
Spin-1/2 fermions in quantum field theory

First, recall that 4-vectors transform under Lorentz transformations, Λµν, as

p′µ = Λµνp
ν, where Λ ∈SO(3,1) satisfies ΛµνgµρΛ

ρ
λ = gνλ.

∗ A Lorentz

transformation corresponds to a rotation by θ about an axis n̂ [~θ ≡ θn̂] and

a boost, ~ζ = v̂ tanh−1 |~v|, where ~v is the corresponding velocity. Under the

same Lorentz transformation, a generic field transforms as:

Φ′(x′) =MR(Λ)Φ(x) ,

where MR ≡ exp
(

−i~θ· ~J − i~ζ · ~K
)

are N × N representation matrices of

the Lorentz group. Defining ~J+ ≡ 1
2(

~J + i ~K) and ~J
−

≡ 1
2(

~J − i ~K),

[J i± , J
j
±] = iǫijkJk± , [J i± , J

j
∓] = 0 .

Thus, the representations of the Lorentz algebra are characterized by (j1, j2),

where the ji are half-integers. (0, 0) is a scalar and (12,
1
2) is a four-vector. Of

interest to us here are the spinor representations (12, 0) and (0, 12).
∗In our conventions, gµν = diag(1 , −1 , −1 , −1).



(12, 0): M = exp
(

− i
2
~θ·~σ − 1

2
~ζ ·~σ

)

, but also (M−1)T = iσ2M(iσ2)−1

(0, 12): [M
−1]† = exp

(

− i
2
~θ·~σ + 1

2
~ζ ·~σ

)

, but alsoM∗ = iσ2[M−1]†(iσ2)−1

since (iσ2)~σ(iσ2)−1 = −~σ
∗ = −~σ

T

Transformation laws of 2-component fields

ξ′α =Mα
β ξβ ,

ξ′α = [(M−1)T]αβ ξ
β ,

ξ′ † α̇ = [(M−1)†]α̇β̇ ξ
† β̇ ,

ξ′ †α̇ = [M∗]α̇
β̇ξ†
β̇
.

We use iσ2 =
(

0 1
−1 0

)

= ǫαβ = ǫα̇β̇ and (iσ2)−1 = −iσ2 = ǫαβ = ǫα̇β̇ to

raise and lower spinor indices: ξα = ǫαβ ξβ ; ξ
†
α̇ = ǫα̇β̇ ξ

† β̇ , etc. Dotted and

undotted indices are related by hermitian conjugation: ξ†α̇ ≡ (ξα)
†.



Finally, we introduce the σ-matrices:

σµ
αβ̇

= (I2 ; ~σ) , σµ α̇β = (I2 ; −~σ) ,

where I2 is the 2× 2 identity matrix. The spinor index structure derives from

the relations:

M †σµM = Λµνσ
ν , M−1σµ(M−1)† = Λµνσ

ν .

For example, (M †)α̇β̇σ
µβ̇γMγ

δ = Λµνσ
ν α̇δ. Note that the matrix M and its

inverse have the same spinor index structure. Some useful identities:

σµαα̇ = ǫαβǫα̇β̇σ
µ β̇β , σµ α̇α = ǫαβǫα̇β̇σµ

ββ̇
.

The utility of σµ is that Lorentz 4-vectors can be built from spinor bilinears:

χ ′α(x′)σµ
αβ̇
ξ′ † β̇(x′) = χα(x)[M−1σµ(M−1)†]αβ̇ξ

† β̇(x)

= Λµν χ(x)
ασν

αβ̇
ξ† β̇(x) .



Spinor indices can be suppressed as long as one adopts a summation

convention where we contract indices as follows:

α
α and α̇

α̇ .

For example, ξη ≡ ξαηα,

ξ
†
η
†
≡ ξ

†
α̇η

† α̇
,

ξ†σµη ≡ ξ†α̇σ
µα̇βηβ,

ξσ
µ
η
†
≡ ξ

α
σ
µ

αβ̇
η
† β̇
.

In particular, for anticommuting spinors,

ηξ ≡ ηαξα = −ξαηα = +ξαηα = ξη .

Note the behavior of spinor products under hermitian conjugation:

(ξΣη)† = η†Σrξ
† , (ξΣη†)† = ηΣrξ

† , (ξ†Ση)† = η†Σrξ ,

where in each case Σ stands for any sequence of alternating σ and σ matrices,

and Σr is obtained from Σ by reversing the order of all of the σ and σ matrices.



From the sigma matrices, one can construct the antisymmetrized products:

(σµν)α
β ≡ i

4

(

σµαγ̇σ
νγ̇β − σναγ̇σ

µγ̇β
)

,

(σµν)α̇β̇ ≡ i

4

(

σµα̇γσνγβ̇ − σνα̇γσµγβ̇

)

.

We may write the (12, 0) and (0, 12) transformation matrices, respectively, as:

M = exp
(

− i
2θ
µνσµν

)

,

(M−1)† = exp
(

− i
2θ
µνσµν

)

,

where θµν is antisymmetric, with θij = ǫijkθk and θi0 = ζi. Consider a

pure boost of an on-shell spinor from its rest frame to the frame where

pµ = (Ep , ~p), with Ep = (|~p|2 +m2)1/2. Setting θij = 0,

M = exp
(

−1
2
~ζ ·~σ

)

=

√

p·σ

m
=

(Ep +m)I2 − ~σ·~p
√

2m(Ep +m)
,

(M−1)† = exp
(

+1
2
~ζ·~σ

)

=

√

p·σ

m
=

(Ep +m)I2 + ~σ·~p
√

2m(Ep +m)
.



