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1. Lorentz invariant phase space

The n-particle Lorentz invariant phase space element is defined by

n
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where p; = (E;; p) and E; = (|p]*> + m?)1/2. The corresponding n-particle phase space
integral is given by

R.(s) = /dLips(pl,pg,...,pn )(27) 45( Zp2> , (1)

where s is the Lorentz invariant quantity,

s=p. (2)

In these notes, we consider explicitly the case of n = 2. In this case, we must evaluate,
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Ry(s) = (27T) 2E1 2E2 8" (p—p1 —p2). (3)

The first step is to make use of the identity given by eq. (38) in Solution Set 1,

ﬁ d(po — E) = 5(172 - m2) O(po) ,

where p* = p2 —|p]? is the square of the momentum four-vector and ©(z) is the step function,
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It then follows that,

/02[3 / p_5 po—E) = /d4p5(p2—m2)@<po), (5)

after writing d*p = d®pdpy. Using eq. (5), we can rewrite eq. (3) as

Ry(s) = (2m)~? / Zgll d*pa 6(p3 — m3)O(p20)d* (p — p1 — p2)
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after using the four-dimensional delta function to integrate over ps.
Since Ry(s) is a Lorentz invariant quantity, we can evaluate it in any frame. We shall
choose the center-of-momentum frame, where

p1 = (E1; Pou) p2 = (E2; —Pom) » p=(5;0). (7)

Noting that /s = E; + E5 due to the four-momentum conserving delta function which sets
p = p1 + pa, and the relativistic energies given by E? = |Pay|? + m?2, and F2 = |Boy|? + m3
(the so-called mass-shell conditions), it is straightforward to derive the following results,
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where A\!/2(s,m?,m2) is the square root of the triangle function, first introduced by Gunnar
Kallén. The triangle function can be written in many forms,
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E = Ey =

A(s,m? m3) = s +m] +my — 2sm3 — 2sm3 — 2mams
= (s —m? —m3)? — 4m3m
= [s — (m1 +m2)?] [s — (m1 — my)?]
= [m] — (Vs + m2)*] [m] — (V/s — m2)?]
= [m3 — (Vs +m)’] [m3 — (Vs —m)?] . (9)
Evaluating eq. (6) in the center-of-momentum frame, we note that
(p—p1)? —m3 =p* = 2p-p1 +pi —mj = s — 2/sEy +mi —mj, (10)

after using p? = m? and p-p; = \/sE; in light of eq. (7). Inserting the result of eq. (10) back
into eq. (6) yields

Ry(s) = (27) 2 / Z—gll (s —2VsEy +mi —m3)O(Vs — Ey). (11)

Using E? = piy; +m? (where péy = |Poul?). It follows that EidE, = pcmdpenm. Hence, in
the center-of-momentum frame,

d*p1 = pevdpondS) = pon E1dE1dSY .

It follows that!

Ry(s) = 1(2m)™? /pCMdEldQ §(s —2v/sEy + mi —m3)0 (Vs — Ey)
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after using the delta function to integrate over E;. Note that the theta function condition is

Note that setting the argument of the delta function in eq. (12) to be zero yields the equation for E;
obtained in eq. (8), as expected.



automatically satisfied since four-momentum conservation in the center-of-momentum frame
implies that /s = Ey + Es [cf. eq. (7)], and the energies E; and E, are non-negative.
Using eq. (8), we can also rewrite eq. (12) as

AY2(5 m2, m2
Ro(s) = (3%218 2) / 40 (13)

3. Decay rate for the two body decay of an unstable particle

We can now use eq. (12) to evaluate the decay rate I' = 77! (where 7 is the lifetime) of an
unstable particle of mass M = /s in its rest frame, which decays to two particles of masses
my and ma, respectively. Starting from the general result
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where f collectively refers to the final state particles. In the case of n = 2, it then follows
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Note that €2 refers to the solid angle of emitted particle 1 with respect to a fixed z-axis in
the rest frame of the decaying particle. After summing over final state spins, we are free to
choose the z axis arbitrarily. Thus, the integration over €2 is trivial and yields 47. Hence the
decay rate of the unstable particle is given by

P
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where the sum over f is a sum over final state spins (and any other internal degrees of freedom
if present). It should be noted that the an invariant matrix element for the decay of a particle
into a two particle final state has a mass dimension equal to 1. Thus, I" has mass dimension
1 and 7 = I'"! has mass dimension —1, which in units of & = ¢ = 1 corresponds to a quantity
with the dimensions of time. (More precisely, 7 = h/T".)

If the unstable particle has a non-zero spin .J, then one should also average over the initial
spins in the computation of decay rate,
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That is, to perform the average over initial spins, we sum over the initial spins and divide
by the number of possible spin states. Finally, one can rewrite this result using eq. (8) with
Vs = M to obtain
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Note that in deriving eq. (14), we integrated over the full 47 steradians. In the case where
the two decay products are identical particles, the integration over 47 steradians is double
counting, since one cannot distinguish whether particle 1 or particle 2 has been emitted at
a solid angle 2 = (0, ¢) with respect to a fixed z-axis. To avoid double counting, we simply
integrate over 27 steradians. That is, the width computed in eq. (14) must be reduced by a
factor of 2. We can write this more explicitly as
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where 015 = 1 of the two particles in the final state are identical; otherwise, d;5 = 0.

