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1. Lorentz invariant phase space

The n-particle Lorentz invariant phase space element is defined by

dLips(p1, p2, . . . , pn) ≡
n
∏

i=1

d3pi
(2π)3 2Ei

,

where pi = (Ei ; ~p) and Ei = (|~p|2 + m2

i )
1/2. The corresponding n-particle phase space

integral is given by

Rn(s) ≡
∫

dLips(p1, p2, . . . , pn)(2π)
4δ

(

p−
∑

i

pi

)

, (1)

where s is the Lorentz invariant quantity,

s ≡ p2 . (2)

In these notes, we consider explicitly the case of n = 2. In this case, we must evaluate,

R2(s) = (2π)−2

∫

d3p1
2E1

d3p2
2E2

δ4(p− p1 − p2) . (3)

The first step is to make use of the identity given by eq. (38) in Solution Set 1,

1

2E
δ(p0 −E) = δ(p2 −m2) Θ(p0) ,

where p2 = p2
0
−|~p|2 is the square of the momentum four-vector and Θ(x) is the step function,

Θ(x) ≡
{

1 x > 0 ,

0 x < 0 .
(4)

It then follows that,

∫

d3p

2E
=

∫

d4p
1

2E
δ(p0 − E) =

∫

d4p δ(p2 −m2)Θ(p0) , (5)

after writing d4p = d3p dp0. Using eq. (5), we can rewrite eq. (3) as

R2(s) = (2π)−2

∫

d3p1
2E1

d4p2 δ(p
2

2
−m2

2
)Θ(p20)δ

4(p− p1 − p2)

= (2π)−2

∫

d3p1
2E1

δ
(

(p− p1)
2 −m2

2

)

Θ
(

(p− p1)0
)

, (6)
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after using the four-dimensional delta function to integrate over p2.
Since R2(s) is a Lorentz invariant quantity, we can evaluate it in any frame. We shall

choose the center-of-momentum frame, where

p1 = (E1 ; ~pCM) , p2 = (E2 ; −~pCM) , p = (
√
s ; ~0) . (7)

Noting that
√
s = E1 + E2 due to the four-momentum conserving delta function which sets

p = p1 + p2, and the relativistic energies given by E2

1
= |~pCM|2 +m2

1
, and E2

2
= |~pCM|2 +m2

2

(the so-called mass-shell conditions), it is straightforward to derive the following results,

E1 =
s +m2

1 −m2
2

2
√
s

, E2 =
s+m2

2 −m2
1

2
√
s

, |~pCM| =
1

2
√
s
λ1/2(s,m2

1
, m2

2
) , (8)

where λ1/2(s,m2

1
, m2

2
) is the square root of the triangle function, first introduced by Gunnar

Källén. The triangle function can be written in many forms,

λ(s,m2

1
, m2

2
) = s+m4

1
+m4

2
− 2sm2

1
− 2sm2

2
− 2m2

2
m2

2

= (s−m2

1 −m2

2)
2 − 4m2

1m
2

2

=
[

s− (m1 +m2)
2
][

s− (m1 −m2)
2
]

=
[

m2

1 − (
√
s+m2)

2
][

m2

1 − (
√
s−m2)

2
]

=
[

m2

2
− (

√
s+m1)

2
][

m2

2
− (

√
s−m1)

2
]

. (9)

Evaluating eq. (6) in the center-of-momentum frame, we note that

(p− p1)
2 −m2

2
= p2 − 2p·p1 + p2

1
−m2

2
= s− 2

√
sE1 +m2

1
−m2

2
, (10)

after using p21 = m2

1 and p·p1 =
√
sE1 in light of eq. (7). Inserting the result of eq. (10) back

into eq. (6) yields

R2(s) = (2π)−2

∫

d3p1
2E1

δ
(

s− 2
√
sE1 +m2

1
−m2

2

)

Θ
(√

s−E1

)

. (11)

Using E2

1
= p2

CM
+m2

1
(where p2

CM
≡ |~pCM|2). It follows that E1dE1 = pCMdpCM. Hence, in

the center-of-momentum frame,

d3p1 = p2CMdpCMdΩ = pCME1dE1dΩ .

It follows that1

R2(s) =
1

2
(2π)−2

∫

pCMdE1dΩ δ
(

s− 2
√
sE1 +m2

1 −m2

2

)

Θ
(√

s−E1

)

=
pCM

16π2
√
s

∫

dΩ , (12)

after using the delta function to integrate over E1. Note that the theta function condition is
1Note that setting the argument of the delta function in eq. (12) to be zero yields the equation for E1

obtained in eq. (8), as expected.
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automatically satisfied since four-momentum conservation in the center-of-momentum frame
implies that

√
s = E1 + E2 [cf. eq. (7)], and the energies E1 and E2 are non-negative.

