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Clebsch-Gordon coefficients and the tensor spherical harmonics

Consider a system with orbital angular momentum ~L and spin angular momentum ~S. The
total angular momentum of the system is denoted by ~J = ~L + ~S. Clebsch Gordon coefficients
allow us to express the total angular momentum basis |j m ; ℓ s〉 in terms of the direct product
basis, |ℓmℓ ; sms〉 ≡ |ℓmℓ〉 ⊗ |sms〉,

|j m ; ℓ s〉 =
ℓ

∑

mℓ=−ℓ

s
∑

ms=−s

〈ℓmℓ ; sms | j m ; ℓ s〉|ℓmℓ ; sms〉 . (1)

The Clebsch-Gordon coefficient is often denoted by

〈ℓmℓ ; sms | j m〉 ≡ 〈ℓmℓ ; sms | j m ; ℓ s〉 ,

since including ℓ s in |j m ; ℓ s〉 above is redundant information. In Appendix A, we discuss the
Clebsch-Gordon series and its applications.

One important property of the Clebsch-Gordon coefficients is

〈ℓmℓ ; sms | j m〉 = δm,mℓ+ms
〈ℓmℓ ; s ms | j mℓ +ms〉 , (2)

which implies that if m 6= mℓ + ms then the corresponding Clebsch-Gordon coefficient must
vanish. This is simply a consequence of Jz = Lz + Sz. Likewise, |ℓ− s| ≤ j ≤ ℓ+ s (where 2j,
ℓ and 2s are non-negative integers), otherwise the corresponding Clebsch-Gordon coefficients
vanish.

Recall that in the coordinate representation, the angular moment operator is a differential
operator given by

~L = −i~ ~x× ~∇ .

The spherical harmonics, Yℓmℓ
(θ, φ) are simultaneous eigenstates of ~L2 and Lz,

~L2 Yℓmℓ
(θ, φ) = ~

2ℓ(ℓ+ 1) Yℓmℓ
(θ, φ) , Lz Yℓmℓ

(θ, φ) = ~mℓ Yℓmℓ
(θ, φ) .

We can generalize these results to systems with non-zero spin. First, we define χsms
to be the

simultaneous eigenstates of ~S2 and Sz ,

~S2χsms
= ~

2s(s+ 1)χsms
, Szχsms

= ~msχsms
.

The direct product basis in the coordinate representation is given by Yℓmℓ
(θ, φ)χsms

.
In the coordinate representation, the total angular momentum basis consists of simultaneous

eigenstates of ~J2 , Jz , ~L
2 , ~S2. These are the tensor spherical harmonics, which satisfy,

~J2 Yℓs
jm(θ, φ) = ~

2j(j + 1)Yℓs
jm(θ, φ) , Jz Yℓs

jm(θ, φ) = ~mYℓs
jm(θ, φ) ,

~L2 Yℓs
jm(θ, φ) = ~

2ℓ(ℓ+ 1)Yℓs
jm(θ, φ) ,

~S2 Yℓs
jm(θ, φ) = ~

2s(s+ 1)Yℓs
jm(θ, φ) .
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As a consequence of eq. (1), the tensor spherical harmonics are defined by

Yℓs
jm(θ, φ) =

ℓ
∑

mℓ=−ℓ

s
∑

ms=−s

〈ℓmℓ ; sms | j m〉Yℓmℓ
(θ, φ)χsms

=
s

∑

ms=−s

〈ℓ , m−ms ; sms | j m〉Yℓ ,m−ms
(θ, φ)χsms

, (3)

where the second line follows from the first line above since the Clebsch-Gordon coefficient
above vanishes unless m = mℓ +ms.

The general expressions for the Clebsch-Gordon coefficients in terms of j, mℓ, ℓ, s and ms

are very complicated to write down. Nevertheless, the explicit expressions in the simplest cases
of s = 1/2 and s = 1 are manageable. Thus, we shall exhibit these two special cases below.

For spin s = 1/2, the possible values of j are j = ℓ+ 1
2
and ℓ− 1

2
, for ℓ = 1, 2, 3, . . . . If ℓ = 0

then only j = 1
2
is possible (and the last row of Table 1 should be omitted). The corresponding

table of Clebsch-Gordon coefficients is exhibited in Table 1.

Table 1: the Clebsch-Gordon coefficients, 〈ℓm−ms ;
1
2
ms | jm〉.

j ms =
1
2

ms = −1
2

ℓ+ 1
2

(

ℓ+m+ 1
2

2ℓ+ 1

)1/2 (

ℓ−m+ 1
2

2ℓ+ 1

)1/2

ℓ− 1
2

−
(

ℓ−m+ 1
2

2ℓ+ 1

)1/2 (

ℓ +m+ 1
2

2ℓ+ 1

)1/2

Comparing with eq. (3), the entries in Table 1 are equivalent to the following result:

∣

∣

∣
j = ℓ± 1

2
m
〉

=
1√

2ℓ+ 1

[

±
√

ℓ+ 1
2
±m

∣

∣

∣
ℓm− 1

2
; 1

2
1
2

〉

+
√

ℓ + 1
2
∓m

∣

∣

∣
ℓm+ 1

2
; 1

2
− 1

2

〉

]

.

