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Quantum Mechanics of a Charged Particle in an Electromagnetic Field

These notes present the Schrodinger equation for a charged particle in an external
electromagnetic field. In order to obtain the relevant equation, we first examine
the classical Hamiltonian of a charged particle in an electromagnetic field. We then
use this result to obtain the Schrodinger equation using the principle of minimal
substitution. We examine a special case of a uniform magnetic field. Finally, we
demonstrate the origin of the coupling of the spin operator to the external magnetic
field in the case of a charged spin-1/2 particle.

I. Classical Hamiltonian of a charged particle in an electromagnetic field

We begin by examining the classical theory of a charged spinless particle in and
external electric field E and magnetic field B. Gaussian (or cgs) units are employed
for electromagnetic quantities. It is convenient to introduce the vector potential A
and the scalar potential ¢:

B=V XA, E=-V¢————. (1)
c Ot
These equations encode two of the four Maxwell equations,
V-B=0, VXE:——ﬁ—, (2)
c Ot
due to the vector identities
V(VxA) =0, V X (V) =0,

which are valid for any non-singular vector field A(7,t) and scalar field ¢(7,t).
However, the fields A and ¢ are not unique. Namely, the following transforma-
tions:

A } A+VX(F7t)7 ¢—> __%7 (3)
c
called gauge transformations leave the physical electromagnetic fields, E and B,

unchanged.

We wish to write down a classical Hamiltonian H that describes the motion of a
charged particle ¢ in an external electromagnetic field. Given H, we can use Hamil-
ton’s equations to derive the equations of motion for the charged particle. The correct
Hamiltonian will yield the Lorentz force law:

— d — U g
F:—mﬁﬁw(E+BxB). (4)
dt c
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The Hamiltonian for a charged particle in an electromagnetic field is given by:

1 A A
H=%<ﬁ—%>-<ﬁ—%)+q¢- (5)

We shall verify this result by using Hamilton’s equations to compute the equations of
motion and demonstrate that these coincide with eq. (4). For a Hamiltonian of the
form H = H(p;, z;), Hamilton’s equations are given by:

OH  du; _OH _dpi
Op;  dt’ ox;  dt’

where i runs over the three directions of space. In particular, the partial derivative
with respect to p; is computed at fixed x; and the partial derivative with respect to
x; is computed at fixed p;. Inserting eq. (5) into Hamilton’s equations yields:

dx; Di q
= =— - —A4
ST T m me (6)
dp;  q (. qA\ 0A 09
F‘ = — = — _— . — .
YT dt me ( c ox; q@xi (7)

Eq. (6) is equivalent to:

ﬁ:mft_)'—l—gf_f.
c

The quantity mv is called the mechanical momentum, which is not equal to p, which
is called the canonical momentum. The reason for this nomenclature will be addressed
later. If we now substitute the equation for p'in eq. (7), we obtain:

d q,\ 104 3¢
dt (mvz * cAZ) Y Ox; q&xi ' (8)

As noted above, the partial derivative with respect to x; is computed while holding
p; (or equivalently holding v;) fixed. Hence,

_0A 0, o

v 8@ N 82152

Thus, we can rewrite eq. (8) as:

d q
2" =



To make further progress, note that dj/ dt is a full time-derivative of A. By the
chain rule,

dA 0A du;

The chain rule reflects the physical fact that the full time-derivative of A has two
sources: (i) explicit time-dependence of A(7,t), and (i) implicit time-dependence by
virtue of the fact that the charged particle moves on a trajectory ¥ = 7(t). Noting
that v; = dx;/dt [where ¥ = (21, x5, z3)], we can rewrite the chain rule above as:

dA 0A o -
o o T EVA
Inserting this result in eq. (9) yields:
d I|a =~ 7 . . DA -
Limw) =1 |9@ &) - @A-ZZ| — 96 1
L mw) = 1 [9@-A) - @94~ 2| 490 (10)

Finally, we make use of the vector identity:
X (VxA) =V @A) - (5-V)A.

This should remind you of the famous BAC-CAB rule for computing the triple cross-
product: A x (B x €) = B(A.-C) — C(A-B). In the case of the identity above,
you have to be a little careful since one of the vectors is a differential operator. So,
the more correct version is A X (B x C) = B(A-C)— (A-B)C. The casiest way to
prove the identity above is to write both sides in component form and simplify the
left hand side until it takes the form of the right hand side. I leave this as an exercise
for the reader. Applying the above identity to eq. (10) yields:

E(mﬁ):—'ﬁ'x (VXA)—Q<V¢+;E> .

which coincides with eq. (4), as required.

