defining η ≡ 2mV0r
2
0/~

2, it follows that:

f(θ) =
η

qr20

∫ ∞

0

r e−r/r0 sin qr dr

=
η

qr20
Im

∫ ∞

0

r exp

{

− r

r0
+ iqr

}

dr

=
η

qr20
Im exp

{

− r

r0
+ iqr

}

[

r

iq − 1

r0

− 1
(

iq − 1

r0

)2

]∣

∣

∣

∣

∣

∞

0

=
η

qr20
Im

1
(

iq − 1

r0

)2 =
η

qr20
Im

(

iq +
1

r0

)2

(

q2 +
1

r20

)2 =
2η

r30

1
(

q2 +
1

r20

)2

=
2ηr0

(1 + q2r20)
2
.

1Normally, one might have guessed that the reliability of the first-order perturbation theory result should
depend only on the magnitude of b, since the perturbing Hamiltonian is proportional to b. This is true as
long as one is far from the resonance condition. As noted above, if |γB − ω| ∼ O(γB), then the first-order
perturbation theory result is reliable if b ≪ B. However, if the resonance condition is exactly satisfied, then
eq. (4) cannot be satisfied no matter how small b is, in which case the first-order perturbation theory result
can never be reliable.
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Inserting q2 = 4k2 sin2(θ/2) = 2k2(1− cos θ) into the above result yields:

f(θ) =
2ηr0

[1 + 2ξ2(1− cos θ)]2
(6)

where ξ ≡ kr0.
Using eq. (6), we can compute the differential cross-section:

dσ

dΩ
= |f(θ)|2 = 4η2r20

[1 + 2ξ2(1− cos θ)]4
(7)

Integrating over angles,

σ = 8πη2r20

∫ 1

−1

d cos θ

(1 + 2ξ2 − 2ξ2 cos θ)4
=

8πη2r20
6ξ3(1 + 2ξ2 − 2ξ2 cos θ)3

∣

∣

∣

∣

1

−1

,

which yields

σ =
4πη2r20
3ξ2

(

1− 1

(1 + 4ξ2)3

)

In the low energy limit, ξ → 0 and

1− 1

(1 + 4ξ2)3
= 1− (1− 12ξ2) +O(ξ4) ≃ 12ξ2 .

Hence,

σ ≃ 16πη2r20 , as ξ → 0 (8)

(b) Using the scattering amplitude obtained in part (a), calculate the s-wave and p-wave
phase shifts. [NOTE: it is sufficient to evaluate eiδℓ sin δℓ for ℓ = 0, 1.]

The partial wave expansion for f(θ) is given by eq. (19.5.17) on p. 548 of Shankar:

f(θ) =
1

k

∞
∑

ℓ=0

(2ℓ+ 1) eiδℓ sin δℓ Pℓ(cos θ) . (9)

By using the orthogonality relation of the Legendre polynomials,

∫ 1

−1

Pℓ(cos θ)Pℓ ′(cos θ)d cos θ =
2

2ℓ+ 1
δℓℓ ′ ,

we can project out eiδℓ sin δℓ from eq. (9) by multiplying both sides of eq. (9) by Pℓ ′(cos θ)
and integrating over cos θ using the orthogonality relation above. We then obtain:

eiδℓ sin δℓ =
1
2
k

∫ 1

−1

f(θ)Pℓ(cos θ) d cos θ . (10)
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Inserting the expression for f(θ) obtained in eq. (6) for the cases of ℓ = 0 (s-wave) and ℓ = 1
(p-wave), we obtain:

eiδ0 sin δ0 = ηξ

∫ 1

−1

d cos θ

(1 + 2ξ2 − 2ξ2 cos θ)2
=

η

2ξ(1 + 2ξ2 − 2ξ2 cos θ)

∣

∣

∣

∣

∣

1

−1

=
η

2ξ

(

1− 1

1 + 4ξ2

)

=
2ξη

1 + 4ξ2
, (11)

and

eiδ1 sin δ1 = ηξ

∫ 1

−1

cos θ d cos θ

(1 + 2ξ2 − 2ξ2 cos θ)2

=
η

4ξ3

[

ln(1 + 2ξ2 − 2ξ2 cos θ) +
1 + 2ξ2

1 + 2ξ2 − 2ξ2 cos θ

]

∣

∣

∣

∣

∣

1

−1

=
η

4ξ3

[

(1 + 2ξ2)

(

1− 1

1 + 4ξ2

)

− ln(1 + 4ξ2)

]

= η

[

1 + 2ξ2

ξ(1 + 4ξ2)
− 1

4ξ3
ln(1 + 4ξ2)

]

.

In summary, we have obtained:

eiδ0 sin δ0 =
2ξη

1 + 4ξ2
(12)

and

eiδ1 sin δ1 = η

[

1 + 2ξ2

ξ(1 + 4ξ2)
− 1

4ξ3
ln(1 + 4ξ2)

]

(13)

An alternative method for deriving the above results can be found in Appendices 1 and 2.

(c) Using the results of part (b), compute both the s-wave and p-wave phase shifts in the
low energy limit. Do you find the expected behavior at low energies?