We can represent |1
2

1
2
〉 = ( 1

0 ) and |1
2
− 1

2
〉 = ( 0

1 ). Then in the coordinate representation,
the spin spherical harmonics are given by

Yℓ 1
2

j=ℓ± 1

2
,m
(θ, φ) ≡ 〈θ φ | j = ℓ± 1

2
, m〉 = 1√

2ℓ+ 1







±
√

ℓ±m+ 1
2
Yℓ,m− 1

2
(θ, φ)

√

ℓ∓m+ 1
2
Yℓ,m+ 1

2
(θ, φ)






. (4)

If ℓ = 0, there is only one spin spherical harmonic,

Y0 1

2

j= 1

2
, m
(θ, φ) ≡ 〈θ φ | j = 1

2
, m〉 = 1√

2ℓ+ 1







√

1
2
+m Y0,m− 1

2
(θ, φ)

√

1
2
−m Y0,m+ 1

2
(θ, φ)






. (5)
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Note that when m = 1
2
the lower component of eq. (5) vanishes and when m = −1

2
the upper

component of eq. (5) vanishes. In both cases, the non-vanishing component is proportional to
Y00(θ, φ) = 1/

√
4π.

For spin s = 1, the possible values of j are j = ℓ + 1 , ℓ , ℓ − 1 for ℓ = 1, 2, 3, . . .. If ℓ = 0
then only j = 1 is possible (and the last two rows exhibited in Table 2 should be omitted). The
corresponding table of Clebsch-Gordon coefficients is exhibited in Table 2.

Table 2: the Clebsch-Gordon coefficients, 〈ℓm−ms ; 1ms | jm〉.

j ms = 1 ms = 0 ms = −1

ℓ+ 1

[

(ℓ+m)(ℓ +m+ 1)

(2ℓ+ 1)(2ℓ+ 2)

]1/2 [

(ℓ−m+ 1)(ℓ+m+ 1)

(ℓ+ 1)(2ℓ+ 1)

]1/2 [

(ℓ−m)(ℓ−m+ 1)

(2ℓ+ 1)(2ℓ+ 2)

]1/2

ℓ −
[

(ℓ−m+ 1)(ℓ+m)

2ℓ(ℓ+ 1)

]1/2
m

√

ℓ(ℓ+ 1)

[

(ℓ−m)(ℓ+m+ 1)

2ℓ(ℓ+ 1)

]1/2

ℓ− 1

[

(ℓ−m)(ℓ−m+ 1)

2ℓ(2ℓ+ 1)

]1/2

−
[

(ℓ−m)(ℓ+m)

ℓ(2ℓ+ 1)

]1/2 [

(ℓ+m)(ℓ+m+ 1)

2ℓ(2ℓ+ 1)

]1/2

Using a spherical basis, we can represent |1 1〉 =
(

1
0
0

)

, |1 0〉 =
(

0
1
0

)

and |1 − 1〉 =
(

0
0
1

)

.

With respect to this basis, we can explicitly write out the three vector spherical harmonics,
Yℓ 1

j=ℓ±1 ,m(θ, φ) and Yℓ 1
j=ℓ ,m(θ, φ). For example, if ℓ 6= 0 then,

Yℓ 1
j=ℓ ,m(θ, φ) =





















−
[

(ℓ−m+ 1)(ℓ+m)

2ℓ(ℓ+ 1)

]1/2

Yℓ,m−1(θ, φ)

m
√

ℓ(ℓ+ 1)
Yℓm(θ, φ)

[

(ℓ+m+ 1)(ℓ−m)

2ℓ(ℓ+ 1)

]1/2

Yℓ,m−1(θ, φ)





















.

The other two vector spherical harmonics can be written out in a similar fashion. If ℓ = 0 then
Yℓ 1

j=ℓ+1 ,m(θ, φ) is the only surviving vector spherical harmonic.
It is instructive to work in a Cartesian basis, where the χ1,ms

are eigenvectors of S3, and

the spin-1 spin matrices are given by ~ ~S, where (Sk)ij = −iǫijk. In particular,

S3 =





0 −i 0
i 0 0
0 0 0



 .

and S3χ1,ms
= msχ1,ms

. This yields the orthonormal eigenvectors,

χ1,±1 =
1√
2





∓1
−i
0



 , χ1,0 =





0
0
1



 . (6)

3



where the arbitrary overall phase factors are conventionally chosen to be unity. As an example,
in the Cartesian basis,

Yℓ 1
j=ℓ ,m(θ, φ) =

1

2
√

ℓ(ℓ+ 1)











[(ℓ−m+ 1)(ℓ+m)]1/2 Yℓ,m−1(θ, φ) + [(ℓ+m+ 1)(ℓ−m)]1/2 Yℓ,m+1(θ, φ)

i [(ℓ−m+ 1)(ℓ+m)]1/2 Yℓ,m−1(θ, φ)− i [(ℓ+m+ 1)(ℓ−m)]1/2 Yℓ,m+1(θ, φ)

2mYℓm(θ, φ)











.

(7)
This is a vector with respect to the basis {x̂ , ŷ , ẑ}. It is convenient to rewrite eq. (7) in terms
of the basis

{

r̂ , θ̂ , φ̂
}

using

x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sin φ ,

ŷ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ ,

ẑ = r̂ cos θ − θ̂ sin θ .

We can then greatly simplify the resulting expression for Yℓ 1
j=ℓ ,m(θ, φ) by employing the recursion

relation,

−2m cos θ Yℓm(θ, φ) = sin θ

{

[(ℓ+m+ 1)(ℓ−m)]1/2 e−iφ Yℓ,m+1(θ, φ)

+ [(ℓ−m+ 1)(ℓ+m)]1/2 eiφ Yℓ,m−1(θ, φ)

}

,

and the following two differential relations,

∂

∂φ
Yℓm(θ, φ) = imYℓm(θ, φ) ,

∂

∂θ
Yℓm(θ, φ) =

1
2
[(ℓ+m+ 1)(ℓ−m)]1/2 e−iφ Yℓ,m+1(θ, φ)

−1
2
[(ℓ−m+ 1)(ℓ+m)]1/2 eiφ Yℓ,m−1(θ, φ) .

