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Clebsch-Gordon coefficients and the tensor spherical harmonics

Consider a system with orbital angular momentum L and spin angular momentum S. The
total angular momentum of the system is denoted by J =L+ S. Clebsch Gordon coefficients
allow us to express the total angular momentum basis |jm; £ s) in terms of the direct product
basis, [ mg; smg) = [ my) @ |smy),

l s
lgm; ls) = Z Z (Emy; smg|jm; €s)[lmy; smyg) . (1)

mgz—é Mms=—3S5
The Clebsch-Gordon coefficient is often denoted by
(Umg; smg|jm) = (myg; smg|jm; ls),

since including ¢ s in |jm; £ s) above is redundant information. In Appendix A, we discuss the
Clebsch-Gordon series and its applications.
One important property of the Clebsch-Gordon coefficients is

(Emg; smg|jm) = 0m mprm, (Eme; s ms|j mg+ms), (2)

which implies that if m # my + mg then the corresponding Clebsch-Gordon coefficient must
vanish. This is simply a consequence of J, = L, + S,. Likewise, [{ — s| < j <+ s (where 27,
¢ and 2s are non-negative integers), otherwise the corresponding Clebsch-Gordon coefficients
vanish.

Recall that in the coordinate representation, the angular moment operator is a differential
operator given by

L=—ihZ X V.
The spherical harmonics, Yy, (0, ¢) are simultaneous eigenstates of L? and L.,
L* Yo, (6, ¢) = WL + 1) Yin, (6, 9) L. Yo, (6, 0) = Tim Yo, (0, 9)

We can generalize these results to systems with non-zero spin. First, we define s, to be the
simultaneous eigenstates of % and S.

‘§2Xsms = hzs(s + 1)Xsms s SszmS - hmsXsmS .

The direct product basis in the coordinate representation is given by Y, (0, ¢)Xsm.-
In the coordinate representation, the total angular momentum basis consists of simultaneous
cigenstates of J* , J,, L?, §%. These are the tensor spherical harmonics, which satisfy,

T V00.6) =125+ 1) Vi (0.9), T Vi (0,6) = him V3, (0, 9),
L*Y05.(6,0) = RU(L+ 1) Vi (6, 6), S2 Vi (0,6) = Ps(s + 1) Vi, (6, 6) .



As a consequence of eq. (1), the tensor spherical harmonics are defined by

)4 s
Vin:0) = > D> (mes smg|jm) Yo, (6, 6)Xom,

my=——f ms=—s
s

= Z (€, m—mg; smy |jm>Yé,m—mS(9a P) Xsms (3)

ms=—s

where the second line follows from the first line above since the Clebsch-Gordon coefficient
above vanishes unless m = my + ms.

The general expressions for the Clebsch-Gordon coefficients in terms of j, my, ¢, s and mg
are very complicated to write down. Nevertheless, the explicit expressions in the simplest cases
of s =1/2 and s = 1 are manageable. Thus, we shall exhibit these two special cases below.

For spin s = 1/2, the possible values of j are j = K—l—% and ( — %, ford =1,2,3,.... If (=0
then only j = % is possible (and the last row of Table 1 should be omitted). The corresponding
table of Clebsch-Gordon coefficients is exhibited in Table 1.

Table 1: the Clebsch-Gordon coefficients, (¢m — my; 2 m, | jm).

me = —

[N

1
2

(+m+1 2 (—m+1 2
2041 20+1

/1 {—m+3 12 (+m+ 3 V2
2 20 +1 20 + 1

J ms =

(+

N[

Comparing with eq. (3), the entries in Table 1 are equivalent to the following result:

‘jzﬁi%m>: *2614—1 {i\/ﬁ%—%im‘«@m—%;%%>+\/€+%:Fm’€m+%;%—%>] :

We can represent |5 3) = (§) and |3 — 1) = (9). Then in the coordinate representation,

the spin spherical harmonics are given by
] £/ lEm+ 3 Y1 (0,0)

