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The Optical Theorem

1. The probability currents

In the quantum theory of scattering, the optical theorem is a consequence of the conser-
vation of probability. As usual, we define
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The conservation of probability is expressed by

V-3+4—=0.
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For a stationary state solution, W(&,t) is independent of time, in which case, dp/dt = 0.
Hence, it follows that V - 3 = 0. Integrating this equation over the volume of a sphere
(centered at the origin) of radius R > ry, where 1 is the range of the potential, it follows

that
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where S is the surface of a sphere of radius R centered at the origin.
In scattering theory, the asymptotic form for the wave function is a stationary state that
represents the incoming plane wave an an outgoing (scattered) spherical wave,
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In spherical coordinates, we have,

Inserting eq. (3) into the definition of the probability current [eq. (1)], it follows that
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is the contribution to the probability current due to the interference between the incoming
plane wave and the outgoing (scattered) spherical wave.



2. Evaluation of lim e**'®
T—>00
To compute the cross section, we need the asymptotic forms for the probability currents

given in eqgs. (4) and (5). In particular, we need to make sense of!

ik &

lim e’ where r = |Z]. (6)
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Strictly speaking, the above limit does not exist. However, this limit does exist in the sense
of distributions. This is not surprising, since plane waves are an idealization of the initial
state of the scattering process. In reality, the initial state is more realistically represented by
a wave packet with some spread of initial momenta hk. Employing the plane wave simplifies
the mathematical analysis, although with a price of dealing with certain quantities such as
eq. (6) that must be carefully treated.

To evaluate the limit in eq. (6), we begin with the well-known expansion of the plane
wave in terms of spherical waves,
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where Yy, (#) = Y, (0., ¢,) and ng(l%) = Yo (O, ¢r). That is, the unit vectors 7 and k are
specified by polar and azimuthal angles (6,,¢,) and (0, ¢x), respectively. Asymptotically,
we have as r — 00,
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Inserting this result into eq. (7) yields
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after using

A for odd ¢ for odd ¢
sin(30m) = {Z ’ ore ’ cos(2lm) = {O’ ore ’
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To evaluate the sums in eq. (8), we consider the completeness relation,

'The limit r — oo really means that we take the dimensionless quantity kr — oo.



where the delta function above means
0k —7)=0(2% — Q) = d(cos b, — cosb,)0(dr — @r)

so that

Noting that
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Adding and subtracting egs. (9) and (10) then yields
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Using the above results to evaluate eq. (8), we end up with
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That is, lim, ¢ can be understood as a distribution (often called a generalized function)
that can be expressed in terms of delta functions. Distributions acquire meaning when
multiplied by a smooth function and integrated over an appropriate region. In principle, one
can derive the entire asymptotic series for €’*'® as r — co by employing the full asymptotic
series for jy(kr) in eq. (7). Eq. (11) can also be viewed as a particular generalization of the

Riemann-Lebesgue lemma.

3. Derivation of the Optical Theorem

We can now compute the large r behavior of eq. (5). Using eq. (11),
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Hence, it follows that
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Consequently,
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The effect of the §(k—#) in eq. (12) is to set # = 0 (the corresponding value of ¢ is irrelevant).
Hence, egs. (4) and (5)

Using eq. (2), we must evaluate the following integrals,
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where o7 is the total cross-section for scattering.? Therefore, egs. (2) and (13) yield
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which is the celebrated optical theorem,
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The derivations presented in Sections 1-3 above were inspired by Askold M. Perelomov
and Yakov B. Zel'dovich, Quantum Mechanics: Selected Topics (World Scientific Publishing
Company, Singapore, 1998), Chapter 2.4.

4. Another derivation of the Optical Theorem

It is instructive to present a second proof of eq. (15) using the abstract formulation
of scattering theory. In abstract scattering theory, the integral equation for scattering is
represented by the Lippmann-Schwinger equation,
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?Recall that the definition of the cross-section is do = Jo. -7 12 d/jine, where jo. = hk#|f(6, ¢)[2/ (mr?)
and jinc = hk/m. Tt follows that do/dQ = |£(0, ¢)|>.



where the (+) superscript (which corresponds to the sign of the i¢) indicates that the scat-
tered wave corresponds to outgoing spherical waves, and H is the free-particle Hamiltonian
(in absence of the scattering potential V). The states |k) are eigenstates of Hy with corre-
sponding eigenvalues E = h*k?/(2m). The transition operator T is then defined by

T|k) = V|wH) (17)

The scattering amplitude f(6, ¢) is related to the matrix elements of the transition op-
erator,
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where (6, ¢) are the polar and azimuthal angles of the vector k in a coordinate system in
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which k = k3. Setting k' =k is equivalent to setting 6 = 0; thus the forward scattering
amplitude is
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Using egs. (16) and (17), it follows that
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We now employ the formal operator identity,
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where P is the principal value. Under the assumption that V' is hermitian,
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since the diagonal elements of hermitian operators are real. Hence, eqs. (17)—(20) yield
Im (k|T|k) = —m(UH|V §(E — Hy) VD)) = —x(k|TH6(E — Hy) T|k) .

To evaluate the above matrix element, we insert a complete set of eigenstates of H,.
Then, when §(E — Hy) acts on |k'), it yields the “eigenvalue” 6(E — h?k’?/(2m)). That is,
the operator delta-function is replaced by a c-number delta-function. Hence,
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Since k = |12| and k' = |f<§ '| are both positive, the following identity can be used,
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after noting that §(k+ £’) = 0 since its argument can never be zero. Thus, the integral given
in eq. (21) can be evaluated by writing d3k’ = k'2dk’'dQ) using the delta-function to perform
the integration over &’. The end result is given by
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Finally, using eqs. (14) and (18) we recover the optical theorem given by eq. (15).