Following a straightforward but tedious computation, the end result is:

Yℓ 1
j=ℓ ,m(θ, φ) =

i
√

ℓ(ℓ+ 1)

[

θ̂

sin θ

∂

∂φ
Yℓm(θ, φ)− φ̂

∂

∂θ
Yℓm(θ, φ)

]

.

At this point, one should recognize the differential operator ~L expressed in the
{

r̂ , θ̂ , φ̂
}

basis,

~L = −i~ ~x× ~∇ = i~

[

θ̂

sin θ

∂

∂φ
− φ̂

∂

∂θ

]

.

Hence, we end up with

Yℓ 1
j=ℓ ,m(θ, φ) =

1
√

~2ℓ(ℓ+ 1)
~LYℓm(θ, φ) , for ℓ 6= 0 . (8)
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This is the vector spherical harmonic,

~Xℓm(θ, φ) =
−i

√

ℓ(ℓ+ 1)
~x× ~∇Yℓm(θ, φ) ,

employed by J.D. Jackson, Classical Electrodynamics, 3rd Edition (John Wiley & Sons, Inc.,
New York, 1999).

Using the same methods, one can derive the following expressions for the other two vector
spherical harmonics,

Yℓ 1
j=ℓ−1 ,m(θ, φ) =

−1
√

(j + 1)(2j + 1)

[

(j + 1)n̂− r~∇
]

Yjm(θ, φ) , for ℓ 6= 0 , (9)

Yℓ 1
j=ℓ+1 ,m(θ, φ) =

1
√

j(2j + 1)

[

jn̂+ r~∇
]

Yjm(θ, φ) , (10)

where ~x = r~n and n̂ ≡ r̂. That is, the three independent normalized vector spherical harmonics
can be chosen as:1

{ −ir
√

j(j + 1)
n̂× ~∇Yjm(θ, φ) ,

r
√

j(j + 1)
~∇Yjm(θ, φ) , n̂Yjm(θ, φ)

}

. (11)

Note that n̂ · ~∇Yjm(θ, φ) = ∂Yjm(θ, φ)/∂r = 0. Hence, it follows that the first two vector
spherical harmonics of eq. (11) are transverse (i.e., perpendicular to n̂), whereas the third
vector spherical harmonic in eq. (11) is longitudinal (i.e., parallel to n̂). This is convenient for
the multipole expansion of the transverse electric and magnetic radiation fields, where only the
first two vector spherical harmonics of eq. (11) appear. However, r~∇Yjm(θ, φ) and n̂ Yjm(θ, φ)

are not eigenstates of ~L2 since they consist of linear combinations of states with ℓ = j ± 1
[which can be explicitly derived by inverting eqs. (9) and (10)].

The algebraic steps involved in establishing eqs. (8)–(10) are straightforward but tedious.
A more streamlined approach to the derivation of these results is given in Appendix B.

Appendix A: The Clebsch-Gordon series and some applications

The Clebsch-Gordon coefficients form a unitary matrix. It is standard practice to employ a
phase convention in defining the Clebsch-Gordon coefficients (called the Condon-Shortly phase

convention) such that all the Clebsch-Gordon coefficients are real. In particular,

〈j1m1 ; j2 m2 | jm〉 = 〈jm | j1m1 ; j2m2〉 .
1It is often convenient to rewrite r ~∇ Yjm(θ, φ) = −r[n̂(n̂ · ~∇) − ~∇]Yjm(θ, φ) = −r n̂× (n̂× ~∇)Yjm(θ, φ),

since n̂ · ~∇Yjm(θ, φ) = ∂Yjm(θ, φ)/∂r = 0 as noted above. This alternative form is often used for the second
vector spherical harmonic of eq. (11).
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In this convention, the Clebsch-Gordon coefficients form an orthogonal matrix and therefore
satisfy orthogonality relations,

∑

j,m

〈j1m1 ; j2m2 | j m〉〈j1 m′
1 ; j2 m

′
2 | j m〉 = δm1,m′

1
δm2,m′

2
, (12)

∑

m1,m2

〈j1 m1 ; j2 m2 | j m〉〈j1m1 ; j2m2 | j′ m′〉 = δj j′δm,m′∆(j1j2j) , (13)

where j1, j2 and j are non-negative integers or half-integers and

∆(j1j2j) =

{

1 , if |j1 − j2| ≤ j ≤ j1 + j2 ,

0 , otherwise.
(14)

Consider a system whose total angular momentum is ~J = ~J1 + ~J2. Clebsch-Gordon coef-
ficients provide the connection between the total angular momentum basis |j m ; j1 j2〉 and the
direct product basis, |j1m1 ; j2m1〉 ≡ |j1m1〉 ⊗ |j2m2〉,

|j m〉 =
j1
∑

m1=−j1

j2
∑

m2=−j2

〈j1m1 ; j2m2 | j m〉|j1m1 ; j2 m2〉 . (15)

The unitary operator that (actively) rotates states by an angle θ about an axis n̂ is

U [R(n̂, θ)] = exp
(

−iθn̂ · ~J/~
)

.

