

Diagonalization of a general 2×2 hermitian matrix

Consider a general 2×2 hermitian matrix

$$A = \begin{pmatrix} a & c \\ c^* & b \end{pmatrix},$$

where a and b are real numbers and c is a complex number. The eigenvalues are the roots of the characteristic equation:

$$\begin{vmatrix} a - \lambda & c \\ c^* & b - \lambda \end{vmatrix} = (a - \lambda)(b - \lambda) - |c|^2 = \lambda^2 - \lambda(a + b) + (ab - |c|^2) = 0.$$

Noting that $(a + b)^2 - 4(ab - |c|^2) = (a - b)^2 + 4|c|^2$, the two roots can be written as:

$$\lambda_1 = \frac{1}{2} \left[a + b + \sqrt{(a - b)^2 + 4|c|^2} \right] \quad \text{and} \quad \lambda_2 = \frac{1}{2} \left[a + b - \sqrt{(a - b)^2 + 4|c|^2} \right], \quad (1)$$

where by convention we take $\lambda_1 \geq \lambda_2$. As expected, the eigenvalues of an hermitian matrix are real.

An hermitian matrix can be diagonalized by a unitary matrix U ,

$$U^{-1}AU = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \quad (2)$$

where λ_1 and λ_2 are the eigenvalues obtained in eq. (1). Note that one can always transform $U \rightarrow e^{i\zeta}U$ without modifying eq. (2), since the phase cancels out. Since $\det U$ is a pure phase, one can choose $\det U = 1$ in eq. (2) without loss of generality. The most general 2×2 unitary matrix of unit determinant can be written as:

$$U = \begin{pmatrix} e^{i\beta} \cos \theta & -e^{-i\chi} \sin \theta \\ e^{i\chi} \sin \theta & e^{-i\beta} \cos \theta \end{pmatrix}.$$

The columns of U are the normalized eigenvectors of A corresponding to the eigenvalues λ_1 and λ_2 , respectively. But, we are always free to multiply any normalized eigenvector by an arbitrary complex phase. Thus, without loss of generality, we can choose $\beta = 0$ and $\cos \theta \geq 0$. Moreover, the sign of $\sin \theta$ can always be absorbed into the definition of χ . Hence, we will take

$$U = \begin{pmatrix} \cos \theta & -e^{-i\chi} \sin \theta \\ e^{i\chi} \sin \theta & \cos \theta \end{pmatrix}, \quad (3)$$

where

$$0 \leq \theta \leq \frac{1}{2}\pi, \quad \text{and} \quad 0 \leq \chi < 2\pi. \quad (4)$$

We now plug in eq. (3) into eq. (2). Since the off-diagonal terms must vanish, one obtains constraints on the angles θ and χ . It is convenient to define,

$$c = |c|e^{i\psi}, \quad \text{where } 0 \leq \psi < 2\pi. \quad (5)$$

Then,

$$\begin{aligned}
U^{-1}AU &= \begin{pmatrix} \cos \theta & e^{-i\chi} \sin \theta \\ -e^{i\chi} \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a & |c|e^{i\psi} \\ |c|e^{-i\psi} & b \end{pmatrix} \begin{pmatrix} \cos \theta & -e^{-i\chi} \sin \theta \\ e^{i\chi} \sin \theta & \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \cos \theta & e^{-i\chi} \sin \theta \\ -e^{i\chi} \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a \cos \theta + |c|e^{i(\psi+\chi)} \sin \theta & -ae^{-i\chi} \sin \theta + |c|e^{i\psi} \cos \theta \\ |c|e^{-i\psi} \cos \theta + be^{i\chi} \sin \theta & -|c|e^{-i(\psi+\chi)} \sin \theta + b \cos \theta \end{pmatrix} \\
&= \begin{pmatrix} \lambda_1 & Z \\ Z^* & \lambda_2 \end{pmatrix},
\end{aligned}$$

where

$$\lambda_1 = a \cos^2 \theta + 2|c| \cos \theta \sin \theta \cos(\psi + \chi) + b \sin^2 \theta, \quad (6)$$

$$\lambda_2 = a \sin^2 \theta - 2|c| \cos \theta \sin \theta \cos(\psi + \chi) + b \cos^2 \theta, \quad (7)$$

$$Z = e^{-i\chi} \left\{ (b - a) \cos \theta \sin \theta + |c| \left[e^{i(\psi+\chi)} \cos^2 \theta - e^{-i(\psi+\chi)} \sin^2 \theta \right] \right\}. \quad (8)$$