Using eq. (8), we can also rewrite eq. (12) as

R2(s) =
λ1/2(s,m2

1
, m2

2
)

32π2s

∫

dΩ (13)

3. Decay rate for the two body decay of an unstable particle

We can now use eq. (12) to evaluate the decay rate Γ = τ−1 (where τ is the lifetime) of an
unstable particle of mass M =

√
s in its rest frame, which decays to two particles of masses

m1 and m2, respectively. Starting from the general result

Γ =
1

2M

∑

f

∫

dLips(p1, p2, . . . , pn)(2π)
4δ

(

p−
∑

i

pi

)

|Mfi|2 ,

where f collectively refers to the final state particles. In the case of n = 2, it then follows
that

dΓ

dΩ
=

pCM

32π2M2

∑

f

|Mfi|2 .

Note that Ω refers to the solid angle of emitted particle 1 with respect to a fixed z-axis in
the rest frame of the decaying particle. After summing over final state spins, we are free to
choose the z axis arbitrarily. Thus, the integration over Ω is trivial and yields 4π. Hence the
decay rate of the unstable particle is given by

Γ =
pCM

8πM2

∑

f

|Mfi|2 , (14)

where the sum over f is a sum over final state spins (and any other internal degrees of freedom
if present). It should be noted that the an invariant matrix element for the decay of a particle
into a two particle final state has a mass dimension equal to 1. Thus, Γ has mass dimension
1 and τ = Γ−1 has mass dimension −1, which in units of ~ = c = 1 corresponds to a quantity
with the dimensions of time. (More precisely, τ ≡ ~/Γ.)

If the unstable particle has a non-zero spin J , then one should also average over the initial
spins in the computation of decay rate,

Γ =
pCM

8πM2

1

2J + 1

∑

i,f

|Mfi|2 .

That is, to perform the average over initial spins, we sum over the initial spins and divide
by the number of possible spin states. Finally, one can rewrite this result using eq. (8) with√
s = M to obtain

Γ =
λ1/2(M2, m2

1
, m2

2
)

16πM3

1

2J + 1

∑

i,f

|Mfi|2 (15)
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Note that in deriving eq. (14), we integrated over the full 4π steradians. In the case where
the two decay products are identical particles, the integration over 4π steradians is double
counting, since one cannot distinguish whether particle 1 or particle 2 has been emitted at
a solid angle Ω = (θ, φ) with respect to a fixed z-axis. To avoid double counting, we simply
integrate over 2π steradians. That is, the width computed in eq. (14) must be reduced by a
factor of 2. We can write this more explicitly as

Γ =

(

1

1 + δ12

)

λ1/2(M2, m2

1
, m2

2
)

16πM3

1

2J + 1

∑

i,f

|Mfi|2 (16)

where δ12 = 1 of the two particles in the final state are identical; otherwise, δ12 = 0.

4. Cross section for the scattering of two particles into a two-particle final state

Consider the two-particle scattering process, a + b → 1 + 2, with corresponding four
momentum vectors pa, pb, p1 and p2. It is convenient to introduced the Lorentz invariant
Mandelstam variables,

s = (pa + pb)
2 = (p1 + p2)

2 , (17)

t = (pa − p1)
2 = (p2 − pb)

2 , (18)

u = (pa − p2)
2 = (p1 − pb)

2 , (19)

where we have used the conservation of four-momentum, pa+pb = p1+p2. A straightforward
computation reveals that s, t and u are not independent variables. Using the mass-shell
conditions, p2a = m2

a, p
2

b = m2

b , p
2

1 = m2

1 and p22 = m2

b , it follows that

s+ t + u = m2

a +m2

b +m2

1
+m2

2
.

One is free to evaluate s, t and u in any reference frame. It is convenient to work out the
Mandelstam variables in the center-of- momentum frame where ~pb = −~pa and ~p2 = −~p1.
The four-momenta of the scattering process are then given by,

pa = (Ea ; ~pa) , pb = (Eb ; −~pa) , p1 = (E1 ; ~p1) , p2 = (E2 ; −~p1) , (20)

It is convenient to introduce the notation for the magnitudes of the initial and final state
center-of-momentum three-momentum,

pi ≡ |~pa| = |~pb| , pf ≡ |~p1| = |~p2| .

Consequently, the mass-shell conditions yield

Ea = (p2i +m2

a)
1/2 , Eb = (p2i +m2

b)
1/2 , E1 = (p2f +m2

1)
1/2 , E2 = (p2f +m2

2)
1/2 .