Applying U [R(n̂, θ)] to the state |j m〉 does not change the value of j since n̂ · ~J commutes

with ~J2. Then, inserting a complete set of states, one obtains

U [R(n̂, θ)]|j m′〉 =
∑

m

|j m〉〈j m| exp(−iθn̂ · ~J/~)|j m′〉 =
∑

m

D
(j)
mm′(R)|j m〉 ,

〈j m′|U [R(n̂, θ)] =
∑

m

〈j m| exp(−iθn̂ · ~J/~)|j m′〉〈j m| =
∑

m

〈j m|D(j)
mm′(R) ,

which defines the (2j + 1)× (2j + 1) unitary matrix D(j)(R) that represents the rotation R.
Consider the matrix element 〈j1m1 ; j2m2|U [R(n̂, θ)]|j m〉. We can compute this in two

different ways by letting the operator U [R(n̂, θ)] act either to the right or to the left.

〈j1m1 ; j2m2|U [R(n̂, θ)]|j m′〉 =
∑

q

D
(j)
qm′(R)〈j1m1 ; j2m2 | j q〉 ,

〈j1m1 ; j2m2|U [R(n̂, θ)]|j m′〉 =
∑

m′

1
,m′

2

〈j1m′
1 ; j2m

′
2 | j m′〉D(j1)

m1m′

1

(R)D
(j2)
m2m′

2

(R) .

Equating these two expressions yields
∑

q

D
(j)
qm′(R)〈j1m1 ; j2m2 | j q〉 =

∑

m′

1
,m′

2

〈j1m′
1 ; j2m

′
2 | j m′〉D(j1)

m1 m′

1

(R)D
(j2)
m2 m′

2

(R) .
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Multiplying this result by 〈j1 q1 ; j2 q2 | j m′〉 and summing over j andm′ using the orthogonality
relation given in eq. (12), we end up with

D(j1)
m1 q1(R)D(j2)

m2 q2(R) =
∑

q,j,m′

〈j1m1 ; j2m2 | j q〉〈j1 q1 ; j2 q2 | j m′〉D(j)
qm′(R) ,

which is called the Clebsch-Gordon series. The sum over q andm′ can be performed immediately
since the Clebsch-Gordon coefficients above vanish unless q = m1 + m2 and m′ = q1 + q2,
respectively. After relabeling, we are left with

D
(j1)
m1 m′

1

(R)D
(j2)
m2 m′

2

(R) =
∑

j

〈j1 m1 ; j2 m2 | j , m1+m2〉 〈j1m′
1 ; j2m

′
2 | j , m′

1+m′
2〉D

(j)
m1+m2,m′

1
+m′

2

(R) .

(16)
For non-negative integer ℓ, one can prove that

D
(ℓ)
m 0(α, β, γ) =

√

4π

2ℓ+ 1
Y ∗
ℓm(β, α) , (17)

where (α, β, γ) are the Euler angles that specify the rotation R. Thus, setting q1 = q2 = 0 and
taking integer values j1 = ℓ1 and j2 = ℓ2 in eq. (16), it follows that

Yℓ1 m1
(n̂) Yℓ2 m2

(n̂) =
∑

ℓ,m

√

(2ℓ1 + 1)(2ℓ2 + 1)

4π(2ℓ+ 1)
〈ℓ1m1 ; ℓ2m2 | ℓm〉〈ℓ1 0 ; ℓ2 0 | ℓ 0〉 Yℓm(n̂) . (18)

To establish eq. (17), recall that the Euler angle representation of the rotation R, described
in the handout, Three-Dimensional Rotation Matrices, is given by

R(n̂, θ) = R(ẑ, α)R(ŷ, β)R(ẑ, γ) . (19)

Likewise,2

D
(j)
mm′(R) ≡ D

(j)
mm′(α, β, γ) = 〈j m| e−iαJz/~ e−iβJy/~ e−iγJz/~ |jm′〉 = e−i(αm+γm′) d

(j)
mm′(β) , (20)

where d(j)(β) ≡ 〈j m| e−iβJy/~ |jm′〉 .
A relation between the D

(j)
mm′(R) and the spherical harmonics can be determined as follows.

First, note that U [R(n̂, θ)]|~x〉 = |R~x〉, where (R~x)i ≡ Rijxj (with an implicit sum over the re-
peated index j). Since U [R1]U [R2] = U [R1R2] it follows that U

†[R] = U−1[R] = U [R−1]. Hence,
U †[R(n̂, θ)]|~x〉 = |R−1~x〉 and the corresponding adjoint is 〈~x|U [R(n̂, θ)] = 〈R−1~x|. Thus, we

2In order to avoid minus sign errors in extracting the phase factors, consider the following computation. If
U is a unitary operator, then UU † = U †U = I, or equivalently U † = U−1. Consider the eigenvalue problem
U~v = λ~v. Then it is straightforward to prove that |λ| = 1, or equivalently λ−1 = λ∗. Thus, using Dirac bracket
notation, we have U |v〉 = λ|v〉, and

〈v|U = 〈U †v| = 〈U−1v| = 〈λ−1v| = 〈λ∗v| = λ〈v| .

The key observation is that a constant inside the bra is complex-conjugated when moved outside the bra.
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can evaluate 〈~x|U [R(n̂, θ)]|ℓm〉 in two different ways by letting the operator U [R(n̂, θ)] act
either to the left or to the right.