V20 + 1
TR\ e m+ LY 40,9)

If £ =0, there is only one spin spherical harmonic,

1 3+ m Yom—1(0,0)

Vicg 8 0) = (0015 =3, m) = | :
\/m % —m %,m-ﬁ*%(e’ ¢)

3

Yty (0,0)= (001 =(£1, m) =

(4)

\)



Note that when m = % the lower component of eq. (5) vanishes and when m = —% the upper
component of eq. (5) vanishes. In both cases, the non-vanishing component is proportional to
Yoo(0, 6) = 1//Ar

For spin s = 1, the possible values of jare j =¢+1, ¢,/ —1for { =1,2,3,.... If £ =0
then only j = 1 is possible (and the last two rows exhibited in Table 2 should be omitted). The
corresponding table of Clebsch-Gordon coefficients is exhibited in Table 2.

Table 2: the Clebsch-Gordon coefficients, (¢ m —my; 1mg|jm,).

j ms =1 mg =0 ms = —1
paq | [EEm)(C+m) VATl =m+D)(+m+ D] T =m)(l —m—+1)]"
+ { (20+1)(20+2) } { (L+1)(20+1) } { (20+1)(20+2) }
, (6 —m=+1)(+m)]"? m (6 —m)(l +m+1)]"?
- { 2000 +1) } (r+1) { 2000+ 1) ]
(0 —m)(t —m+1)]"? (0 —m)(L+m)]"” (C+m)(l+m+1)]"
£-1 [ 2001 1) ] _[ ToTESY } [ 2020+ 1) }

Using a spherical basis, we can represent |11) = (é), |10) = (g) and |1 — 1) = ((?]).

With respect to this basis, we can explicitly write out the three vector spherical harmonics,
Vil m(0,¢) and Vi1, | (0, ¢). For example, if £ # 0 then,

(=m+1)({+m)]"?
B [ 20(0 4+ 1) ] Yem(0,9)
L m(0,0) = % Yon(0, 9)
(0 +m—+1)(¢—m)]"?
{ 20(0 4+ 1) ] Yem-(0,9)

The other two vector spherical harmonics can be written out in a similar fashion. If £ = 0 then

fiz +1.m(0, @) is the only surviving vector spherical harmonic.

It is instructive to work in a Cartesian basis, where the xi,,, are eigenvectors of Ss, and

the spin-1 spin matrices are given by AS, where (Sk)ij = —i€;j. In particular,
0 —i 0
Sy= |1 0 0
0 0 0
and SzX1,m, = MsX1,m,. This yields the orthonormal eigenvectors,
1 F1 0
Xi21=—F72 | —t |, x,o0=10] . (6)
2\ o 1



where the arbitrary overall phase factors are conventionally chosen to be unity. As an example,
in the Cartesian basis,

[(C—m+ 1)l +m)] Yom1(6,0) + [(€ +m~+ 1) —m)]"* Yepia (0, 0)
(0= m+ 1) +m)]" Yoguor(8,0) — i [(C+m+1)(€ —m)]"* Vi (60, 0)
2mYZm(97¢)

1
¢1 _
j:Z,m(ev(b)_ 9 €(£—|—1)

(7)
This is a vector with respect to the basis {&, g, £}. It is convenient to rewrite eq. (7) in terms
of the basis {'ﬁ, 0, q,’)} using

ﬁsin@cos¢+écos@cos¢— ¢A)sin¢,
ﬁsin@sin¢+écos€sin¢+q,’A)cos¢,

Z=1"7cosf —0sinb.

2
I

N
Il

: 1Z,m(97 ¢) by employing the recursion

We can then greatly simplify the resulting expression for ;-

relation,

—2m cos 0 Yy, (0, ¢) = sin 9{ [(C+m+1)(0 —m)]V* e Yim+1(0, ¢)

F[(0=m+ 1)+ m)]? €Y1 (0, ¢)} ,

and the following two differential relations,

% Vi (0, 8) = imYim(0, 6)

LY1(0,6) = L0+ m A+ )= m)] Vi (0,0)
L =m+ 1) +m)] eV, 1(0,0).