In the low energy limit, ξ → 0, eq. (12) reduces to:

eiδ0 sin δ0 ≃ δ0 ≃ 2ηξ , as ξ → 0 (14)

For the case of ℓ = 1, we must expand:

1 + 2ξ2

ξ(1 + 4ξ2)
− 1

4ξ3
ln(1 + 4ξ2) =

1 + 2ξ2

ξ

[

1− 4ξ2 + 16ξ4 + · · ·
]

− 1

4ξ3
[

4x2 − 1
2
(4ξ2)2 + 1

3
(4ξ2)3 + · · ·

]

=

[

1

ξ
− 2ξ + 8ξ3 + · · ·

]

−
[

1

ξ
− 2ξ + 16

3
ξ3 + · · ·

]

= 8
3
ξ3 +O(ξ5) .
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Hence, eq. (13) yields:

eiδ1 sin δ1 ≃ δ1 ≃ 8
3
ηξ3 , as ξ → 0 (15)

As expected, δℓ ∝ ξ2ℓ+1 as ξ → 0 so that δ1 ≪ δ0 ≪ 1 at low-energies, in which case the
s-wave scattering dominates.

(d) At low energies, the angular distribution of scattering is approximately given by

dσ

dΩ
= A+B cos θ . (16)

Using the results of parts (b) and (c), compute the leading behavior of B/A as k → 0. Are
your results consistent with the differential cross section obtained in part (a)?

Keeping only the s and p wave contributions to the scattering amplitude, eq. (9) yields

f(θ) ≃ 1

k

[

eiδ0 sin δ0 + 3eiδ1 sin δ1 cos θ
]

.

For a consistent expansion, we need to keep terms up to an including O(ξ3). Hence, eq. (11)
implies that

eiδ0 sin δ0 ≃ δ0 ≃ 2ηξ(1− 4ξ2) , as ξ → 0 . (17)

Using the results from eqs. (15) and (17), it follows that

f(θ) ≃ 2ηξ

k

[

1− 4ξ2(1− cos θ)
]

.

Hence,
dσ

dΩ
=

4η2ξ2

k2
[

1− 8ξ2(1− cos θ) +O(ξ4)
]

. (18)

Noting that ξ ≡ kr0, we see that eq. (18) coincides with the O(k2) expansion of eq. (7).
Finally, by comparing with eq. (16), it follows that

B

A
=

8ξ2

1− 8ξ2
≃ 8k2r20 , as k → 0 .

3. Consider the hydrogen atom, where the fine structure and the Lamb shift are included, but
the hyperfine structure is neglected. The three lowest energy states (in order of increasing
energy) are: 1s1/2, 2p1/2, and 2s1/2, where the notation nℓj is used to label the states. The
latter two states are separated by the Lamb shift (ν = 1057 MHz).

(a) Using selection rules, determine to which state the 2s1/2 state can decay via an E1
transition.
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The selection rules for an E1 decay, A→ B + γ are:

∆j ≡ jA − jB = ±1 or 0 (jA = jB = 0 prohibited) , and Π(A) = −Π(B) ,

where jA is the total angular momentum of the state A and Π(A) = (−1)ℓA is the parity
of the state A (which depends on the orbital angular momentum ℓA of the state A). The
restrictions on the total angular momentum are a consequence of the Wigner-Eckart theorem,
since the dipole operator ~d = ~x is a spherical tensor or rank 1. Note that a convenient way
to summarize the angular momentum selection rule is:

|jA − jB| ≤ 1 ≤ jA + jB .

The parity selection rule follows from the fact that ~d is odd under inversion, ~x → −~x.
We apply these considerations to the energy levels of hydrogen that lie below the 2s1/2

state: In both cases, we have jA = jB = 1
2
, so the angular momentum selection rule is

Energy level Parity change? ∆j
2p1/2 yes 0
1s1/2 no 0

satisfied. Invoking the parity selection rule, we conclude that the only possible E1 decay is
2s1/2 → 2p1/2 + γ .

(b) Compute the E1 transition rate for the decay of the 2s1/2 state and determine the
numerical value of the corresponding lifetime. Compare this result with the lifetime of the
2p state of hydrogen computed in class.

In class, we obtained the following expression for the decay rate (or equivalently the
inverse lifetime) of an E1 transition,

Γ = τ−1 =
4ω3e2

3c3~

1

2ji + 1

∑

mi,mf

|~dif |2 , (19)

where we have averaged over the 2ji + 1 possible mi values and summed over the 2jf + 1
possible final mf values. Energy conservation implies that ~ω = Ef − Ei, where Ei is the
energy of the 2s1/2 state and Ef is the energy of the 2p1/2 state.

The calculation of the decay rate for 2s1/2 → 2p1/2 + γ is nearly identical to the one
presented in class for the decay 2p1/2 → 1s1/2 + γ. In class, we ignored the electron spin,
and we shall do so here as well.2 Then, we can employ the result obtained in class,

∑

mi,mf

|~dif |2 =
∣

∣

∣

∣

∫ ∞

0

Rnf ℓf (r)Rniℓi(r)r
3 dr

∣

∣

∣

∣

2

×
{

ℓi + 1 , for ℓf = ℓi + 1 ,

ℓi , for ℓf = ℓi − 1 .

2In Appendix 3, the following calculation is repeated, where the electron spin is explicitly taken into
account.
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In the present case, ℓi = 0 and ℓf = 1. The corresponding radial wave functions are

R20(r) =
1

√

8a30

(

2− r

a0

)

e−r/(2a0) , R21(r) =
1

√

24a30

r

a0
e−r/(2a0) .

Thus,
∫ ∞

0

r3R20(r)R21(r) dr =
1

8a40
√
3

∫ ∞

0

r4
(

2− r

a0

)

e−r/a0 dr =
a0

8
√
3
[2(4!)− 5!] = −3

√
3 a0 .

(20)
It follows that

∑

mf=±1,0

|~dif |2 = 27a20 .