〈~x|U [R(n̂, θ)]|ℓm〉 = 〈R−1~x | ℓm〉 = Yℓm(R
−1n̂) ,

〈~x|U [R(n̂, θ)]|ℓm〉 =
∑

m′

〈~x | ℓm′〉 〈ℓm′|U [R(n̂, θ)]|ℓm〉 =
∑

m′

D
(ℓ)
m′m(R) Yℓm′(n̂) ,

where n̂ ≡ ~x/r. Equating these two expressions yields

Yℓm(R
−1n̂) =

∑

m′

D
(ℓ)
m′m(R) Yℓm′(n̂) . (21)

Replacing R with R−1 and using D
(ℓ)
m′m(R

−1) = D
(ℓ) †
m′m(R) = D

(ℓ) ∗
mm′(R), it follows that eq. (21) is

equivalent to

Yℓm(Rn̂) =
∑

m′

D
(ℓ) ∗
mm′(R) Yℓm′(n̂) . (22)

If we parameterize the rotation R with Euler angles (φ, θ, γ) as in eq. (19), then we can write
n̂ = R(φ, θ, γ)ẑ. Note that n̂ is a unit vector with polar angle θ and azimuthal angle φ. In
particular, the angle γ has no effect since R(ẑ, γ)ẑ = ẑ independently of the angle γ. Thus,
replacing n̂ with ẑ in eq. (22), it follows that

Yℓm(n̂) =
∑

m′

D
(ℓ) ∗
mm′(R) Yℓm′(ẑ) .

Finally, using the fact that

Yℓm′(ẑ) =

√

2ℓ+ 1

4π
δm,0

it follows that

D
(ℓ)
m 0(φ, θ, γ) =

√

4π

2ℓ+ 1
Y ∗
ℓm(θ, φ) ,

which confirms eq. (17) quoted above.
Next, we note the orthogonality relations satisfied by the D-matrices,3

∫

dRD(j)∗
m1 m2

(R)D
(j′)

m′

1
m′

2

(R) =
8π2

2j + 1
δjj′ δm1 m′

1
δm2 m′

2
, (23)

where
∫

dR ≡
∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

sin β dβ . (24)

By setting m2 = m′
2 = 0 and taking j = ℓ and j′ = ℓ′ to be integers, one can check that in light

of eq. (17), the spherical harmonics satisfy the expected orthogonality relation,
∫

dΩYℓm(θ, φ) Y
∗
ℓ′ m′(θ, φ) = δℓℓ′ δmm′ . (25)

3The orthogonality relations can be derived by integrating eq. (16) over the Euler angles [cf. eq. (24)]. The
resulting integral is straightforward and after some manipulations one simply needs a closed form expression for
the Clebsch-Gordon coefficient 〈j , −m ; j m | 00〉 = (−1)j+m/

√
2j + 1. For further details, see e.g. Ref. [8].
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We can use eqs. (16) and (23) to derive an important integral:
∫

dRD
(j1)
m1 m′

1

(R)D
(j2)
m2 m′

2

(R)D
(j3) ∗
m3 m′

3

(R) =

∫

dR
∑

j

〈j1m1 ; j2m2 | j m〉 〈j1m′
1 ; j2m

′
2 | j m′〉

×D
(j)
m1+m2,m′

1
+m′

2

(R)D
(j3) ∗
m3 m′

3

(R)

=
8π2

2j3 + 1
〈j1m1 ; j2m2 | j3m3〉 〈j1m′

1 ; j2 m
′
2 | j3m′

3〉 .

(26)

Note that the integral above vanishes unless m3 = m1 +m2, m
′
3 = m′

1 +m′
2 and ∆(j1j2j3)=1

due to the properties of the Clebsch-Gordon coefficients [cf. eq. (14)].
If we take j1 = ℓ1, j2 = ℓ2 and j3 = ℓ3 to be integers and set m′

1 = m′
2 = m′

3 = 0, then in
light of eq. (17), we obtain

∫

dΩYℓ1 m1
(θ, φ) Yℓ2 m2

(θ, φ) Y ∗
ℓ3 m3

(θ, φ) =

√

(2ℓ1 + 1)(2ℓ2 + 1)

4π(2ℓ3 + 1)
〈ℓ1m1 ; ℓ2m2 | ℓ3m3〉 〈ℓ1 0 ; ℓ2 0 | ℓ3 0〉 .

(27)

Finally, using Yℓ0(n̂) = [(2ℓ+ 1)/(4π)]1/2 Pℓ(cos θ), it follows that

∫ 1

−1

Pℓ1(x)Pℓ2(x)Pℓ3(x) dx =
2

2ℓ3 + 1
〈ℓ1 0 ; ℓ2 0 | ℓ3 0〉2 . (28)

For completeness, we note the remarkable formula given in Ref. [5],

1

2ℓ3 + 1
〈ℓ1 0 ; ℓ2 0 | ℓ3 0〉2 =

(

g!

(g − ℓ1)!(g − ℓ2)!(g − ℓ3)!

)2
(2g − 2ℓ1)!(2g − 2ℓ2)!(2g − 2ℓ3)!

(2g + 1)!
,

where [cf. eq. (14)]:

2g ≡ ℓ1 + ℓ2 + ℓ3 is an even integer and ∆(ℓ1ℓ2ℓ3) = 1 .

If ℓ1+ ℓ2+ ℓ3 is an odd integer and/or ∆(ℓ1ℓ2ℓ3) = 0 then 〈ℓ1 0 ; ℓ2 0 | ℓ3 0〉 = 0. As a result, the
right hand side of eq. (28) is symmetric under the interchange of the ℓi as expected.

Appendix B: The vector spherical harmonics revisited

Since Yℓm(n̂) is a spherical tensor of rank-ℓ, and n̂ ≡ ~x/r, ~L ≡ −i~~x× ~∇ and r~∇ are vector
operators, it is not surprising that the vector spherical harmonics are linear combinations of
the quantities given in eq. (11). It is instructive to derive this result directly. For convenience,
we denote the vector spherical harmonics in this appendix by

~Y jℓm(n̂) ≡ Yℓ 1
j m(θ, φ) , for j = ℓ+ 1 , ℓ , ℓ− 1 , (29)

where n̂ is a unit vector with polar angle θ and azimuthal angle φ.
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First, we recall that [cf. eq. (12.5.20) of Shankar]:

L±|ℓm〉 = ~ [(ℓ∓m)(ℓ±m+ 1)]1/2 |j m± 1〉 , Lz|ℓm〉 = ~m|ℓm〉 , (30)

where L± ≡ Lx ± iLy. The spherical components of ~L are Lq (q = +1, 0,−1) where

L±1 ≡ ±L±√
2
=

1√
2
(Lx ± iLy) , L0 ≡ Lz .