Following a straightforward but tedious computation, the end result is:

(1 _ i
yj:é,m(9a¢)_ €(£—|—1)

6 o ~ 0

At this point, one should recognize the differential operator L expressed in the {fﬁ , 0 , 913} basis,

. ~ 6 o .0
L:—. T f— ) - - .
th® X V =1ih [sin@ 90 ¢89]
Hence, we end up with
1 —
Vi, (0,0) = ———=LYy,(0,¢), for(#0. 8
e 0l0.6) = s EYin0,0) . ®)
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This is the vector spherical harmonic,

Xm0, 6) = mm X ¥ Vi (0, )

employed by J.D. Jackson, Classical Electrodynamics, 3rd Edition (John Wiley & Sons, Inc.,
New York, 1999).

Using the same methods, one can derive the following expressions for the other two vector
spherical harmonics,

01 _ —1 ) "_/ra_‘ . T
Viein(0.0) = s (4 2= 19| Vinl0.6), for(#0. (9
1 _ 1 TS vAR v

Vikins(®:0) = s [0+ 19| Y10 (6,0), (10)

where & = rni and nn = #. That is, the three independent normalized vector spherical harmonics
can be chosen as:!
{ X VY (0, 0) L OYVn(0,6), AYim(0 gb)} (11)
BT im\V, @), —F——=—=V ¥im(l, ), jm\Y, -
JjG+1) J(G+1)

Note that 7 - 65@,”(9, ¢) = 0Y;n(0,¢)/0r = 0. Hence, it follows that the first two vector
spherical harmonics of eq. (11) are transverse (i.e., perpendicular to i), whereas the third
vector spherical harmonic in eq. (11) is longitudinal (i.e., parallel to 7). This is convenient for
the multipole expansion of the transverse electric and magnetic radiation fields, where only the
first two vector spherical harmonics of eq. (11) appear. However, 'V Yj},,(6, ¢) and 7Y}, (6, ¢)
are not eigenstates of L? since they consist of linear combinations of states with ¢ = j £+ 1
[which can be explicitly derived by inverting eqgs. (9) and (10)].

The algebraic steps involved in establishing eqgs. (8)—(10) are straightforward but tedious.
A more streamlined approach to the derivation of these results is given in Appendix B.

Appendix A: The Clebsch-Gordon series and some applications

The Clebsch-Gordon coefficients form a unitary matrix. It is standard practice to employ a
phase convention in defining the Clebsch-Gordon coefficients (called the Condon-Shortly phase
convention) such that all the Clebsch-Gordon coefficients are real. In particular,

(Jima; jamal|jm) = (jm|jimi; jama).

1Tt is often convenient to rewrite 7'V Yjn, (0, ¢) = —r[A(f - V) — V]Yjm(0,0) = —rf X (A X V)Y (0, d),
since 7 - 63@,” (0,¢) = Y (0,6)/0r = 0 as noted above. This alternative form is often used for the second
vector spherical harmonic of eq. (11).



In this convention, the Clebsch-Gordon coefficients form an orthogonal matrix and therefore
satisfy orthogonality relations,

> Gz jama | jm)Grmd s o mly | §1m) = Gy Sy (12)
J,m

> Gimas jama | jm)(jima; jama |5 m') = 6 j6mm A(j1j2d) | (13)
mi,m2

where ji, jo and j are non-negative integers or half-integers and

1, if [j1 —Jol <7< i+ J2s

. (14)
0, otherwise.