Since ℓi = 0, no average over initial states is necessary (since we are neglecting spin), so
eq. (19) yields

Γ(2s→ 2p+ γ) =
36ω3e2a20
c3~

=
36ω3

~
2

(mc2)2α
, (21)

where we have used a0 = ~
2/(me2) and α = e2/(~c) to write Γ in a more convenient form.

The transition rate for 2s→ 2p+γ obtained in Eq. (21) is not the same as transition rate
for 2s1/2 → 2p1/2 + γ. In particular, the 2p3/2 state lies above the 2s1/2 state and therefore
does not participate in the actual 2s→ 2p+ γ decay process. Since the 2p state consists of
four 2p3/2 states and two 2p1/2 states, it follows that

Γ(2s1/2 → 2p1/2 + γ) = 1
3
Γ(2s→ 2p+ γ) , (22)

since only 1/3 of the 2p states actually participate in this decay process. Hence, we conclude
that:3

Γ(2s1/2 → 2p1/2 + γ) =
12ω3

~
2

(mc2)2α
. (23)

If this E1 decay is responsible for the 2s1/2 lifetime, then

τ =
(mc2)2α~

12(~ω)3
.

We can now plug in the numbers. Since ~ω = Ef −Ei = hν, where ν = 1057 Mhz is the
Lamb shift frequency, it follows that

~ω = 2π~ν = (2π)(6.6× 10−16 eV · sec)(1.056× 109 sec−1) = 4.38× 10−6 eV .

Using mc2 = 5.11× 105 eV and α ≃ 1/137, we end up with

τ =
(5.11× 105 eV)2(1/137)(6.6× 10−16 eV · sec)

12(4.38× 10−6 eV)3
= 1.25× 109 sec = 39.6 years .

This is considerably longer than τ(2p → 1s + γ) = 1.6 × 10−9 sec, which we computed in
class.

3As shown in Appendix 3, one can confirm the result of eq. (23) by including the electron spin directly
into the calculations.
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REMARK: For obvious reasons, the 2s1/2 state is called “metastable”. In fact, the dominant
decay mode of this state is into the 1s1/2 ground state with the simultaneous emission of two
photons. This decay rate can be computed by second order perturbation theory, although
the calculation is more involved and will not be considered here. The resulting lifetime,
τ = 0.14 sec is in good agreement with experiment.4 As a result, the E1 decay into a single
photon is never observed in practice, as the decay 2s1/2 → 1s1/2 + γγ will take place long
before the 2s1/2 state has a chance to decay via 2s1/2 → 2p1/2 + γ.

(c) Can the 2s1/2 state decay via an E2 transition? Explain.

The selection rules for an E2 decay, A→ B + γ are:

|jA − jB| ≤ 2 ≤ jA + jB , and Π(A) = Π(B) ,

The restrictions on the total angular momentum is a consequence of the Wigner-Eckart the-
orem, since the quadrupole operator is a spherical tensor or rank 2. The angular momentum
selection rule forbids the decay of the 2s1/2 state into either the 2p1/2 or the 1s1/2 states
since jA = jB = 1

2
in both cases. In particular, the electric quadrupole operator imparts two

units of angular momentum to the initial state, which implies that the final state can only
have total angular momentum 3

2
or 5

2
.

Indeed, the above argument generalizes to higher multipoles. The 2s1/2 cannot decay via
any 2ℓ-pole with ℓ ≥ 2.

(d) Using selection rules, determine to which state the 2s1/2 state can decay via an M1
transition. By using explicit wave functions, evaluate the matrix element of the magnetic
dipole operator, 〈f |~µ|i〉, and show that the M1 transition rate vanishes.

The selection rules for an M1 decay, A→ B + γ are:

|jA − jB| ≤ 1 ≤ jA + jB , and Π(A) = Π(B) ,

The angular momentum selection rule is the same as for E1 decay. The parity selection rule
arises since

~µ =
e

2mc

(

~L+ g~S
)

,

is even under the inversion of the coordinate system. Thus, the decay

2s1/2 → 1s1/2 + γ ,

satisfies both the angular momentum and parity quantum numbers.

4Thus, the lifetime of the 2s1/2 state of hydrogen is a factor of 108 longer than the corresponding lifetime
of the 2p1/2 state.
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Nevertheless, it turns out that 〈f |~µ|i〉 = 0 for the 2s1/2 → 1s1/2 + γ transition. To see
this, we note that the initial and final state wave functions are:

∣

∣2s1/2
〉

=
1√
4π
R20(r)χi ,

∣

∣1s1/2
〉

=
1√
4π
R10(r)χf ,

where χi and χf are the spin parts of the corresponding hydrogenic wave functions. Thus,

using ~S = 1
2
~~σ, it follows that:

〈f | ~µ |i〉 = ge

2mc
〈f | ~S |i〉 = ge~

16πmc
〈χf |~σ |χi〉

∫

d3xR10(r)R20(r)

=
ge~

4mc
〈χf |~σ |χi〉

∫ ∞

0

r2R10(r)R20(r) dr . (24)

Note that ~L does not contribute to 〈f | ~µ |i〉 since both the initial and final states are s-states.
We can now invoke the orthogonality of the radial wave functions, which implies that

∫ ∞

0

r2Rnℓ(r)Rn′ℓ′(r) dr = δnn′ δℓℓ′ .

Consequently,
〈f | ~µ |i〉 = 0 ,

due to the orthogonality of the 1s1/2 and 2s1/2 radial wave functions. Thus, the rate for the
M1 transition vanishes.