Using the Clebsch-Gordon coefficients given in Table 2, it follows that

Lq|ℓm〉 = ~(−1)q
√

ℓ(ℓ+ 1) 〈ℓ , m+ q ; 1 , −q | ℓm〉 |ℓ , m+ q〉 . (31)

In the coordinate representation, eq. (31) is equivalent to

Lq Yℓm(n̂) = ~(−1)q
√

ℓ(ℓ+ 1) 〈ℓ , m+ q ; 1 , −q | ℓm〉 Yℓ ,m+q(n̂) . (32)

It is convenient to introduce a set of spherical basis vectors,

ê±1 ≡ ∓ 1√
2
(x̂± iŷ) , ê0 ≡ ẑ . (33)

It is not surprising that êq = χ1,q [cf. eq. (6)]. One can check that

~L = Lxx̂+ Lyŷ + Lzẑ =
∑

q

(−1)qLqê−q , (34)

where the sum over q runs over q = −1, 0,+1.4 Hence, eqs. (32) and (34) yield

~LYℓm(n̂) = ~

√

ℓ(ℓ+ 1)
∑

q

ê−q〈ℓ , m+ q ; 1 , −q | ℓm〉 Yℓ ,m+q(n̂) .

Since the sum is taken over q = −1, 0, 1, we are free to relabel q → −q. Writing êq = χ1,q, we
end up with

~LYℓm(n̂) = ~

√

ℓ(ℓ+ 1)
∑

q

〈ℓ , m− q ; 1 , q | ℓm〉 Yℓ ,m−q(n̂)χ1 q .

Comparing with eq. (3) for s = 1, it follows that [in the notation of eq. (29)]:

~LYℓm(n̂) = ~

√

ℓ(ℓ+ 1) ~Y ℓℓm(n̂) (35)

in agreement with eq. (8).
Next, we examine n̂Yℓm(n̂). It is convenient to expand n̂ ≡ ~x/r in a spherical basis. Using

eq. (33), the following expression is an identity,

n̂ = x̂ sin θ cos φ+ ŷ sin θ sinφ+ ẑ cos θ =

√

4π

3

∑

q

(−1)q Y1q(n̂) ê−q . (36)

4Henceforth, if left unspecified, sums over q will run over q = −1, 0,+1.

10



Hence,

n̂Yℓm(n̂) =

√

4π

3

∑

q

(−1)q Y1q(n̂)Yℓm(n̂) ê−q . (37)

Using eq. (18) [after using eq. (2) to reduce the double sum down to a single sum],

Y1q(n̂)Yℓm(n̂) =

√

3(2ℓ+ 1)

4π

∑

ℓ ′

1√
2ℓ ′ + 1

〈ℓm ; 1 q | ℓ ′ , m+ q〉〈ℓ 0 ; 1 0 | ℓ ′ 0〉 Yℓ ′ ,m+q(n̂) .

(38)
Only two terms, corresponding to ℓ ′ = ℓ±1, can contribute to the sum over ℓ ′ since [cf. Table 2]:

〈ℓ 0 ; 1 0 | ℓ ′ 0〉 =



































(

ℓ+ 1

2ℓ+ 1

)1/2

, for ℓ ′ = ℓ+ 1 ,

0 , for ℓ ′ 6= ℓ± 1 ,

−
(

ℓ

2ℓ+ 1

)1/2

, for ℓ ′ = ℓ− 1 .

(39)

Inserting eq. (38) on the right hand side of eq. (37) and employing eq. (39) then yields

n̂Yℓm(n̂) =
∑

q

(−1)q ê−q

{(

ℓ+ 1

2ℓ+ 3

)1/2

〈ℓm ; 1 q | ℓ+ 1 , m+ q〉 Yℓ+1 ,m+q(n̂)

−
(

ℓ

2ℓ− 1

)1/2

〈ℓm ; 1 q | ℓ+ 1 , m+ q〉 Yℓ−1 ,m+q(n̂)

}

. (40)

It is convenient to rewrite eq. (40) with the help of the following two relations, which can be
obtained from Table 2,

〈ℓm ; 1 q | ℓ+ 1 , m+ q〉 = −(−1)q
(

2ℓ+ 3

2ℓ+ 1

)1/2

〈ℓ+ 1 , m+ q ; 1 , −q | ℓm〉 , (41)

〈ℓm ; 1 q | ℓ− 1 , m+ q〉 = −(−1)q
(

2ℓ− 1

2ℓ+ 1

)1/2

〈ℓ− 1 , m+ q ; 1 , −q | ℓm〉 . (42)

The end result is:

n̂Yℓm(n̂) = −
∑

q

ê−q

{(

ℓ+ 1

2ℓ+ 1

)1/2

〈ℓ+ 1 , m+ q ; 1 , −q | ℓm〉 Yℓ+1 , m+q(n̂)

−
(

ℓ

2ℓ+ 1

)1/2

〈ℓ− 1 , m+ q ; 1 , −q | ℓm〉 Yℓ−1 , m+q(n̂)

}

. (43)

Using eq. (3) with s = 1 and χ1 q = êq and employing the notation of eq. (29), it follows
that