A(J1725) = {

Consider a system whose total angular momentum is J = J, + J,. Clebsch-Gordon coef-
ficients provide the connection between the total angular momentum basis |jm ; j; j2) and the
direct product basis, [j; my; jomi) = |j1m1) ® |j2ama),

|Jm Z Z 1m17 2m2|]m)|jlm17j2m2) (15)

mi=—J1 mo=—j2

The unitary operator that (actively) rotates states by an angle # about an axis 7 is
U[R(#,8)] = exp (—i@ﬁ : j/h) .

Applymg U[R(7,0)] to the state |jm) does not change the value of j since 7 - J commutes
with J2. Then, inserting a complete set of states, one obtains

U[R(7, 0)]|jm') Zum (j m| exp(—i0 - J /1) jm') ZD R)|jm),

(G |UR(,0)] = > (jm|exp(—ibn - J/h)|jm) (jm| = _(jm| DY) (R),

m m

which defines the (2j + 1) x (2 + 1) unitary matrix DY (R) that represents the rotation R.
Consider the matrix element (j;my; jo mo|U[R(72, 0)]|jm). We can compute this in two
different ways by letting the operator U[R(n, #)] act either to the right or to the left.

(Grma s jame|UR(R, 0))jm') = DY) (R)(jyma; jamaljq),

q

(Grmas jamalUR(R,O)][jm'y = > (jumis jamb | jm') DIY, (R) DY) (R).

mfi,mb
Equating these two expressions yields

. DY) (R){(jymu; jama | jq) = > Gimis jamb | jm) Dgi)m’l(R) Dgz)m'z(R) '

! !
ml,m2



Multiplying this result by (ji1 ¢1; j2 ¢2 | j m’) and summing over j and m’ using the orthogonality
relation given in eq. (12), we end up with

DYV (R) DY (R) = Y (Gumas jame | ja)(jiars jage| m') DY) (R)
q,3,m’

which is called the Clebsch-Gordon series. The sum over g and m’ can be performed immediately
since the Clebsch-Gordon coefficients above vanish unless ¢ = m; + mo and m' = ¢ + ¢o,
respectively. After relabeling, we are left with

DYV (R)DY? (R) = (jima; jamal i, mitma) Grml; jamh |3, mi+my) DY) (R).
J
(16)
For non-negative integer ¢, one can prove that
() 4 %

where («, (3, v) are the Euler angles that specify the rotation R. Thus, setting ¢; = ¢ = 0 and
taking integer values j; = ¢; and j, = {5 in eq. (16), it follows that

. (20, + 1) (20, + 1 .
Yoy oy () Yy (72) = Z ! %;1) Nty s fama | £ 0 £50]£0) Yim(R) . (18)

To establish eq. (17), recall that the Euler angle representation of the rotation R, described
in the handout, Three-Dimensional Rotation Matrices, is given by

R(n,0) = R(2,a)R(9, B)R(2,7) . (19)
Likewise,?
D(jZn/(R) — D%Zn’ (Oé,ﬁ,’}/) _ <] m| piadz/h =iBJy/h j—iv):/h |jm,> _ e—i(am—i—’ym’) d%zﬂ/ (ﬁ) : (20)

where dV)(8) = (jm| e/ Um>

A relation between the D, G) /»(R) and the spherical harmonics can be determined as follows.
First, note that U[R(7, )]|:c) |R%Z), where (RZ); = R;;x; (with an implicit sum over the re-
peated index j). Since U[Rl]U[R2] = U[R Ry) it follows that UT[R] = U~}[R] = U[R™!]. Hence,
Ut[R(n,0)]|®) = |R~*&) and the corresponding adjoint is (Z|U[R(#,0)] = (R™'&|. Thus, we

2In order to avoid minus sign errors in extracting the phase factors, consider the following computation. If
U is a unitary operator, then UUT = UTU = I, or equivalently UT = U~!. Consider the eigenvalue problem
U®¥ = \§. Then it is straightforward to prove that || = 1, or equivalently A~! = A\*. Thus, using Dirac bracket
notation, we have Ulv) = A|v), and

W)U = (U] = (U | = W] = (XN o] = Ao].