REMARK: When relativistic effects are included (via the Dirac equation), one finds that
〈f | ~µ |i〉 is no longer zero, and the M1 decay 2s1/2 → 1s1/2 + γ can occur. In fact, the
corresponding lifetime is shorter than the E1 decay obtained in part (b), since ~ω is consid-
erably larger for the 2s1/2 → 1s1/2 transition as compared with the 2s1/2 → 2p1/2 transition.
Nevertheless, because the M1 decay rate is suppressed by a relativistic factor, it turns out
that the rate for two-photon decay, 2s1/2 → 1s1/2+ γγ dominates over the one-photon decay
2s1/2 → 1s1/2 + γ.

4. Two electrons are in plane wave states in a cubical box of length L and volume V = L3.
The Hamiltonian governing this system is

H =
~p 2
1

2m
+

~p 2
2

2m
+

e2

|~x1 − ~x2|
,

where the last term above is a result of the Coulomb interactions of the electrons. The
second-quantized Hamiltonian for this system in terms of creation and annihilation operators
is given by

H =
∑

~p,s

~p 2

2m
a†~p,sa~p,s +

1
2

∑

~p ′,~q ′,s′

∑

~p,~q,s

a†~p,sa
†

~p ′,s′
a~q ′,s′a~q,s

〈

~p, ~p ′
∣

∣V
∣

∣~q ′, ~q
〉

,
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where the spin variables s and s′ can take on two possible values (±1
2
) and

〈

~p, ~p ′
∣

∣V
∣

∣~q ′, ~q
〉

=
1

V 2

∫

d3x d3x′
e2

|~x1 − ~x2|
e−i(~p−~q)·~x/~ e−i(~p ′−~q ′)·~x ′/~ . (25)

A two-particle electron state is given by
∣

∣~p, s ; ~p ′, s′
〉

= a†~p,sa
†

~p ′,s′
|0〉 ,

where |0〉 is the state with no electrons.

(a) Compute the expectation value,
〈

~p, s ; ~p ′, s′
∣

∣H
∣

∣~p, s ; ~p ′, s′
〉

,

in the case where e = 0 (i.e. where the Coulomb interactions are switched off). Explain the
behavior of your result in the case of ~p = ~p ′ and s = s′.

In the absence of interactions,
〈

~p, s ; ~p ′, s′
∣

∣H
∣

∣~p, s ; ~p ′, s′
〉

= 〈0| a~p ′,s′a~p,sHa
†
~p,sa

†

~p ′,s′
|0〉

=
∑

~p ′′,s′′

〈0| a~p ′,s′a~p,sa
†

~p ′′,s′′
a~p ′′,s′′a

†
~p,sa

†

~p ′,s′
|0〉 ~p ′′ 2

2m
. (26)

We can evaluate the matrix element above by employing the anticommutation relations,

{a~p,s , a†~p ′,s′
} = δ~p~p ′ δss′ , (27)

to push the a†
~p ′′,s′′

to the left and the a~p ′′,s′′ to the right until we can make use of

〈0| a†
~p ′′,s′′

= 0 , a~p ′′,s′′ |0〉 = 0 .

Using eq. (27) to write

a~p,sa
†

~p ′,s′
= δ~p~p ′ δss′ − a†

~p ′,s′
a~p,s ,

it follows that:

〈0| a~p ′,s′a~p,sa
†

~p ′′,s′′
a~p ′′,s′′a

†
~p,sa

†

~p ′,s′
|0〉

= 〈0| a~p ′,s′(δ~p~p ′′ δss′′ − a†
~p ′′,s′′

a~p,s)(δ~p~p ′′ δss′′ − a†~p,sa~p ′′,s′′)a
†

~p ′,s′
|0〉

= δ~p~p ′′ δss′′
[

〈0| a~p ′,s′a
†

~p ′,s′
|0〉 − 〈0| a~p ′,s′a

†

~p ′′,s′′
a~p,sa

†

~p ′,s′
|0〉 − 〈0| a~p ′,s′a

†
~p,sa~p ′′,s′′a

†

~p ′,s′
|0〉
]

+ 〈0| a~p ′,s′a
†

~p ′′,s′′
a~p,sa

†
~p,sa~p ′′,s′′a

†

~p ′,s′
|0〉

= δ~p~p ′′ δss′′
[

1− 2δ~p ′~p ′′ δs′s′′δ~p~p ′ δss′
]

+ δ~p ′~p ′′ δs′s′′ 〈0| a~p,sa†~p,s |0〉 ,

= δ~p~p ′′ δss′′ + δ~p ′~p ′′ δs′s′′ − 2δ~p~p ′′ δ~p ′~p ′′ δss′′ δs′s′′ .
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Inserting this result in eq. (26), it follows that

〈

~p, s ; ~p ′, s′
∣

∣H
∣

∣~p, s ; ~p ′, s′
〉

=
~p 2

2m
+

~p ′ 2

2m
− ~p 2

m
δ~p~p ′ δss′ . (28)

In the limit of ~p = ~p ′ and s = s′, eq. (28) yields
〈

~p, s ; ~p ′, s′
∣

∣H
∣

∣~p, s ; ~p ′, s′
〉

= 0, which
is a consequence of the Pauli principle, since two identical electrons cannot occupy the same
state.

(b) Treating the Coulomb interactions to first-order in perturbation theory, compute the
energy difference of the parallel (s = s′) and antiparallel (s 6= s′) spin alignments of the two
electrons. Express your answer as a volume integral over the box.