The vanishing of the off-diagonal elements of $U^{-1}AU$ implies that:

$$(b - a) \cos \theta \sin \theta + |c| \left[e^{i(\psi+\chi)} \cos^2 \theta - e^{-i(\psi+\chi)} \sin^2 \theta \right] = 0.$$

This is a complex equation. Taking real and imaginary parts yields two real equations,

$$\frac{1}{2}(b - a) \sin 2\theta + |c| \cos 2\theta \cos(\psi + \chi) = 0, \quad (9)$$

$$|c| \sin(\psi + \chi) = 0. \quad (10)$$

Consider first the special case of $c = 0$. In light of the convention that $\lambda_1 \geq \lambda_2$,

$$\begin{aligned}
c = 0 \quad \text{and} \quad a > b &\implies \theta = 0 \quad \text{and} \quad \chi \text{ is undefined,} \\
c = 0 \quad \text{and} \quad a < b &\implies \theta = \frac{1}{2}\pi \quad \text{and} \quad \chi \text{ is undefined,} \\
c = 0 \quad \text{and} \quad a = b &\implies \theta \text{ and} \quad \chi \text{ are undefined.}
\end{aligned}$$

In particular, if $c = 0$ and $a = b$, then $A = a\mathbf{I}$ and it follows that $U^{-1}AU = U^{-1}U = a\mathbf{I}$, which is satisfied for any unitary matrix U . Consequently, in this limit θ and χ are arbitrary and hence undefined, as indicated above.

If $c \neq 0$ then eq. (10) yields

$$\sin(\psi + \chi) = 0 \quad \text{and} \quad \cos(\psi + \chi) = \varepsilon, \quad \text{where } \varepsilon = \pm 1. \quad (11)$$

We can determine the sign ε as follows. Since $\lambda_1 \geq \lambda_2$, we subtract eqs. (6) and (7) and make use of eq. (11) to obtain,

$$(a - b) \cos 2\theta + 2\varepsilon|c| \sin 2\theta \geq 0. \quad (12)$$

Likewise, we insert eq. (11) into eq. (9), which yields

$$(b - a) \sin 2\theta + 2\varepsilon|c| \cos 2\theta = 0. \quad (13)$$

Finally, we multiply eq. (12) by $\sin 2\theta$ and eq. (13) by $\cos 2\theta$ and add the two resulting equations. The end result is,

$$2\varepsilon|c| \geq 0. \quad (14)$$

By assumption, $c \neq 0$. Thus, it follows that $\varepsilon \geq 0$. Since $\varepsilon = \pm 1$, we can conclude that $\varepsilon = 1$. Hence,

$$\cos(\psi + \chi) = 1, \quad \text{for } c \neq 0. \quad (15)$$

Equivalently, $\psi + \chi = 2\pi n$ for some integer n . By the conventions established in eqs. (4) and (5), we take $0 \leq \psi, \chi < 2\pi$. Hence, it follows that

$$\chi = \begin{cases} 2\pi - \psi, & \text{for } c \neq 0 \text{ and } \psi \neq 0, \\ 0, & \text{for } c \neq 0 \text{ and } \psi = 0. \end{cases} \quad (16)$$

We can now determine θ . Inserting eq. (15) into eq. (9) yields

$$\tan 2\theta = \frac{2|c|}{a - b}, \quad \text{for } c \neq 0 \text{ and } a \neq b. \quad (17)$$

Note that if $a = b$, then eq. (13) yields $\cos 2\theta = 0$. In light of our convention stated in eq. (4),

$$c \neq 0 \quad \text{and} \quad a = b \quad \implies \quad \theta = \frac{1}{4}\pi. \quad (18)$$

If $c \neq 0$ and $a \neq b$, we can use eq. (17) along with the convention that $\sin 2\theta \geq 0$ [cf. eq. (4)] to conclude that

$$\sin 2\theta = \frac{2|c|}{\sqrt{(a - b)^2 + 4|c|^2}}. \quad (19)$$

$$\cos 2\theta = \frac{a - b}{\sqrt{(a - b)^2 + 4|c|^2}}. \quad (20)$$

Eq. (20) implies that the sign of $a - b$ determines whether $0 < \theta < \frac{1}{4}\pi$ or $\frac{1}{4}\pi < \theta < \frac{1}{2}\pi$. The former corresponds to $a - b > 0$ while the latter corresponds to $a - b < 0$. The borderline case of $a = b$ has already been treated in eq. (18).

