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Diagonalization of a general 2 × 2 hermitian matrix

Consider a general 2× 2 hermitian matrix

A =

(

a c

c∗ b

)

,

where a and b are real numbers and c is a complex number. The eigenvalues are the roots
of the characteristic equation:

∣

∣

∣

∣

a− λ c

c∗ b− λ

∣

∣

∣

∣

= (a− λ)(b− λ)− |c|2 = λ2 − λ(a+ b) + (ab− |c|2) = 0 .

Noting that (a+ b)2 − 4(ab− |c|2) = (a− b)2 + 4|c|2, the two roots can be written as:

λ1 =
1
2

[

a+ b+
√

(a− b)2 + 4|c|2
]

and λ2 =
1
2

[

a+ b−
√

(a− b)2 + 4|c|2
]

, (1)

where by convention we take λ1 ≥ λ2. As expected, the eigenvalues of an hermitian matrix
are real.

An hermitian matrix can be diagonalized by a unitary matrix U ,

U−1AU =

(

λ1 0
0 λ2

)

, (2)

where λ1 and λ2 are the eigenvalues obtained in eq. (1). Note that one can always transform
U → eiζU without modifying eq. (2), since the phase cancels out. Since detU is a pure
phase, one can choose detU = 1 in eq. (2) without loss of generality. The most general 2×2
unitary matrix of unit determinant can be written as:

U =

(

eiβ cos θ −e−iχ sin θ
eiχ sin θ e−iβ cos θ

)

.

The columns of U are the normalized eigenvectors of A corresponding to the eigenvalues
λ1 and λ2, respectively. But, we are always free to multiply any normalized eigenvector by
an arbitrary complex phase. Thus, without loss of generality, we can choose β = 0 and
cos θ ≥ 0. Moreover, the sign of sin θ can always be absorbed into the definition of χ. Hence,
we will take

U =

(

cos θ −e−iχ sin θ
eiχ sin θ cos θ

)

, (3)

where
0 ≤ θ ≤ 1

2
π , and 0 ≤ χ < 2π . (4)

We now plug in eq. (3) into eq. (2). Since the off-diagonal terms must vanish, one obtains
constraints on the angles θ and χ. It is convenient to define,

c = |c|eiψ , where 0 ≤ ψ < 2π . (5)
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Then,

U−1AU =

(

cos θ e−iχ sin θ
−eiχ sin θ cos θ

)(

a |c|eiψ

|c|e−iψ b

)(

cos θ −e−iχ sin θ
eiχ sin θ cos θ

)

=

(

cos θ e−iχ sin θ
−eiχ sin θ cos θ

)(

a cos θ + |c|ei(ψ+χ) sin θ −ae−iχ sin θ + |c|eiψ cos θ
|c|e−iψ cos θ + beiχ sin θ −|c|e−i(ψ+χ) sin θ + b cos θ

)

=

(

λ1 Z

Z∗ λ2

)

,

where

λ1 = a cos2 θ + 2|c| cos θ sin θ cos(ψ + χ) + b sin2 θ , (6)

λ2 = a sin2 θ − 2|c| cos θ sin θ cos(ψ + χ) + b cos2 θ , (7)

Z = e−iχ
{

(b− a) cos θ sin θ + |c|
[

ei(ψ+χ) cos2 θ − e−i(ψ+χ) sin2 θ
]

}

. (8)

The vanishing of the off-diagonal elements of U−1AU implies that:

(b− a) cos θ sin θ + |c|
[

ei(ψ+χ) cos2 θ − e−i(ψ+χ) sin2 θ
]

= 0 .

This is a complex equation. Taking real and imaginary parts yields two real equations,

1
2
(b− a) sin 2θ + |c| cos 2θ cos(ψ + χ) = 0 , (9)

|c| sin(ψ + χ) = 0 . (10)

Consider first the special case of c = 0. In light of the convention that λ1 ≥ λ2,

c = 0 and a > b =⇒ θ = 0 and χ is undefined ,

c = 0 and a < b =⇒ θ = 1
2
π and χ is undefined ,

c = 0 and a = b =⇒ θ and χ are undefined .

In particular, if c = 0 and a = b, then A = aI and it follows that U−1AU = U−1U = aI,
which is satisfied for any unitary matrix U . Consequently, in this limit θ and χ are arbitrary
and hence undefined, as indicated above.