Using first-order in perturbation theory,

E(1) =
〈

~p, s ; ~p ′, s′
∣

∣H(1)
∣

∣~p, s ; ~p ′, s′
〉

,

where
H(1) = 1

2

∑

~k
′

,~q ′,s2

∑

~k,~q,s1

a†~k,s1
a†
~k

′

,s2
a~q ′,s2a~q,s1〈~k,~k

′|V|~q ′, ~q 〉 ,

Thus, we must evaluate:

〈0| a~p ′,s′a~p,sa
†
~k,s1

a†
~k

′

,s2
a~q ′,s2a~q,s1a

†
~p,sa

†

~p ′,s′
|0〉

= 〈0| a~p ′,s′(δ~p~k δss1 − a†~k,s1
a~p,s)a

†

~k
′

,s2
a~q ′,s2(δ~p~q δss1 − a†~p,sa~q,s1)a

†

~p ′,s′
|0〉

= δ~p~k δ~p~q δss1 〈0| a~p ′,s′a
†

~k
′

,s2
a~q ′,s2a

†

~p ′,s′
|0〉 − δ~p~k δss1 〈0| a~p ′,s′a

†

~k
′

,s2
a~q ′,s2a

†
~p,sa~q,s1a

†

~p ′,s′
|0〉

−δ~p~q δss1 〈0| a~p ′,s′a
†
~k,s1

a~p,sa
†

~k
′

,s2
a~q ′,s2a

†

~p ′,s′
|0〉+ 〈0| a~p ′,s′a

†
~k,s1

a~p,sa
†

~k
′

,s2
a~q ′,s2a

†
~p,sa~q,s1a

†

~p ′,s′
|0〉

= δ~p~k δ~p~q δss1δ~p ′~k
′ δ~p ′~q ′ δs′s2 − δ~p~k δss1δ~p ′~k

′ δ~p ′~q δs′s1 δs′s2 δ~p ~q ′ δss2

−δ~p~q δss1δ~p ′~k δ~p ′~q ′ δs′s1 δs′s2 δ~p~k
′ δss2 + δ~p ′~k δ~p ′~q δs′s1 δ~p~k

′δ~p ~q ′ δss2

Summing over s1 and s2 yields

∑

s1,s2

〈0| a~p ′,s′a~p,sa
†
~k,s1

a†
~k

′

,s2
a~q ′,s2a~q,s1a

†
~p,sa

†

~p ′,s′
|0〉

= δ~p~k δ~p~q δ~p ′~k
′ δ~p ′~q ′ + δ~p ′~k δ~p ′~q δ~p~k

′ δ~p ~q ′ − δss′
(

δ~p~k δ~p ′~k
′ δ~p ′~q δ~p ~q ′ + δ~p~q δ~p ′~k δ~p ′~q ′ δ

~p~k
′

)

.

Hence, we end up with

E(1) = 1
2

{

〈~p, ~p ′|V|~p ′, ~p 〉+ 〈~p ′, ~p |V|~p, ~p ′ 〉 − δss′
[

〈~p, ~p ′|V|~p, ~p ′ 〉+ 〈~p ′, ~p|V|~p ′, ~p 〉
]

}

(29)
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Using eq. (25), it follows that 〈~p, ~p ′|V|~p ′, ~p 〉 = 〈~p ′, ~p |V|~p, ~p ′〉 and 〈~p, ~p ′|V|~p, ~p ′ 〉 = 〈~p ′, ~p|V|~p ′, ~p 〉.
Therefore, eq. (29) simplifies to

E(1) = 〈~p, ~p ′|V|~p ′, ~p 〉 − δss′〈~p, ~p ′|V|~p, ~p ′ 〉 .
It follows that the energy difference between the parallel (s = s′) and antiparallel (s 6= s′)
spin alignments is

∆E = −〈~p, ~p ′|V|~p, ~p ′ 〉 = − 1

V 2

∫

d3x d3x′
e2

|~x− ~x ′|e
i(~p ′−~p)·~x/~ e−i(~p ′−~p)·~x ′/~

= − 1

V 2

∫

d3x d3x′
e2

|~x− ~x ′|e
i(~p ′−~p)·(~x−~x ′)/~ .

To evaluate the above integral, it is convenient to change variables to ~R ≡ 1
2
(~x+~x ′) and

~r ≡ ~x− ~x ′. The Jacobian of this transformation is equal to 1. Using
∫

d3R = V ,

it follows that

∆E = −e
2

V

∫

d3r
ei(~p

′−~p)·~r/~

r
. (30)

(c) Calculate the energy difference ∆E of the parallel and antiparallel spin alignments by
evaluating the volume integral obtained in part (b) assuming that |~p− ~p ′|L≫ 1, where L is
the length of a side of the cubical box. How does ∆E depend on V in the limit of ~p = ~p ′?

Assuming that |~p − ~p ′|L ≫ 1, we can evaluate the volume integral in eq. (30) to good
approximation by taking the volume of the integration region to be infinite (while maintaining
the factor of 1/V that appears in the coefficient of the integral). In this case, we recognize
the volume integral as the Fourier transform of 1/r, which should be well-known to you.
Although the Fourier transform of 1/r does not technically exist in the infinite volume limit,
it is common practice to insert a convergence factor and evaluate

lim
ǫ→0

∫

d3r
e−ǫr

r
ei(~p

′−~p)·~r/~ = lim
ǫ→0

2π

∫ ∞

0

e−ǫrrdr

∫ 1

−1

ei|~p
′−~p|r cos θ/~ d cos θ

= lim
ǫ→0

2π

∫ ∞

0

e−ǫrrdr
~

i|~p ′ − ~p|r
(

ei|~p
′−~p|r/~ − e−i|~p ′−~p|r/~

)

= lim
ǫ→0

2π~

|~p ′ − ~p|

∫ ∞

0

[

ei(|~p
′−~p|+iǫ)r/~ − e−i(|~p ′−~p|−iǫ)r/~

]

dr

= lim
ǫ→0

2π~2

|~p ′ −~k|

(

1

|~p ′ − ~p|+ iǫ
+

1

|~p ′ − ~p| − iǫ

)

=
4π~2

|~p ′ − ~p |2 .

