Physics 216 Spring 2012

Diagonalization of a general 2 X 2 hermitian matrix

Consider a general 2 x 2 hermitian matrix

a C
=(e )

where a and b are real numbers and ¢ is a complex number. The eigenvalues are the roots
of the characteristic equation:
a— A c ‘

c* bh— \ =(a=N0b=X) —|c> =X =Xa+b)+ (ab—|c[*) =0.

Noting that (a + b)? — 4(ab — |¢|*) = (a — b)* + 4|c|?, the two roots can be written as:

)\1:%[&+b—l—\/(a—b)2+4|c|2} and )\gzé[a+b—\/(a—b)2+4|c|2 . (1)

where by convention we take \; > A\s. As expected, the eigenvalues of an hermitian matrix
are real.
An hermitian matrix can be diagonalized by a unitary matrix U,

e (M0
UAU-(O A2), (2)

where A\; and Ag are the eigenvalues obtained in eq. (1). Note that one can always transform
U — €U without modifying eq. (2), since the phase cancels out. Since det U is a pure
phase, one can choose det U = 1 in eq. (2) without loss of generality. The most general 2 x 2
unitary matrix of unit determinant can be written as:

U < e cos  —e Xsginf ) .

X sin e~ cos

The columns of U are the normalized eigenvectors of A corresponding to the eigenvalues
A1 and Ay, respectively. But, we are always free to multiply any normalized eigenvector by
an arbitrary complex phase. Thus, without loss of generality, we can choose § = 0 and
cos > 0. Moreover, the sign of sin 6 can always be absorbed into the definition of x. Hence,

we will take 9 , 9
CoS —e "X gin
U= ( X sin 6 cosf ) ’ (3)

OS@S%W, and 0<y<2m. (4)

where

We now plug in eq. (3) into eq. (2). Since the off-diagonal terms must vanish, one obtains
constraints on the angles 6 and y. It is convenient to define,

c=|cle™, where 0 <1 < 27. (5)
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Then,

1A cosf e Xsind a |c|et cos)  —eXsind
UmAU = <—eiX sin ¢ cos ) ) (|c|e‘“¢’ b eX sin 6 cos®

B cosf e Xsinf\ [acosf+ |cle?¥ T sind  —ae X sinf + |c|e? cos b

— \—eXsind cos 0 lcle™™ cos @ + beXsinf  —|c|le”"¥+X) sin @ + bcos O

(N 2

\Zr N

where

A1 = acos® 0 + 2|c| cosOsin O cos(v) + x) + bsin? @, (6)
Ay = asin? @ — 2|c| cos O sin O cos(vp + x) + bcos? 0, (7)
7 = e_ix{(b —a)cosfsinf + |c| [ei(’HX) cos? f — e~ gin? 9} } . (8)

The vanishing of the off-diagonal elements of U~'AU implies that:
(b— a) cosfsinf + |c| [ei(d’m cos? @ — e~V gin? 9} =0.
This is a complex equation. Taking real and imaginary parts yields two real equations,
(b — a)sin 20 + |c| cos 20 cos(¢ + x) =0, 9)
le|sin(y) + x) = 0. (10)
Consider first the special case of ¢ = 0. In light of the convention that A\; > Ag,
c=0 and a>b = 6=0 and yx is undefined,
c=0 and a<b = 0= %71’ and y is undefined ,

c=0 and a=b = 6 and x are undefined .

In particular, if ¢ = 0 and a = b, then A = al and it follows that U AU = U~'U = al,
which is satisfied for any unitary matrix U. Consequently, in this limit # and y are arbitrary

and hence undefined, as indicated above.
If ¢ # 0 then eq. (10) yields

sin(¢p+x) =0 and cos(¢p+x) =€, wheree = =+1. (11)

We can determine the sign e as follows. Since A; > A9, we subtract egs. (6) and (7) and
make use of eq. (11) to obtain,

(@ — b) cos 260 + 2¢|c|sin20 > 0. (12)
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Likewise, we insert eq. (11) into eq. (9), which yields
(b —a)sin 20 4 2¢|c|cos20 = 0. (13)

Finally, we multiply eq. (12) by sin260 and eq. (13) by cos26 and add the two resulting
equations. The end result is,
2%le| > 0. (14)

By assumption, ¢ # 0. Thus, it follows that € > 0. Since ¢ = +1, we can conclude that
€ = 1. Hence,
cos(p+x) =1, forec#0. (15)