It immediately follows from eq. (20) that

s = (Ea + Eb)
2 .
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That is,
√
s is the total relativistic energy available in the center-of-momentum frame available

for the collision process. Next, we consider

t = (pa − p1)
2 = m2

a +m2

1
− 2pa ·p1 ,

= m2

a +m2

1
− 2EaE1 + 2~pa ·~p1 ,

= m2

a +m2

1
− 2EaE1 + 2pipf cos θ , (21)

where the center-of-momentum scattering angle θ is the polar angle between particles a and 1.
Using energy and three-momentum conservation along with the mass-shell conditions,

it is straightforward to obtain the following expressions for the center-of-momentum frame
energies and three-momenta,

Ea =
s+m2

a −m2

b

2
√
s

, Eb =
s+m2

b −m2
a

2
√
s

,

E1 =
s+m2

1 −m2
2

2
√
s

, E2 =
s+m2

2 −m2
1

2
√
s

, (22)

and

pi =
1

2
√
s
λ1/2(s,m2

a, m
2

b) , pf =
1

2
√
s
λ1/2(s,m2

1
, m2

2
) , (23)

where λ1/2 is the square root of the triangle function introduced in eq. (9). Finally, the cosine
of the scattering angle in the center-of-momentum frame is given by

cos θ =
s(t− u) + (m2

a −m2

b)(m
2

1
−m2

2
)

λ1/2(s,m2
a, m

2

b)λ
1/2(s,m2

1
, m2

2
)

.

Recall the formula obtained in class for the total cross section for the scattering of two
particles into an n particle final state,

σ =
1

4
√

(pa ·pb)2 −m2
am

2

b

∫

dLips (2π)4δ4

(

pa + pb −
∑

f

pf

)

∑

f

|Mfi|2 , (24)

whereMfi is the invariant scattering amplitude, and we are instructed to sum over all internal
spin degrees of freedom. We shall evaluate eq. (24) in the case of n = 2. Furthermore, note
that in the center-of-momentum frame,

(pa ·pb)2 −m2

am
2

b =
1

4

[

(s−ma −mb)
2 − 4m2

am
2

b

]

= 1

4
λ(s,m2

a, m
2

b) ,

where we have used eqs. (9) and (17).
If we do not measure the initial state spins of the colliding particles a and b, then we

should average over the initial state spin states. Denoting the initial spins by Ja and Jb, we
obtain the spin-averaged cross section by summing the squared invariant matrix element over
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initial spin states and dividing by the total number of initial spin states, (2Ja + 1)(2Jb + 1).
Thus, in light of eq. (3) [where we identify p = p1 + p2],

dσ

dΩ
=

1

2λ1/2(s,m2
a, m

2

b)

dR2(s)

dΩ

1

(2Ja + 1)(2Jb + 1)

∑

i,f

|Mfi|2 ,

where Ω = (θ, φ) refers to the center-of-momentum frame polar and azimuthal angles of
particle 1 with respect to the z-axis that is defined to lie in the direction of ~pa. Using the
explicit expression obtained for R2(s) in eq. (13),

dσ

dΩ
=

1

64π2s

λ1/2(s,m2

1
, m2

2
)

λ1/2(s,m2
a, m

2

b)

1

(2Ja + 1)(2Jb + 1)

∑

i,f

|Mfi|2 (25)

The expression dσ/dΩ is not Lorentz invariant since it depends on angles defined in the
center-of-momentum frame. It is possible to define a Lorentz invariant differential cross
section by noting that in view of eq. (21), the variable t can be used in place of the center-
of-momentum scattering angle. In particular, using eqs. (22) and (23) to rewrite the form of
eq. (21),

t = m2

a +m2

1 −
(s−m2

a +m2

b)(s−m2

1
+m2

2
)

2s
+

1

2s
λ1/2(s,m2

a, m
2

b)λ
1/2(s,m2

1, m
2

2) cos θ .

It follows that

dt =
1

2s
λ1/2(s,m2

a, m
2

b)λ
1/2(s,m2

1
, m2

2
) d cos θ .

The azimuthal angle φ of particle 1 in the center-of-momentum frame corresponds to rotations
around the z-axis. The integral over this angle is trivial. Hence,

dΩ = 2π d cos θ = 4πsλ−1/2(s,m2

a, m
2

b)λ
−1/2(s,m2

1
, m2

2
) dt .

Inserting this result into eq. (25) yields

dσ

dt
=

1

16πλ(s,m2
a, m

2

b)

1

(2Ja + 1)(2Jb + 1)

∑

i,f

|Mfi|2 (26)

The above expression is manifestly Lorentz invariant. One can use eq. (26) to evaluate the
differential cross section in any reference frame.

Finally, it is often convenient to make use of eq. (23) to rewrite eq. (26) as

dσ

dt
=

1

64πp2i s

1

(2Ja + 1)(2Jb + 1)

∑

i,f

|Mfi|2 (27)

Note that having derived eq. (15) for the decay rate for an unstable particle to decay into
two final state particles and eq. (27) for the differential cross section for a 2 → 2 scattering
process, the one remaining task is to evaluate the spin-averaged squared invariant amplitude,

1

(2Ja + 1)(2Jb + 1)

∑

i,f

|Mfi|2 ,

relevant for the corresponding process.
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Finally, the total cross section can be obtained from eq. (25) by integrating over the solid
angle. In light of the discussion following eq. (15) in the case of identical final state particles,

σ =

(

1

1 + δ12

)
∫

dσ

dΩ
dΩ ,

where δ12 = 1 of the two particles in the final state are identical; otherwise, δ12 = 0. No
extra factor is needed in the case of identical initial state particles, since the issue of double
counting does not arise in the latter case.
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