13



Inserting this result into eq. (30) yields

∆E = − 4πe2~2

V |~p ′ − ~p |2 .

In the case of ~p = ~p ′, the computation above breaks down. In this case, we cannot take
the infinite volume limit. To get a sense of the V dependence of ∆E, consider the volume
integral given in eq. (30) in the case where the volume is a sphere of radius R. In this case,
if ~p = ~p ′ then

∆E = −4πe2

V

∫ R

0

r dr = −2πe2R2

V
= −3e2

2R
, (31)

after using V = 4
3
πR3. For a cubical box with a side of length L, the volume integral in

eq. (30) cannot be performed exactly. However, in light of eq. (31), dimensional analysis
suggests that if ~p = ~p ′, then ∆E must be of the form

∆E = −ke
2

L
= − ke2

V 1/3
,

where k is a constant of order unity.

APPENDICES
:

1. An alternative derivation of the phase shifts in the Born approximation

To solve part (c) of problem 2, one can employ the Born approximation to the phase
shifts,

eiδℓ sin δℓ = −2mk

~2

∫ ∞

0

[jℓ(kr)]
2 V (r) r2 dr .

Applying this result to problem 2,

eiδℓ sin δℓ =
ξη

r30

∫ ∞

0

e−r/r0 [jℓ(kr)]
2 r2 dr . (32)

First, we examine the cases of ℓ = 0 and ℓ = 1. Using eq. (12.6.31) on p. 348 of Shankar,

j0(z) =
sin z

z
, j1(z) =

sin z

z2
− cos z

z
.

It follows that:

eiδ0 sin δ0 =
ξη

k2r30

∫ ∞

0

e−r/r0 sin2(kr) dr

Defining x ≡ kr and using ξ = kr0,

eiδ0 sin δ0 =
η

ξ2

∫ ∞

0

e−x/ξ sin2 x dx =
2ξη

1 + 4ξ2
, (33)
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after using eq. (44), which is derived in Appendix 2. Thus, we have recovered eq. (12).
Likewise,

eiδ1 sin δ1 =
ξη

r30

∫ ∞

0

e−r/r0

(

sin kr

(kr)2
− cos kr

kr

)2

r2 dr

=
η

ξ2

∫ ∞

0

e−x/ξ

(

sin x

x
− cosx

)2

dx . (34)

Integrating by parts,
∫ ∞

0

e−x/ξ sin2 x

x2
dx = −1

ξ

∫ ∞

0

e−x/ξ sin2 x

x
dx+ 2

∫ ∞

0

e−x/ξ sin x cosx

x
dx . (35)

The second term on the right hand side of eq. (35) cancels the cross-term of eq. (34). We
are left with:

eiδ1 sin δ1 = − η

ξ3

∫ ∞

0

e−x/ξ sin2 x

x
dx+

η

ξ2

∫ ∞

0

e−x/ξ cos2 x dx

= − η

4ξ3
ln(1 + 4ξ2) +

η(1 + 2ξ2)

ξ(1 + 4ξ2)
, (36)

after using eqs. (41) and (42), which are derived in Appendix 2. Thus, we have recovered
eq. (13).

It is interesting to note that the integral in eq. (32) can be evaluated in closed form for
arbitrary ℓ. We begin with the following integral involving Bessel functions:5

∫ ∞

0

e−atJν(bt)Jν(ct)dt =
1

π
√
bc
Q

ν−
1
2

(

a2 + b2 + c2

2bc

)

, (37)

assuming that Re(a± ib ± ic) > 0 and Re(2ν + 1) > 0. On the right-hand side of eq. (37),
Qℓ(x) is the Legendre function of the second kind.6 Taking the derivative of this result with
respect to a yields:

∫ ∞

0

e−atJν(bt)Jν(ct) t dt =
−a

π(bc)3/2
Q ′

ν−
1
2

(

a2 + b2 + c2

2bc

)

,

where

Q ′
ℓ(x) ≡

d

dx
Qℓ(x) .

We now express the spherical Bessel functions as:

jℓ(kr) =

√

π

2kr
J
ℓ+

1
2
(kr) .

5See eq. (2) on p. 389 of G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University
Press, London, 1966).

6You are probably more familiar with the Legendre function of the first kind, which for non-negative
integer ℓ is the Legendre polynomial, Pℓ(x). For more details on the properties of the Legendre function of
the second kind, Qℓ(x), see see Chapter 7 of N.N. Lebedev, Special Functions and Their Applications (Dover
Publications, Inc., New York, 1972).
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It then follows that:
∫ ∞

0

e−atjℓ(bt)jℓ(ct) t
2 dt =

−a
2b2c2

Q ′
ℓ

(

a2 + b2 + c2

2bc

)

.

Applying this last result to eq. (32), one immediately obtains:

eiδℓ sin δℓ = − η

2ξ3
Q ′

ℓ

(

1 +
1

2ξ2

)

(38)

We can again rederive the cases of ℓ = 0 and ℓ = 1 by using7

Q0(x) =
1
2
ln

(

x+ 1

x− 1

)

, Q1(x) =
1
2
x ln

(

x+ 1

x− 1

)

− 1 ,

which are single-valued real functions for x > 1. Taking derivatives with respect to x,

Q ′
0(x) =

1

1− x2
, Q ′

1(x) =
1
2
ln

(

x+ 1

x− 1

)

+
x

1− x2
.