If c 6= 0 then eq. (10) yields

sin(ψ + χ) = 0 and cos(ψ + χ) = ε , where ε = ±1. (11)

We can determine the sign ε as follows. Since λ1 ≥ λ2, we subtract eqs. (6) and (7) and
make use of eq. (11) to obtain,

(a− b) cos 2θ + 2ε|c| sin 2θ ≥ 0 . (12)
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Likewise, we insert eq. (11) into eq. (9), which yields

(b− a) sin 2θ + 2ε|c| cos 2θ = 0 . (13)

Finally, we multiply eq. (12) by sin 2θ and eq. (13) by cos 2θ and add the two resulting
equations. The end result is,

2ε|c| ≥ 0 . (14)

By assumption, c 6= 0. Thus, it follows that ε ≥ 0. Since ε = ±1, we can conclude that
ε = 1. Hence,

cos(ψ + χ) = 1 , for c 6= 0. (15)

Equivalently, ψ + χ = 2πn for some integer n. By the conventions established in eqs. (4)
and (5), we take 0 ≤ ψ , χ < 2π. Hence, it follows that

χ =

{

2π − ψ , for c 6= 0 and ψ 6= 0 ,

0 , for c 6= 0 and ψ = 0 .
(16)

We can now determine θ. Inserting eq. (15) into eq. (9) yields

tan 2θ =
2|c|

a− b
, for c 6= 0 and a 6= b . (17)

Note that if a = b, then eq. (13) yields cos 2θ = 0. In light of our convention stated in eq. (4),

c 6= 0 and a = b =⇒ θ = 1
4
π . (18)

If c 6= 0 and a 6= b, we can use eq. (17) along with the convention that sin 2θ ≥ 0 [cf. eq. (4)]
to conclude that

sin 2θ =
2|c|

√

(a− b)2 + 4|c|2
. (19)

cos 2θ =
a− b

√

(a− b)2 + 4|c|2
. (20)

Eq. (20) implies that the sign of a− b determines whether 0 < θ < 1
4
π or 1

4
π < θ < 1

2
π. The

former corresponds to a − b > 0 while the latter corresponds to a − b < 0. The borderline
case of a = b has already been treated in eq. (18).

To summarize, if c 6= 0, then eqs. (16), (19) and (20) uniquely specify the diagonalizing
matrix U [in the conventions stated in eqs. (4) and (5)]. When c = 0 and a 6= b, χ is arbitrary
and θ = 0 or 1

2
π for the two cases of a > b or a < b, respectively.∗ Finally, if c = 0 and a = b,

then A = aI, in which case U is arbitrary.

∗Note that in the case of c = 0 and a < b, the matrix A is diagonal. Nevertheless, the “diagonalizing”
matrix, U 6= I. Indeed, in this case θ = 1

2
π, and U−1AU simply interchanges the two diagonal elements of A

to ensure that λ1 ≥ λ2 in eq. (2), as required by the convention adopted below eq. (1).
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Diagonalization of a real symmetric 2 × 2 matrix

Finally, we can easily treat the special case in which the matrix A is real. In this case,
we can diagonalize a real symmetric 2 × 2 matrix by a real orthogonal matrix. The two
eigenvalues are still given by eq. (1) in the convention that λ1 ≥ λ2, although the absolute
values signs are no longer needed since for real values of c, we have |c|2 = c2. Moreover, since
c is real, eq. (5) implies that if c 6= 0 then ψ = 0 or ψ = π. Eq. (16) then yields

χ =

{

0 , for c 6= 0 and ψ = 0 ,

π , for c 6= 0 and ψ = π ,
(21)

which is equivalent to the statement that

eiχ = sgn c , for real c 6= 0. (22)

It is convenient to redefine θ → θ sgn c in eq. (3). With this modification, the range of θ can
be taken as†

−1
2
π < θ ≤ 1

2
π . (23)

The diagonalizing matrix U is now a real orthogonal 2× 2 matrix,

U =

(

cos θ − sin θ
sin θ cos θ

)

, where

{

c > 0 =⇒ 0 < θ < 1
2
π ,

c < 0 =⇒ −1
2
π < θ < 0 .

Hence, for real c 6= 0 with the range of θ given by eq. (23), eqs. (17) and (19) are modified
by replacing |c| with c in their numerators. That is,

sin 2θ =
2c

√

(a− b)2 + 4c2
, (24)

cos 2θ =
a− b

√

(a− b)2 + 4c2
. (25)

The sign of c determines the quadrant in which θ lives. Moreover, eq. (25) provides additional
information. For c > 0, the sign of a − b determines whether 0 < θ < 1

4
π or 1

4
π < θ < 1

2
π.

The former corresponds to a− b > 0 while the latter corresponds to a− b < 0. Likewise, for
c < 0, the sign of a − b determines whether −1

2
π < θ < −1

4
π or −1

4
π < θ < 0. The former

corresponds to a− b < 0 while the latter corresponds to a− b > 0. The borderline cases are
likewise determined:

c = 0 and a > b =⇒ θ = 0 ,

c = 0 and a < b =⇒ θ = 1
2
π ,

a = b and c > 0 =⇒ θ = 1
4
π ,

a = b and c < 0 =⇒ θ = −1
4
π .

If c = 0 and a = b, then A = aI and it follows that U−1AU = U−1U = I, which is satisfied
for any invertible matrix U . Consequently, in this limit θ is arbitrary (and hence undefined).

†Using cos(θ + π) = − cos θ and sin(θ + π) = − sin θ, it follows that shifting θ → θ + π simply multiplies
U by an overall factor of −1. In particular, U−1AU is unchanged. Hence, the convention − 1

2
π < θ ≤ 1

2
π

may be chosen without loss of generality.
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