Equivalently, ¢ + x = 2mn for some integer n. By the conventions established in eqs. (4)
and (5), we take 0 < v, x < 27. Hence, it follows that

2 — ), for c £ 0 and ¥ #£0,
X = (16)
0, forc#0and ¥ =0.
We can now determine 6. Inserting eq. (15) into eq. (9) yields
2|c|
tan29:m, forc#0and a#b. (17)

Note that if a = b, then eq. (13) yields cos 20 = 0. In light of our convention stated in eq. (4),
c#0 and a=b = 6O=1ir. (18)
If ¢ # 0 and a # b, we can use eq. (17) along with the convention that sin26 > 0 [cf. eq. (4)]
to conclude that
2|c|
Vie=b2+ 4P
a—>b

cos 20 = NCEDETEE (20)

sin 20 =

(19)

Eq. (20) implies that the sign of a — b determines whether 0 < 0 < iﬂ' or iw <0< %7?. The
former corresponds to a — b > 0 while the latter corresponds to a — b < 0. The borderline
case of a = b has already been treated in eq. (18).

To summarize, if ¢ # 0, then egs. (16), (19) and (20) uniquely specify the diagonalizing
matrix U [in the conventions stated in egs. (4) and (5)]. When ¢ = 0 and a # b, x is arbitrary
and 0 = 0 or %w for the two cases of a > b or a < b, respectively.” Finally, if c =0 and a = b,
then A = al, in which case U is arbitrary.

*Note that in the case of ¢ = 0 and a < b, the matrix A is diagonal. Nevertheless, the “diagonalizing”
matrix, U # I. Indeed, in this case § = %w, and U~' AU simply interchanges the two diagonal elements of A
to ensure that A; > A\s in eq. (2), as required by the convention adopted below eq. (1).
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Diagonalization of a real symmetric 2 X 2 matrix

Finally, we can easily treat the special case in which the matrix A is real. In this case,
we can diagonalize a real symmetric 2 X 2 matrix by a real orthogonal matrix. The two
eigenvalues are still given by eq. (1) in the convention that A; > Ao, although the absolute
values signs are no longer needed since for real values of ¢, we have |c|? = ¢2. Moreover, since
c is real, eq. (5) implies that if ¢ # 0 then ¢y = 0 or ¢» = 7. Eq. (16) then yields

0, forc#0and v =0,
X = (21)
T, forc# 0 and ¥ =7,
which is equivalent to the statement that
e’X =sgnc, for real ¢ # 0. (22)

It is convenient to redefine § — fsgnc in eq. (3). With this modification, the range of 6 can
be taken as'

—ir<f<im. (23)
The diagonalizing matrix U is now a real orthogonal 2 x 2 matrix,
U cos) —sinfd where c>0 = 0<0<im,
sin 6 cosf ’ c<0 = —%7?<9<0.

Hence, for real ¢ # 0 with the range of 6 given by eq. (23), egs. (17) and (19) are modified
by replacing |c| with ¢ in their numerators. That is,

$in 20 = 2¢ , (24)
(a — )%+ 4c?

cos 20 = a—b . (25)
(a —0b)2+4c?

The sign of ¢ determines the quadrant in which € lives. Moreover, eq. (25) provides additional
information. For ¢ > 0, the sign of a — b determines whether 0 < 0 < iw or iw <0< %w.
The former corresponds to a — b > 0 while the latter corresponds to a — b < 0. Likewise, for
¢ < 0, the sign of a — b determines whether —%7‘(‘ <6< —%71’ or —iﬂ' < 6 < 0. The former
corresponds to a — b < 0 while the latter corresponds to a — b > 0. The borderline cases are

likewise determined:

c=0 and a>b = 6=0,

c=0 and a<b — Hzéw,
a=b and ¢c>0 = 92%%,
a=0b and c<0 = Gz—iw.

If c=0and a = b, then A = al and it follows that U AU = U~'U = I, which is satisfied
for any invertible matrix U. Consequently, in this limit 6 is arbitrary (and hence undefined).

TUsing cos(f + ) = — cos® and sin(§ + 7) = —sin 6, it follows that shifting § — 6 + 7 simply multiplies
U by an overall factor of —1. In particular, U 'AU is unchanged. Hence, the convention —%w <0< %w
may be chosen without loss of generality.