Thus,

eiδ0 sin δ0 = − η

2ξ3
Q ′

0

(

1 +
1

2ξ2

)

=
2ηξ

1 + 4ξ2
,

eiδ1 sin δ1 = − η

2ξ3
Q ′

1

(

1 +
1

2ξ2

)

= − η

4ξ3
ln(1 + 4ξ2) +

2ηξ

1 + 4ξ2

(

1 +
1

2ξ2

)

,

which reproduces once again the results of eqs. (12) and (13).

Finally, we can provide one more check of eq. (38) by returning to eqs. (6) and (10),
which yields

eiδℓ sin δℓ = ηξ

∫ 1

−1

Pℓ(cos θ) d cos θ

(1 + 2ξ2 − 2ξ2 cos θ)2

=
η

4ξ3

∫ 1

−1

Pℓ(cos θ) d cos θ

(z − cos θ)2
, where z = 1 +

1

2ξ2
. (39)

At this point, we can employ Neumann’s integral for Qℓ(z), which is given by8

Qℓ(z) =
1
2

∫ 1

−1

Pℓ(t) dt

z − t
,

for non-negative integer ℓ and |z| > 1. Taking the derivative of this result with respect to z
yields

Q ′
ℓ(z) = −1

2

∫ 1

−1

Pℓ(t) dt

(z − t)2
, for non-negative integer ℓ and |z| > 1 . (40)

7See N.N. Lebedev, op. cit., p. 185.
8See, e.g. Nico M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical

Physics (John Wiley & Sons, Inc., New York, 1996), eq. (8.33) on p. 201.
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Comparing eqs. (39) and (40), one immediately obtains:

eiδℓ sin δℓ = − η

2ξ3
Q ′

ℓ

(

1 +
1

2ξ2

)

,

which confirms the result obtained in eq. (38).

2. An explicit computation of the integrals in eqs. (33) and (36)

In deriving eqs. (33) and (36), the following integrals were employed:

∫ ∞

0

e−x/ξ sin2 x
dx

x
= 1

4
ln(1 + 4ξ2) , (41)

∫ ∞

0

e−x/ξ cos2 x dx = ξ −
∫ ∞

0

e−x/ξ sin2 x dx =
ξ(1 + 2ξ2)

1 + 4ξ2
. (42)

Of course, these integrals can be found in any good table of integrals.9 Nevertheless, just for
the fun of it, I shall provide a derivation of these integrals below.

Our strategy is to make use of the power series expansion for sin2 x,

sin2 x = 1
2
(1− cos 2x) = 1

2

∞
∑

k=1

(−1)k+1 (2x)
2k

(2k)!
.

Thus,

∫ ∞

0

e−x/ξ sin2 x
dx

x
= 1

2

∞
∑

k=1

(−1)k+122k

(2k)!

∫ ∞

0

e−x/ξ x2k−1 dx

= 1
2

∞
∑

k=1

(−1)k+1(2ξ)2k

(2k)!

∫ ∞

0

e−y y2k−1 dy ,

after setting x = ξy. The remaining integral is straightforward:

∫ ∞

0

e−y y2k−1 dy = (2k − 1)!

Writing (2k)! = 2k(2k − 1)!, it follows that:

∫ ∞

0

e−x/ξ sin2 x
dx

x
= 1

4

∞
∑

k=1

(−1)k+1(4ξ2)k

k
= 1

4
ln(1 + 4ξ2) ,

after recognizing the well known power series of the logarithm. Thus, eq. (41) is proven.

9My reference of choice is I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products (7th
edition), edited by Alan Jeffrey and Daniel Zwillinger (Academic Press, Burlington, MA, 2007).
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To prove eq. (42), we write:

∫ ∞

0

e−x/ξ cos2 x dx =

∫ ∞

0

e−x/ξ (1− sin2 x) dx = ξ −
∫ ∞

0

e−x/ξ sin2 x dx . (43)

The last integral in eq. (43) can be evaluated by the same technique employed above. Fol-
lowing the same steps as before, we find:

∫ ∞

0

e−x/ξ sin2 x dx = 1
2
ξ

∞
∑

k=1

(−1)k+1(2ξ)2k

(2k)!

∫ ∞

0

e−y y2k dy = 1
2
ξ

∞
∑

k=1

(−1)k+1(2ξ)2k

= 1
2
ξ

[

1−
∞
∑

k=0

(−4ξ2)k

]

= 1
2
ξ

[

1− 1

1 + 4ξ2

]

=
2ξ3

1 + 4ξ2
, (44)

after summing the geometric series. Inserting this result back into eq. (43) yields:

∫ ∞

0

e−x/ξ cos2 x dx =
ξ(1 + 2ξ2)

1 + 4ξ2
,

and eq. (42) is proven.