~Y ℓ , ℓ±1 ,m(n̂) =
∑

q

ê−q 〈ℓ± 1 , m+ q ; 1 , −q | ℓm〉 Yℓ±1 ,m+q(n̂) , (44)
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after relabeling the summation index by q → −q. Hence, eq. (43) yields

n̂Yℓm(n̂) = −
(

ℓ+ 1

2ℓ+ 1

)1/2

~Y ℓ , ℓ+1 ,m(n̂) +

(

ℓ

2ℓ+ 1

)1/2

~Y ℓ , ℓ−1 ,m(n̂) (45)

Finally, we examine r~∇Yℓm(n̂). First, we introduce the gradient operator in a spherical
basis, ∇q = (∇+1 , ∇0 , ∇−1), where

∇+1 = ∓ 1√
2

(

∂

∂x
± i

∂

∂y

)

= ∓e±iφ

√
2

[

sin θ
∂

∂r
+

cos θ

r

∂

∂θ
± i

r sin θ

∂

∂φ

]

, (46)

∇0 =
∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (47)

We can introduce a formal operator ∇q on the Hilbert space by defining the coordinate space
representation,

〈~x|∇q|ℓm〉 = ∇qYℓm(n̂) .

Note that ∇q is a vector operator. We shall employ the Wigner-Eckart theorem, which states
that

〈ℓ′m′|∇q|ℓm〉 = 〈ℓm ; 1 q | ℓ′m′〉 〈ℓ′‖∇‖ℓ〉 , (48)

where the reduced matrix element 〈ℓ‖∇‖ℓ′〉 is independent of q, m and m′. To evaluate the
reduced matrix element, we consider the case of q = m = m′ = 0. Then,

〈ℓ′ 0|∇0|ℓ 0〉 = 〈ℓ 0 ; 1 0 | ℓ′ 0〉 〈ℓ′‖∇‖ℓ〉 .

Thus,

〈ℓ′‖∇‖ℓ〉 = 〈ℓ′ 0|∇0|ℓ 0〉
〈ℓ 0 ; 1 0 | ℓ′ 0〉 .

Inserting this result into eq. (48) yields

〈ℓ′m′|∇q|ℓm〉 = 〈ℓm ; 1 q | ℓ′m′〉
〈ℓ 0 ; 1 0 | ℓ′ 0〉 〈ℓ′ 0|∇0|ℓ 0〉 . (49)

We can evaluate 〈ℓ′ 0|∇0|ℓ 0〉 explicitly in the coordinate representation using eq. (47),

〈ℓ′ 0|∇0|ℓ 0〉 = −1

r

∫

dΩY ∗
ℓ′ 0(n̂) sin θ

∂

∂θ
Yℓ 0(n̂) .

Using Yℓ0(n̂) = [(2ℓ+ 1)/(4π)]1/2 Pℓ(cos θ), and substituting x ≡ cos θ,

〈ℓ′ 0|∇0|ℓ 0〉 =
√

(2ℓ+ 1)(2ℓ′ + 1)

2r

∫ 1

−1

(1− x2)Pℓ′(x)P
′
ℓ(x) dx , (50)

where P ′
ℓ(x) = dPℓ(x)/dx. To evaluate eq. (50), we employ the recurrence relation,

(1− x2)P ′
ℓ(x) = ℓPℓ−1(x)− ℓxPℓ(x) ,
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and the orthogonality relation of the Legendre polynomials,

∫ 1

−1

Pℓ(x)Pℓ′(x) dx =
2

2ℓ+ 1
δℓℓ′ .

It follows that

〈ℓ′ 0|∇0|ℓ 0〉 =
√

(2ℓ+ 1)(2ℓ′ + 1)

2r

{

2ℓ

2ℓ− 1
δℓ′,ℓ−1 − ℓ

∫ 1

−1

xPℓ(x)Pℓ′(x) dx

}

. (51)

To evaluate the remaining integral, we use x = P1(x) and the result of eq. (28) to write:

∫ 1

−1

xPℓ(x)Pℓ′(x) dx =

∫ 1

−1

P1(x)Pℓ(x)Pℓ′(x) dx =
2

2ℓ′ + 1
〈1 0 ; ℓ 0 | ℓ′ 0〉2 .

Using eq. (39), the above integral is equal to

∫ 1

−1

xPℓ(x)Pℓ′(x) dx =
2(ℓ+ 1)

(2ℓ+ 1)(2ℓ+ 3)
δℓ′,ℓ+1 +

2ℓ

(2ℓ− 1)(2ℓ+ 1)
δℓ′,ℓ−1 .

Inserting this result back into eq. (51) yields

〈ℓ′ 0|∇0|ℓ 0〉 =
√

(2ℓ+ 1)(2ℓ′ + 1)

2r

{

2ℓ(ℓ+ 1)

(2ℓ− 1)(2ℓ+ 1)
δℓ′,ℓ−1 −

2ℓ(ℓ+ 1)

(2ℓ+ 1)(2ℓ+ 3)
δℓ′,ℓ+1

}

=
ℓ(ℓ+ 1)

r
√
2ℓ+ 1

[

1√
2ℓ− 1

δℓ′,ℓ−1 −
1√

2ℓ+ 3
δℓ′,ℓ+1

]

.