So far, we have described the motion of a charged particle in an external electro-
magnetic field. If the particle also feels an external potential V' (#,¢) that is unrelated
to the external electromagnetic field, then we should use the more general Hamilto-

nian,
1 A A
H=—— (ﬁ— q—) : (ﬁ— %) a0+ V(.1). (1)
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Eq. (11) suggests the principle of minimal substitution, which states that the Hamil-
tonian for a charged particle (of charge ¢) in an external electromagnetic field can be
obtained from the corresponding Hamiltonian for an uncharged particle by making
the following substitutions:

—

P—B-TAFL, V) — V(D + o).

II. Schrodinger equation for a charged particle in an external electromag-
netic field

We first write down the time-dependent Schrodinger equation,

H (1)) = ih o [ (0)

1 A A
- — (*——q )-(ﬁ——q )+q¢+V(F,t).
2m c c

For simplicity, we will set the external potential V' (#,t) to zero, and assume that
the electromagnetic potentials are time-independent. Then, the time-independent
Schrodinger equation for stationary state solutions [¢) is given by:

L (ﬁ— ﬂ) ) = (E — qd) ) -

where

2m c

Comparing this with the time-independent Schrodinger equation for a free particle,
one can introduce the principle of minimal substitution at this point by noting that the
time-independent Schrodinger equation for a charged particle of charge ¢ is obtained
by the substitution:

P— - —AF 1), E— E—qd(F1).
C

In the coordinate representation, we identify p with the differential operator
—1hV. Hence, the time-independent Schrodinger equation is given by:

- [i09 + LA 0 + a0 = Bl

In obtaining the above result, we implicitly assumed that we should identify the
canonical momentum P’ [and not the mechanical momentum m]| with the operator
—ihV. The momentum operator p is called the canonical momentum because it
satisfies the canonical commutation relations,

[LIZ'Z‘ y pj] = ’Lh,(sw .
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This is one of the essential postulates of quantum mechanics. Had we tried to identify
mv with —ihe, we would have found that the resulting theory does not reduce to
the classical limit as h — 0.

The Schrodinger equation written above can be expanded out:

—h?
2m

h h —_— )
V%+ .AV¢+7M(V-)+

S AN+ qov = B,

mc

where we have suppressed the coordinate arguments of the electromagnetic vector
and scalar potentials and the wave function . At this point, the equation can be
simplified by choosing a gauge. 1 claim that given any A and ¢, I can perform a
gauge transformation [cf. eq. (3)] such that the resulting A and ¢ satisfy:

V-A=0 , p=0, Coulomb gauge conditions

Suppose (K , ¢) are the initial vector and scalar potential. Making a gauge transfor-

mation,
1 Ox(7,1)
c ot

To ensure that the Coulomb gauge conditions are satisfied, we require that:

ox(7,t)
ot

A= A+ V(7 1), ¢ =

V(7 t) = =V -A(F,1), = co(F,t).
One can always find a x (7, t) such that the above conditions are satisfied! By choosing
such a x(,1), it then follows that V-A' = ¢’ = 0 as desired. Thus, the Schrodinger
equation in the Coulomb gauge is given by:

—h?
2m

iqgh -

V%ﬁ+ %) + qon) = By

III. Schrodinger equation for a charged particle in a uniform electromag-
netic field

We can use the results obtained Section 11 to examine two cases.

1. A uniform electric field

In this case, it is not convenient to use the Coulomb gauge. Instead, we choose
A =0and E = —V¢. The Schrodinger equation becomes:

R,
%V Y+ qop = Ey,

which has the same form as the usual Schrodinger equation for a particle in a potential.



2. A uniform magnetic field

In this case, we will choose the Coulomb gauge. If B is uniform in space and
time-independent, then, one may choose:

A= X B, $=0.

_1ipz
2T

To check that this is correct, we use eq. (1) to compute E and B. Since A is time-
independent and ¢ = 0, it follows that E = 0. Next, we compute B = V X A.
Noting that:

Ay = _%(sz_ZBy)v Ay:—%@’Bm—SL‘Bz), A = _%(xBy_wa)’

one easily evaluates:

o - . (0A, 04, _[0A, O0A, . (04, O0A,
VXA_m(ay 8z)+y<8z 8x)+z(8x 8y)
—&B,+ 9B, + 2B.=B.