3. Including spin in the computation of the decay rate of 2s1/2 → 2p1/2 + γ

In order to include spin in the computation, we must employ the spin spherical harmonics
in the hydrogenic wave functions,

ψ(r, θ, φ) = Rnℓ(r)Yℓ 1
2

jm(θ, φ) ,

where the spin spherical harmonics are given by

Yℓ 1
2

j=ℓ± 1
2

, m
(θ, φ) ≡ 〈θ φ | j = ℓ± 1

2
, m〉 = 1√

2ℓ+ 1







±
√

ℓ±m+ 1
2
Yℓ,m− 1

2
(θ, φ)

√

ℓ∓m+ 1
2
Yℓ,m+ 1

2
(θ, φ)






. (45)

If ℓ = 0, there is only one spin spherical harmonic,

Y0 1
2

j= 1
2

, m
(θ, φ) ≡ 〈θ φ | j = 1

2
, m〉 = 1√

2ℓ+ 1







√

1
2
+m Y0,m− 1

2
(θ, φ)

√

1
2
−m Y0,m+ 1

2
(θ, φ)






. (46)

We apply the spin spherical harmonics to the following states:

2p1/2 : ℓ = 1 , j = ℓ− 1
2
= 1

2
,

2s1/2 : ℓ = 0 , j = ℓ+ 1
2
= 1

2
,
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The relevant spin spherical harmonics are:

Y0 1
2

1
2

1
2

=
1√
4π

(

1
0

)

, Y0 1
2

1
2

,− 1
2

=
1√
4π

(

0
1

)

,

Y1 1
2

1
2

1
2

=
1√
3

(

−Y10(θ, φ)√
2Y11(θ, φ)

)

= − 1√
4π

(

cos θ
eiφ sin θ

)

,

Y1 1
2

1
2

,− 1
2

=
1√
3

(

−
√
2Y1,−1(θ, φ)
Y10(θ, φ)

)

=
1√
4π

(

e−iφ sin θ
cos θ

)

.

We shall compute
1
2

∑

mi,mf

|~dif |2 ,

where we average over the two possible mj-values of the initial state and sum over the two
possible mj values of the final state. In the coordinate basis,

∑

mi,mf

|~dif |2 =
∑

mi,mf

∫

d3xR20(r)Y† 0 1
2

1
2
,mi

(r̂)~xR21(r)Y1 1
2

1
2
,mf

(r̂)·

∫

d3x′R21(r
′)Y† 1 1

2
1
2
,mf

(r̂ ′)~x ′R20(r
′)Y0 1

2
1
2
,mi

(r̂ ′)

(47)
Inserting

Y0 1
2

1
2
,mi

=

(√
1
2
+mY0,mi− 1

2
(r̂)√

1
2
−mY0,mi+ 1

2
(r̂)

)

, Y1 1
2

1
2
,mf

=

(

−√
3
2
−mY1,mf− 1

2
(r̂)√

3
2
+mY1,mf+ 1

2
(r̂)

)

,

into eq. (47), we obtain

∑

mi,mf

|~dif |2 =
∑

mi,mf

∫

d3x d3x′R20(r)R20(r
′)R21(r)R21(r

′)~x·~x ′

×
{

[

(3
2
+mf)(

1
2
−mi)

]1/2
Y ∗
0,mi+ 1

2
(r̂)Y1,mf+ 1

2
(r̂)−

[

(3
2
−mf )(

1
2
+mi)

]1/2
Y ∗
0,mi− 1

2
(r̂)Y1,mf− 1

2
(r̂)

}

×
{

[

(3
2
+mf)(

1
2
−mi)

]1/2
Y ∗
1,mf+ 1

2
(r̂)Y0,mi+ 1

2
(r̂)−

[

(3
2
−mf )(

1
2
+mi)

]1/2
Y ∗
1,mf− 1

2
(r̂)Y0,mi− 1

2
(r̂)

}

.

It is straightforward to perform the sums over mi and mf . The product of the two factors
in braces above consists of four pieces:

1. mi = mf = 1
2
:

{

− 1

4π
cos θ

}{

− 1

4π
cos θ′

}

,

2. mi =
1
2
, mf = −1

2
:

{

− 1

4π
e−iφ sin θ

}{

− 1

4π
eiφ

′

sin θ′
}

,

3. mi = −1
2
, mf = 1

2
:

{

− 1

4π
eiφ sin θ

}{

− 1

4π
e−iφ′

sin θ′
}

,

4. mi = mf = −1
2
:

{

1

4π
cos θ

}{

1

4π
cos θ′

}

.
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Summing up the four pieces yields

1

8π2
[cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)] =

1

8π2
r̂·r̂ ′ ,

The last step above follows from the definition of the unit vectors,

r̂ = (sin θ cosφ , sin θ sinφ , cos θ) , r̂ ′ = (sin θ′ cos φ′ , sin θ′ sinφ′ , cos θ′) .

Hence,
∑

mi,mf

|~dif |2 =
1

8π2

∫

d3x d3x′R20(r)R20(r
′)R21(r)R21(r

′)rr′(r̂·r̂ ′)2 .

To perform the integrals above, we employ spherical coordinates and choose the z-axis
to lie along ~x′. Then, r̂·r̂ ′ = cos θ and the integral over dΩ′ is free. It follows that

∑

mi,mf

|~dif |2 =
1

2π

∫ ∞

0

r3dr

∫ ∞

0

r′ 3dr′R20(r)R20(r
′)R21(r)R21(r

′)

∫

dΩcos2 θ

=
2

3

∣

∣

∣

∣

∫ ∞

0

r3R20(r)R21(r) dr

∣

∣

∣

∣

2

= 18a20 ,

where we have used eq. (20) in the final step. Finally, we average over the two initial mi

values to obtain,
1
2

∑

mi,mf

|~dif |2 = 9a20 .

Inserting this result into eq. (19) yields

Γ(2s1/2 → 2p1/2 + γ) =
12ω3e2a20
c3~

=
12ω3

~
2

(mc2)2α
,

which reproduces the result of eq. (23). Indeed, this computation justifies the factor of 1
3

that was employed in eq. (22).
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