Using eq. (49), it follows that:

〈ℓ′m′|∇q|ℓm〉 = 〈ℓm ; 1 q | ℓ′m′〉
〈ℓ 0 ; 1 0 | ℓ′ 0〉

ℓ(ℓ+ 1)

r
√
2ℓ+ 1

[

1√
2ℓ− 1

δℓ′,ℓ−1 −
1√

2ℓ+ 3
δℓ′,ℓ+1

]

= −1

r
〈ℓm ; 1 q | ℓ′m′〉

[

(ℓ+ 1)

√

ℓ

2ℓ− 1
δℓ′,ℓ−1 + ℓ

√

ℓ+ 1

2ℓ+ 3
δℓ′,ℓ+1

]

, (52)

after using eq. (39) to evaluate 〈ℓ 0 ; 1 0 | ℓ′ 0〉.
We are now ready to evaluate r~∇Yℓm(n̂). First, we insert a complete set of states to obtain

∇q|ℓm〉 =
∑

ℓ′,m′

|ℓ′m′〉〈ℓ′m′|∇q|ℓm〉

= −1

r

∑

ℓ′,m′

|ℓ′ m′〉
{

〈ℓm ; 1 q | ℓ′m′〉
[

(ℓ+ 1)

√

ℓ

2ℓ− 1
δℓ′,ℓ−1 + ℓ

√

ℓ+ 1

2ℓ+ 3
δℓ′,ℓ+1

]}

.

(53)
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Note that in the sum over m′, only the terms corresponding to m′ = m + q survive, due to
the presence of the Clebsch-Gordon coefficient 〈ℓm ; 1 q | ℓ′m′〉. Likewise, in the sum over ℓ′,
only the terms corresponding to ℓ′ = ℓ ± 1 survive. In the coordinate representation, eq. (53)
is equivalent to

∇qYℓm(n̂) = −1

r

∑

ℓ′

Yℓ′,m+q(n̂)

{

〈ℓm ; 1 q | ℓ′ , m+q〉
[

(ℓ+ 1)

√

ℓ

2ℓ− 1
δℓ′,ℓ−1 + ℓ

√

ℓ+ 1

2ℓ+ 3
δℓ′,ℓ+1

]}

.

In analogy with eq. (34), we have

~∇ =
∑

q

(−1)q ê−q∇q .

Hence, it follows that

−r~∇Yℓm(n̂) =
∑

q

(−1)q ê−q

{

(ℓ+ 1)

√

ℓ

2ℓ− 1
〈ℓm ; 1 q | ℓ− 1 , m+ q〉Yℓ−1,m+q(n̂)

+ℓ

√

ℓ+ 1

2ℓ+ 3
〈ℓm ; 1 q | ℓ+ 1 , m+ q〉Yℓ+1,m+q(n̂)

}

.

It is convenient to employ eqs. (41) and (42) and rewrite the above result as

r~∇Yℓm(n̂) =
∑

q

ê−q

{

(ℓ+ 1)

√

ℓ

2ℓ+ 1
〈ℓ− 1 , m+ q ; 1 , −q | ℓm〉Yℓ−1,m+q(n̂)

+ℓ

√

ℓ+ 1

2ℓ+ 1
〈ℓ+ 1 , m+ q ; 1 , −q | ℓm〉Yℓ+1,m+q(n̂)

}

.

Finally, using eq. (44), we end up with

r~∇Yℓm(n̂) = (ℓ+ 1)

√

ℓ

2ℓ+ 1
~Y ℓ,ℓ−1,m(n̂) + ℓ

√

ℓ+ 1

2ℓ+ 1
~Y ℓ,ℓ+1,m(n̂) (54)

which is known in the literature as the gradient formula.
We can now use eqs. (45) and (54) to solve for ~Y ℓ,ℓ+1,m(n̂) and ~Y ℓ,ℓ−1,m(n̂) in terms of

n̂Yℓm(n̂) and r~∇Yℓm(n̂). Since these are linear equations, they are easily inverted, and we find

~Y ℓ,ℓ+1,m(n̂) =
1

√

(ℓ+ 1)(2ℓ+ 1)

[

−(ℓ + 1)n̂+ r~∇
]

Yℓm(n̂) , for ℓ = 0, 1, 2, 3, . . . ,

~Y ℓ,ℓ−1,m(n̂) =
1

√

ℓ(2ℓ+ 1)

[

ℓn̂+ r~∇
]

Yℓm(n̂) , for ℓ = 1, 2, 3, . . . ,
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which are equivalent to the results of eqs. (9) and (10) previously obtained. In addition, we
also have eq. (35), which we can rewrite as

~Y ℓ,ℓ,m =
−ir

√

ℓ(ℓ+ 1)
n̂× ~∇Yℓm(n̂) , for ℓ = 1, 2, 3, . . ., .

Thus, we have identified the three linearly independent vector spherical harmonics in terms of
differential vector operators acting on Yℓm(n̂). For the special case of ℓ = 0, only one vector

spherical harmonic, ~Y 010(n̂) = (−n̂ + r~∇)Yℓm(n̂), survives.

In books, one often encounters the vector spherical harmonic defined by n̂ × ~LYℓm(n̂).
However, this is not independent of the vector spherical harmonics obtained above, since

n̂× ~LYℓm(n̂) = −i~r n̂× (n̂× ~∇)Yℓm(n̂) = −i~r

[

n̂
∂

∂r
− ~∇

]

Yℓm(n̂) = i~r ~∇Yℓm(n̂) .

An alternative method for deriving the gradient formula [obtained in eq. (54)] is to evaluate

n̂ × ~LYℓm(n̂) using the same technique employed in the computation of n̂Yℓm(n̂) given in
this Appendix. However, this calculation is much more involved and involves a product of
four Clebsch-Gordon coefficients. A certain sum involving a product of three Clebsch-Gordon
coefficients needs to be performed in closed form. This summation can be done (e.g., see
Ref. [9] for the gory details), but the computation is much more involved than the simple
analysis presented in this Appendix based on the Wigner-Eckart theorem.
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