The key observation is that a constant inside the bra is complex-conjugated when moved outside the bra.



can evaluate (Z|U[R(7,0)]|¢m) in two different ways by letting the operator U[R(7, 0)] act
either to the left or to the right.

(&UR (7, 0)]|¢m) = (RT'E | {m) = Yo (R'7),
(@U[R(n,0)][0m) = (& | 0m) (¢ [U[R(70, 0)]|¢m) = > D), (R) Yo (1) ,

’ ’

where 7o = &/r. Equating these two expressions yields
Yiu(R7') = Y D) (R) Yo (R). (21)

m/

Replacing R with R~ and using Dﬁf}m(R_l) = D%?;(R) = Diﬁ),:,(R), it follows that eq. (21) is
equivalent to

Yim(RA) =" D) (R) Yo (7). (22)

ml

If we parameterize the rotation R with Euler angles (¢, 6, v) as in eq. (19), then we can write
it = R($,0,7v)2. Note that 72 is a unit vector with polar angle § and azimuthal angle ¢. In
particular, the angle v has no effect since R(2,v)2 = 2 independently of the angle . Thus,
replacing o with 2 in eq. (22), it follows that

Yo (1) ZD R) Y (2) .

. 120+ 1
Yem’(z) = Témo

which confirms eq. (17) quoted above.
Next, we note the orthogonality relations satisfied by the D-matrices,

Finally, using the fact that

it follows that

3

8 2

/dRE/O%da/:ﬂdv/owsinﬁdﬁ. (24)

By setting ms = m/, = 0 and taking j = ¢ and j' = ¢’ to be integers, one can check that in light
of eq. (17), the spherical harmonics satisfy the expected orthogonality relation,

where

/ QY (0, 0) Y, (0, ) = 6400 Sy - (25)

3The orthogonality relations can be derived by integrating eq. (16) over the Euler angles [cf. eq. (24)]. The
resulting integral is straightforward and after some manipulations one simply needs a closed form expression for
the Clebsch-Gordon coefficient (j, —m; jm|00) = (—1)7T™/\/25 + 1. For further details, see e.g. Ref. [8].

8



We can use egs. (16) and (23) to derive an important integral:

/dR Dﬁrjlj)m’l (R) Dgz)mg(R) D,(iz),:bg(R) = /dR Z(jl my; jame | jm) (jimy; jamy | jm’)

J

(4) (43) *
X Dm1 +ma,m}+m) (R) sz mi (R)
87?2 . . . . / . / . /
= 2j3+1(J1m1;J2m2\93m3> (J1my; jamb | jsmy) .

(26)

Note that the integral above vanishes unless ms = my + mq, mjy = m/ + mj and A(j1jaj3) =1
due to the properties of the Clebsch-Gordon coefficients [cf. eq. (14)].

If we take j; = {1, jo = {5 and j3 = f3 to be integers and set m}| = mj = m/ = 0, then in
light of eq. (17), we obtain

2, +1)(205 + 1
/dmleml(e,¢m2m2(9,¢m§m3(9,¢) - \/( ilw(22§+21) )<€1m1; lymy [ lymg) (€105 £30]450) .

(27)

Finally, using Yio() = [(2¢ 4 1)/(47)]"/* Pi(cos §), it follows that

1
2
/_1 Py, (z) Py, (2) Py (z) d = 2% 1 (€10 £50]050)2. (28)

For completeness, we note the remarkable formula given in Ref. [5],

1
205+ 1

where [cf. eq. (14)]:

( g! )2 (29 — 201)1(2g — 205)!(2g — 205)!
(9 =€) g — £2)!(g — &3)! (29 +1)! ’

<€1O; 620|€30>2:

2g = {1 + Uy + U5 is an even integer and A({1lz03) = 1.