Furthermore, note that

V-A= —%V-(FX B)=0,
which confirms that we have indeed chosen the Coulomb gauge. Thus, the time-
independent Schrodinger equation reads:

h2
om

iqh ¢

V2 — o (7 X B)-Vi + < (7 X B2 = Ey.

This equation can be simplified by noting the vector identity:
(7 x B)-Vi) = —B-(Fx V).

Hence,

Al G By = LB (Fx Eﬁ@b) .
 2me 2me 7

We identify the canonical angular momentum operator,

— h —>
i
This is to be distinguished from the mechanical angular momentum # X (m). You
can check that the canonical angular momentum operators of eq. (12) satisfy the

usual angular momentum commutation relations,

Hence, we can write:



Finally, if we use the vector identity,
(7 x B)? =r’B* — (7 B)?,
then the time-independent Schrodinger equation for a charged particle of charge ¢ in
an external uniform magnetic field B is given by:

—h? 2
V- LB Ly+ !
2mc

r*B* — (7 B)?| ¢ = Ei). (13)

om 8mc?

IV. Schrodinger equation for a charged spin-1/2 particle in an electromag-
netic field

So far, we have neglected spin. For a spin-1/2 particle, the wave function is a
spinor of the form
_(t
w—(% |

Likewise, the Hamiltonian operator must be a 2 x 2 matrix.

To determine the correct Hamiltonian for a charged spin-1/2 particle in an elec-
tromagnetic field, we choose the Hamiltonian for a free uncharged spin-1/2 particle
to be:

= =2
= TP (14)

2m
Noting that (&-p)? = P21, where I is the 2 x 2 identity matrix, we recover the
expected free particle Hamiltonian. In order to obtain the Hamiltonian for a charged
spin-1/2 particle, we apply the principle of minimal substitution to eq. (14).! Thus,

we choose
H=—¢&- (p——q )a <p 1 >+q¢1
2m c c

We can simplify the first term above by writing:

() () el oy

> A; A;
= Z (52]]: + Zeijkak> ( i — qc ) (pj _ qTJ>

ijk

c

N 2
_ qA iq
<p ) g E :Ejk(p i+ Aipj)ow

ijk

(15)

If one applies the principle of minimal substitution to H = (2/(2m))I, one obtains a spin-
independent Hamiltonian, which is in conflict with experiment. Remarkably, applying the principle
of minimal substitution to eq. (14) yields a spin-dependent Hamiltonian, which is in very good
agreement with experiment.



where we have used the sigma matrix identity,

3
0,05 = 152] +1 E €ijkOk -

k=1
Note that
Z €ijkPiPj = Z EijkAiAj =0,
ij ij
since €;j; = —€j;, is a totally antisymmetric tensor.

To evaluate the second term in eq. (15) above, we use

> ein(pid; + Aipjox =Y €(piA; — Ajpi)or,

ijk ijk

where we have used the antisymmetry of €;;, followed by an appropriate relabeling
of indices. Employing the operator identity (which is most easily checked in the
coordinate representation),

0A;

piAj - Ajpi = [pi7 Aj] = —ih oz, )

it follows that

. 0A; .
E €ik(Pid; + Aipj) = E €ijklpi, Aj] = —ih E Eijk—ag; = —ihBy,
ij ij !

ij

after recognizing that B=VxA implies that:
0A;
g Z ik Ox;
ij
Consequently,

. R o 2
o[ qAN L (L qA L qA hg_, =

Thus, the Hamiltonian for a charged spin-1/2 particle in an external electromagnetic

field is:

1 A\? _

H=-—|p-22 I—ﬂ*-Bququ.
2m c 2me

That is, if Hy is the spin-independent part of the Hamiltonian, then

—

H=H,--L3§.B, (16)

mc

where we have identified the spin-1/2 operator, S = %h&'.
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Let us apply the above results to obtain the time-independent Schrodinger equa-
tion for a charged spin-1/2 particle in a uniform magnetic field. Using egs. (13) and
(16), it follows that:

—V*——B-(L+2S °B*— (7-B)*| ¢ = EY.

Note especially the relative factor of 2 in L + 28 above. This means that we have
predicted that an elementary charged spin-1/2 particle has a g-factor equal to 2. In
more general circumstances, we will replace L+2S in the above equation with L+ g§ ,
where ¢ is determined from experiment.