To summarize, if $c \neq 0$, then eqs. (16), (19) and (20) uniquely specify the diagonalizing matrix U [in the conventions stated in eqs. (4) and (5)]. When $c = 0$ and $a \neq b$, χ is arbitrary and $\theta = 0$ or $\frac{1}{2}\pi$ for the two cases of $a > b$ or $a < b$, respectively.* Finally, if $c = 0$ and $a = b$, then $A = a\mathbf{I}$, in which case U is arbitrary.

*Note that in the case of $c = 0$ and $a < b$, the matrix A is diagonal. Nevertheless, the “diagonalizing” matrix, $U \neq \mathbf{I}$. Indeed, in this case $\theta = \frac{1}{2}\pi$, and $U^{-1}AU$ simply interchanges the two diagonal elements of A to ensure that $\lambda_1 \geq \lambda_2$ in eq. (2), as required by the convention adopted below eq. (1).

Diagonalization of a real symmetric 2×2 matrix

Finally, we can easily treat the special case in which the matrix A is real. In this case, we can diagonalize a real symmetric 2×2 matrix by a real orthogonal matrix. The two eigenvalues are still given by eq. (1) in the convention that $\lambda_1 \geq \lambda_2$, although the absolute values signs are no longer needed since for real values of c , we have $|c|^2 = c^2$. Moreover, since c is real, eq. (5) implies that if $c \neq 0$ then $\psi = 0$ or $\psi = \pi$. Eq. (16) then yields

$$\chi = \begin{cases} 0, & \text{for } c \neq 0 \text{ and } \psi = 0, \\ \pi, & \text{for } c \neq 0 \text{ and } \psi = \pi, \end{cases} \quad (21)$$

which is equivalent to the statement that

$$e^{i\chi} = \operatorname{sgn} c, \quad \text{for real } c \neq 0. \quad (22)$$

It is convenient to redefine $\theta \rightarrow \theta \operatorname{sgn} c$ in eq. (3). With this modification, the range of θ can be taken as[†]

$$-\frac{1}{2}\pi < \theta \leq \frac{1}{2}\pi. \quad (23)$$

The diagonalizing matrix U is now a real orthogonal 2×2 matrix,

$$U = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \text{where } \begin{cases} c > 0 & \implies 0 < \theta < \frac{1}{2}\pi, \\ c < 0 & \implies -\frac{1}{2}\pi < \theta < 0. \end{cases}$$

Hence, for real $c \neq 0$ with the range of θ given by eq. (23), eqs. (17) and (19) are modified by replacing $|c|$ with c in their numerators. That is,

$$\sin 2\theta = \frac{2c}{\sqrt{(a-b)^2 + 4c^2}}, \quad (24)$$

$$\cos 2\theta = \frac{a-b}{\sqrt{(a-b)^2 + 4c^2}}. \quad (25)$$

The sign of c determines the quadrant in which θ lives. Moreover, eq. (25) provides additional information. For $c > 0$, the sign of $a-b$ determines whether $0 < \theta < \frac{1}{4}\pi$ or $\frac{1}{4}\pi < \theta < \frac{1}{2}\pi$. The former corresponds to $a-b > 0$ while the latter corresponds to $a-b < 0$. Likewise, for $c < 0$, the sign of $a-b$ determines whether $-\frac{1}{2}\pi < \theta < -\frac{1}{4}\pi$ or $-\frac{1}{4}\pi < \theta < 0$. The former corresponds to $a-b < 0$ while the latter corresponds to $a-b > 0$. The borderline cases are likewise determined:

$$\begin{aligned} c = 0 \quad \text{and} \quad a > b &\implies \theta = 0, \\ c = 0 \quad \text{and} \quad a < b &\implies \theta = \frac{1}{2}\pi, \\ a = b \quad \text{and} \quad c > 0 &\implies \theta = \frac{1}{4}\pi, \\ a = b \quad \text{and} \quad c < 0 &\implies \theta = -\frac{1}{4}\pi. \end{aligned}$$

If $c = 0$ and $a = b$, then $A = a\mathbf{I}$ and it follows that $U^{-1}AU = U^{-1}U = \mathbf{I}$, which is satisfied for any invertible matrix U . Consequently, in this limit θ is arbitrary (and hence undefined).

[†]Using $\cos(\theta + \pi) = -\cos \theta$ and $\sin(\theta + \pi) = -\sin \theta$, it follows that shifting $\theta \rightarrow \theta + \pi$ simply multiplies U by an overall factor of -1 . In particular, $U^{-1}AU$ is unchanged. Hence, the convention $-\frac{1}{2}\pi < \theta \leq \frac{1}{2}\pi$ may be chosen without loss of generality.