If ¢4+ €5+ ¢35 is an odd integer and/or A(¢1f2f3) = 0 then (¢, 0; ¢50]¢30) = 0. As a result, the
right hand side of eq. (28) is symmetric under the interchange of the ¢; as expected.

Appendix B: The vector spherical harmonics revisited

Since Yy, (72) is a spherical tensor of rank-¢, and 1o = &/r, L = —ih@x V and rV are vector
operators, it is not surprising that the vector spherical harmonics are linear combinations of
the quantities given in eq. (11). It is instructive to derive this result directly. For convenience,
we denote the vector spherical harmonics in this appendix by

Y jon(R) = VIL(0,0), forj=0+1,0,0-1, (29)

where 7 is a unit vector with polar angle # and azimuthal angle ¢.



First, we recall that [cf. eq. (12.5.20) of Shankar]:
Liltm) =h[(LFm)(+m+ 1)) |jm+1), L.|m) = hm|tm),

where Ly = L, £+ i¢L,. The spherical components of L are L, (¢ =+1,0,—1) where

Ly 1
Lo =425 = — (L, +iL,) . L
\/5 \/5( Zy) 0

Using the Clebsch-Gordon coefficients given in Table 2, it follows that

L,.

Ltm) =h(—1)"\/l(l+1){l,m+q; 1, —q|lm)|l, m+q).
In the coordinate representation, eq. (31) is equivalent to
LgYem(R) = h(=1)UL+1) {0, m+q;5 1, —q[{m) Yy, miq(R) .
It is convenient to introduce a set of spherical basis vectors,

(& +i9) | &= 3.

It is not surprising that é, = x1,4 [cf. eq. (6)]. One can check that

L=L,&+Lg+Lz=) (-1)"Lsé_,,

q

where the sum over ¢ runs over ¢ = —1,0, +1.% Hence, eqs. (32) and (34) yield

LY, () = hn/E(0 + 1) Ze_qe m+q; 1, —q[£m) Yo miq(R).

Since the sum is taken over ¢ = —1,0, 1, we are free to relabel ¢ — —¢q. Writing é, =
end up with

L}/Zm —h\/ €+1 Z _q717q|€m>n,m—q(ﬁ)><1q
Comparing with eq. (3) for s = 1, it follows that [in the notation of eq. (29)]:

L}/Zm = h\/ € + 1 Yéfm

in agreement with eq. (8).

(30)

(31)

(32)

(33)

(34)

X1 Q> we

(35)

Next, we examine 7Yy, (7). It is convenient to expand 7 = &/r in a spherical basis. Using

eq. (33), the following expression is an identity,

4
N = &sinfcosp + Ysinbhsing + 2cosh = \/%Z(—l)q}ﬁq(ﬁ) é_,
q

4Henceforth, if left unspecified, sums over ¢ will run over ¢ = —1,0, +1.

10
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Hence,
4 A\ A
Yin(R) =4[ 5 E 1)*Y1g(7) Yo () €4 . (37)

Using eq. (18) [after using eq. (2) to reduce the double sum down to a single sum],

. . 3(20+41) 1 .
m(nmm(n):\/iE e (m; 1q | €', m A+ ) (005 10|07 0) Yir niq(R).
4 A/ 20! ’
T — 2041

(38)
Only two terms, corresponding to ¢’ = £+ 1, can contribute to the sum over ¢’ since [cf. Table 2]:

4 1/2
(%) ol =41,

(00;10]¢'0) = 0, for ¢'#0+£1, (39)

/ 1/2
—<2€7_‘_1> s forﬁlzf—l.