4. Cross section for the scattering of two particles into a two-particle final state

Consider the two-particle scattering process, a + b — 1 + 2, with corresponding four
momentum vectors p,, py, p1 and po. It is convenient to introduced the Lorentz invariant
Mandelstam variables,

S = (pa +pb)2 = (pl +p2>27 (17)
t=(pa—p1)° = (p2—m)°, (18)
u=(p,—p2)* = (p1 — ), (19)

where we have used the conservation of four-momentum, p, +p, = p1 +p2. A straightforward
computation reveals that s, ¢ and u are not independent variables. Using the mass-shell
conditions, p2 = m?2, p7 = m?, p} = m? and p3 = mZ, it follows that

S+t+u=m+m;+m;+ms.

One is free to evaluate s, ¢t and w in any reference frame. It is convenient to work out the

Mandelstam variables in the center-of- momentum frame where p, = —p, and p, = —p;.
The four-momenta of the scattering process are then given by,
pa=(Ea;P,), o= (Ep; —P,), p=(E;P), p2=(E;—P), (20)

It is convenient to introduce the notation for the magnitudes of the initial and final state
center-of-momentum three-momentum,

pi = Dol = By, pr = |P)| = |Py]
Consequently, the mass-shell conditions yield
Eo=@+m)"?,  By=@+m)'?,  BEi=@i+m)"?, By=(pf+m3y)'

It immediately follows from eq. (20) that

S = (Ea+Eb)2.
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That is, /s is the total relativistic energy available in the center-of-momentum frame available
for the collision process. Next, we consider

t=(pa —p1)? =m; +mi —2p,p1,
= mi + m% —2E,E1 +2p,-p)
=m?2+m] —2E,E\ + 2p;pscos b, (21)
where the center-of-momentum scattering angle  is the polar angle between particles a and 1.
Using energy and three-momentum conservation along with the mass-shell conditions,

it is straightforward to obtain the following expressions for the center-of-momentum frame

energies and three-momenta,
s+ mi —m?
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and ] ]

bi = 2—\/5)\1/2(& m3>m§) ) by = 2—\/5)‘1/2(8’ m%>m§) ) (23)
where A\!/2 is the square root of the triangle function introduced in eq. (9). Finally, the cosine
of the scattering angle in the center-of-momentum frame is given by

s(t —w) + (mg — mj)(mi —m3)

cosf =

Recall the formula obtained in class for the total cross section for the scattering of two
particles into an n particle final state,
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where M; is the invariant scattering amplitude, and we are instructed to sum over all internal
spin degrees of freedom. We shall evaluate eq. (24) in the case of n = 2. Furthermore, note
that in the center-of-momentum frame,

(Pa-po)* = mgmi; = §[(s = ma —my)* — dmgmi] = {A(s,mg, my) ,
where we have used egs. (9) and (17).
If we do not measure the initial state spins of the colliding particles a and b, then we
should average over the initial state spin states. Denoting the initial spins by J, and J,, we

obtain the spin-averaged cross section by summing the squared invariant matrix element over



initial spin states and dividing by the total number of initial spin states, (2J, + 1)(2J, + 1).
Thus, in light of eq. (3) [where we identify p = p; + pa,

do _ 1 dRs(s) 1 )
dQ - 2N2(s,m,mp) - d9 (2Ja+1><2Jb+1>;|Mﬂ| ’

where Q = (6, ¢) refers to the center-of-momentum frame polar and azimuthal angles of
particle 1 with respect to the z-axis that is defined to lie in the direction of p,. Using the
explicit expression obtained for Ry(s) in eq. (13),

do 1 AY2(s,m? m2) 1 )
—-_— — ! . 7 25
QY 64m2s N2 (s,m2,m?) (2J, + 1)(2J, + 1) Z My (25)
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The expression do/dS2 is not Lorentz invariant since it depends on angles defined in the
center-of-momentum frame. It is possible to define a Lorentz invariant differential cross
section by noting that in view of eq. (21), the variable ¢ can be used in place of the center-
of-momentum scattering angle. In particular, using egs. (22) and (23) to rewrite the form of

eq. (21),

2 2 2 2
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t=m2+mj— (s = m, + mb;(s mi + my) + e M2 (s, m2 m2)AY2 (s, m?, m2) cos b .
s s

It follows that ]
dt = 2—8)\1/2(8, m2, mHN2(s,m? m2) dcosf.
The azimuthal angle ¢ of particle 1 in the center-of-momentum frame corresponds to rotations

around the z-axis. The integral over this angle is trivial. Hence,
dQ = 2w dcos @ = 4msAY2(s,m2, mHN"Y2(s,m?, m2) dt .

Inserting this result into eq. (25) yields

do 1 1 )
do _ | :
di ~ 16mA(s, m2,md) (2Ja + D2 + 1) Ef: My (26)

The above expression is manifestly Lorentz invariant. One can use eq. (26) to evaluate the
differential cross section in any reference frame.
Finally, it is often convenient to make use of eq. (23) to rewrite eq. (26) as

do 1 1
- Z (M| (27)
if

dt — 64mp2s (20, +1)(2J, + 1)

Note that having derived eq. (15) for the decay rate for an unstable particle to decay into
two final state particles and eq. (27) for the differential cross section for a 2 — 2 scattering
process, the one remaining task is to evaluate the spin-averaged squared invariant amplitude,

1 2
(2J, + D(2J, + 1) ;'Mﬁ‘ ’

relevant for the corresponding process.



Finally, the total cross section can be obtained from eq. (25) by integrating over the solid
angle. In light of the discussion following eq. (15) in the case of identical final state particles,

1 do
= —dQ)
g <1+512)/d9d ’

where 015 = 1 of the two particles in the final state are identical; otherwise, d;5 = 0. No
extra factor is needed in the case of identical initial state particles, since the issue of double
counting does not arise in the latter case.
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