Inserting eq. (38) on the right hand side of eq. (37) and employing eq. (39) then yields

o ) +1\"? )
nYZm(’I’L) = Z(—l)q e_q{<m) <€m7 1Q|£+1, m+q> Yg+17m+q(n)
q

£ 1/2 )

It is convenient to rewrite eq. (40) with the help of the following two relations, which can be
obtained from Table 2,

2043

(Em;1qll+1, m+q)=—(—1)7 2w+ 1 (C+1,m+q; 1, —qllm), (41)
20 — 1\ Y
(m;1qll—1,m+q) =—(-1) m) (=1, m+gq;1, —q[tm). (42)

The end result is:

N ) 41\ )
Yo () = — Ze_q{ <TH) (+1,m+q; 1, =q|lm) Y1 miq(N)
q

/ 1/2 )
_ (72£+1) (t—1,m+gq;1, —q|€m>Y5_1,m+q(n)}_ (43)

Using eq. (3) with s = 1 and x1, = é, and employing the notation of eq. (29), it follows
that
Yo m(B) = e (1, m+q;1, —q|0m) Yot miq(R), (44)

q

11



after relabeling the summation index by ¢ — —q. Hence, eq. (43) yields

) . +1\"? . X ¢ /2 ]
Y () = — <T+1) Yoot mlit) + (%—H) Vit (i) (45)

Finally, we examine rngm(ﬂ). First, we introduce the gradient operator in a spherical
basis, V, = (V11, Vo, V_1), where

1 /0 .0 et [ 0 cosh O i 0
Vamt g () T e w0
0 0 sinf 0
VQ—&—COSHE— , % (47)

We can introduce a formal operator V, on the Hilbert space by defining the coordinate space
representation,

(Z|Vy|tm) =V, Yy ().

Note that V, is a vector operator. We shall employ the Wigner-Eckart theorem, which states
that
(O [Vyltm) = (Em: Lg['m) ({'||V]|€), (48)

where the reduced matrix element (¢||V||¢') is independent of ¢, m and m’. To evaluate the
reduced matrix element, we consider the case of ¢ = m = m’ = 0. Then,

(€'0[Vol€0) = (£0; LO[L0) (LCIV1£) -

Thus,

, ('0|V,|€0)
VI = 77—
IV = o1
Inserting this result into eq. (48) yields

(¢m; 1q|t'm')
(€0:10]0)

(0 |V | em) = (0 0|Vo|£0) . (49)

We can evaluate (¢’ 0|V,|¢0) explicitly in the coordinate representation using eq. (47),

(€ 0|Vo|£0) = — / dQ Yy o(7) sin 6 % Yio(R).
T

Using Yio(R) = [(20 4 1)/(47)]"? Py(cos 0), and substituting x = cos#,

(0 o[vole0y = Y2IF ;)f%' +1 /_ (1= a)Pu(x) Pl(x) d (50)

where Pj(z) = dPy(z)/dz. To evaluate eq. (50), we employ the recurrence relation,
(1 —2*)P)(x) = (P,_y(x) — LxPy(z),

12



and the orthogonality relation of the Legendre polynomials,

1
2
[1 Pg(l’)Pgl([L’) dr = o0 1 5@@/ .

It follows that

V(20 + 51(26/ +1) { 2€2f —due1— /_ 1 2 Py(z)Py(z) dx} . (5D

1

(/0| V,|£0) =

To evaluate the remaining integral, we use z = P;(z) and the result of eq. (28) to write:

/_1 xPy(z) Py (z) dx = /_1 Py () Py(x) Py () de = %,24_ ] (10;£0]20).

Using eq. (39), the above integral is equal to

! 2(0+1) 20
/_1 wh(w)Pe () do = GrED@i 1) 0 T rm D

Inserting this result back into eq. (51) yields

<f’0|Vo|€0>=\/(%H)(%/H){ 2000+ 1) 5@%—1—( 2000+ 1) 5w+1}

o 20— 1)(20+1) 20+ 1)(20 1 3)
e+1) { 1 5 1 5 ]
T oRlt 1 V=1 T i Ot

Using eq. (49), it follows that:

(O |V, [0 = (Em;1qll'm')y £(0+1) [ 1 1 }

Sp gy — —— S
(€0;10[00) r/20+1 |Vor—1 " Varg3 O

[ L [ {+1
(¢+1) w_1 O o1+ ¢ 23 5@/,z+1] , (52)

after using eq. (39) to evaluate (£0; 10| ¢ 0).
We are now ready to evaluate rVY,,(n). First, we insert a complete set of states to obtain

1
=——(tm; 1q|'m')
r

Vltm) = [¢'m') (¢ m|V,|¢m)

o/

[/ [L+1
(f—‘— ].) 20 —1 6@/’5_1 —FE m 5@/7@_1] } .

(53)

1
= Z |€'m'){(€m; lqld'm')
o
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Note that in the sum over m’, only the terms corresponding to m’ = m + ¢ survive, due to
the presence of the Clebsch-Gordon coefficient (¢ m; 1¢| ¢ m’). Likewise, in the sum over ¢
only the terms corresponding to ¢/ = ¢ £+ 1 survive. In the coordinate representation, eq. (53)

is equivalent to
C+1
(€ +1)4/ £_15M 1+f\/2£+35z e+1]}-

V=) (-1)7e,V,.

q

Vo Yin(f) ———ZY@W {ﬁm Lg| ¢, m+q)

In analogy with eq. (34), we have

Hence, it follows that

—rwmm)=Z<—1>qé_q{<e+1>\/2f_1wm Lg1C=1, m+ Vi1 meg(R)

q
(41 .
o grg Ums Lall+ 1, m 4 @)Y erimag(R) o -

It is convenient to employ eqs. (41) and (42) and rewrite the above result as

N | ¢ N
TVYVZW’ n Ze_q{ €+ ]‘ 2£ <€_ 17 m—+q; ]-7 _q|€m>n—l,m+q(n)

[0+ 1 N
_I_E 2£+1 <€+1 m+Qa 17 _q|€m>n+l,m+q(n)}‘

Finally, using eq. (44), we end up with

{+1 = .
TVYzm =+1 \/2€+1 Mlm )+€\/T+1Y&é+l,m(") (54)

which is known in the literature as the gradient formula.
We can now use eqs. (45) and (54) to solve for Yy si1,m(7) and Yp—1.,(72) in terms of
1Yy (n) and rVng( ). Since these are linear equations, they are easily inverted, and we find

— 1 —

Y m(T) = —(l+1)n+rV| Yy, (1), for (=0,1,2,3,...,
() = s [0+ ) ()

— 1 —

Y&g_l’m(’fl) = m |:€'fl + TV] )/gm('fl) 5 fOI' E = 1, 2, 3, ceey
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which are equivalent to the results of egs. (9) and (10) previously obtained. In addition, we
also have eq. (35), which we can rewrite as
Yiim= it X VYi(R),  for (=1,2,3,...,.
((+1)

Thus, we have identified the three linearly independent vector spherical harmonics in terms of
differential vector operators acting on Yy, (7). For the special case of ¢ = 0, only one vector
spherical harmonic, Y 919(72) = (—72 + V) Yy, (72), survives.

In books, one often encounters the vector spherical harmonic defined by 7 X L Yy, (7).
However, this is not independent of the vector spherical harmonics obtained above, since

Ao X LYy (R) = —ihr i X (A X V)Y (R) = —ihir [ﬁg - 6} Y (R2) = ihr VY (7).
T

An alternative method for deriving the gradient formula [obtained in eq. (54)] is to evaluate
fv X LY, (R) using the same technique employed in the computation of AY,,(R) given in
this Appendix. However, this calculation is much more involved and involves a product of
four Clebsch-Gordon coefficients. A certain sum involving a product of three Clebsch-Gordon
coefficients needs to be performed in closed form. This summation can be done (e.g., see
Ref. [9] for the gory details), but the computation is much more involved than the simple
analysis presented in this Appendix based on the Wigner-Eckart theorem.
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