Useful identities and Fierz relations

ǫαβǫ
γδ

= −δ
γ
αδ

δ
β + δ

δ
αδ

γ
β, ǫα̇β̇ǫ

γ̇δ̇
= −δ

γ̇
α̇δ

δ̇
β̇ + δ

δ̇
α̇δ

γ̇

β̇
,

σµαα̇σ
β̇β
µ = 2δβαδ

β̇
α̇ ,

σ
µ
αα̇σµββ̇ = 2ǫαβǫα̇β̇ , σ

µα̇α
σ
β̇β
µ = 2ǫ

αβ
ǫ
α̇β̇
,

[σµσν + σνσµ]α
β
= 2gµνδβα ,

[σµσν + σνσµ]α̇β̇ = 2gµνδα̇β̇ ,

σ
µ
σ
ν
σ
ρ
= g

µν
σ
ρ
− g

µρ
σ
ν
+ g

νρ
σ
µ
+ iǫ

µνρκ
σκ ,

σµσνσρ = gµνσρ − gµρσν + gνρσµ − iǫµνρκσκ ,

where ǫ0123 = −ǫ0123 = +1 in our conventions. Computations of cross sections and decay

rates often require traces of alternating products of σ and σ matrices:

Tr[σµσν] = Tr[σµσν] = 2gµν ,

Tr[σ
µ
σ
ν
σ
ρ
σ
κ
] = 2 (g

µν
g
ρκ

− g
µρ
g
νκ

+ g
µκ
g
νρ

+ iǫ
µνρκ

) ,

Tr[σµσνσρσκ] = 2 (gµνgρκ − gµρgνκ + gµκgνρ − iǫµνρκ) .

Traces involving an odd number of σ and σ matrices cannot arise, since there is no way to

connect the spinor indices consistently.



We shall deal with both commuting and anticommuting spinors, which we shall denote

generically by zi. Then, the following identities hold

z1z2 = −(−1)
A
z2z1

z†1z
†
2 = −(−1)Az†2z

†
1

z1σ
µ
z
†
2 = (−1)

A
z
†
2σ

µ
z1

z1σ
µ
σ
ν
z2 = −(−1)

A
z2σ

ν
σ
µ
z1

z†1σ
µσνz†2 = −(−1)Az†2σ

νσµz†1

z
†
1σ

µ
σ
ρ
σ
ν
z2 = (−1)

A
z2σ

ν
σ
ρ
σ
µ
z
†
1 ,

where (−1)A = +1[−1] for commuting [anticommuting] spinors. Finally, the Fierz

identities are given by:

(z1z2)(z3z4) = −(z1z3)(z4z2) − (z1z4)(z2z3) ,

(z†1z
†
2)(z

†
3z

†
4) = −(z†1z

†
3)(z

†
4z

†
2) − (z†1z

†
4)(z

†
2z

†
3) ,

(z1σ
µ
z
†
2)(z

†
3σµz4) = −2(z1z4)(z

†
2z

†
3) ,

(z†1σ
µz2)(z

†
3σµz4) = 2(z†1z

†
3)(z4z2) ,

(z1σ
µz†2)(z3σµz

†
4) = 2(z1z3)(z

†
4z

†
2) .



Free field theories involving fermions

The (12, 0) spinor field ξα(x) describes a neutral Majorana fermion. The

free-field Lagrangian is:

L = iξ†σµ∂µξ − 1
2m(ξξ + ξ†ξ†) ,

which is hermitian up to a total divergence since we can rewrite the above

Lagrangian as

L = 1
2iξ

†σµ
↔

∂µ ξ − 1
2m(ξξ + ξ†ξ†) + total divergence ,

where ξ†σµ
↔

∂µ ξ ≡ ξ†σµ(∂µξ)− (∂µξ)
†σµ ξ.

Generalizing to a multiplet of two-component fermion fields, ξαi(x), labeled

by flavor index i.

L = iξ̂† iσµ∂µξ̂i − 1
2M

ijξ̂iξ̂j − 1
2Mijξ̂

† iξ̂† j ,

where hermiticity implies that Mij ≡ (M ij)∗ is a complex symmetric matrix.



To identify the physical fermion fields, we express the so-called interaction

eigenstate fields, ξ̂αi(x), in terms of mass-eigenstate fields ξ(x) = Ω−1ξ̂(x),

where Ω is unitary and chosen such that

ΩTM Ω = m = diag(m1,m2, . . .),

where the mi are non-negative real numbers. In linear algebra, this is called

the Takagi-diagonalization of a complex symmetric matrix M . To compute

the values of the diagonal elements of m, one may simply note that

ΩTMM †Ω∗ = m2.

MM † is hermitian, and thus it can be diagonalized by a unitary matrix.

Thus, the mi of the Takagi diagonalization are the non-negative square-roots

of the eigenvalues of MM †. In terms of the mass eigenstate fields,

L = iξ† iσµ∂µξi − 1
2mi(ξiξi + ξ† iξ† i) .



Example: the see-saw mechanism

The see-saw Lagrangian is given by:

L = i
(

ψ1 σµ∂µψ1 + ψ2 σµ∂µψ2

)

−M ijψiψj −Mijψiψj ,

where

M ij =

(

0 mD

mD M

)

,

and (without loss of generality) mD and M are positive. The Takagi

diagonalization of this matrix is ΩTMΩ =MD, where

Ω =

(

i cos θ sin θ

−i sin θ cos θ

)

, MD =

(

m− 0

0 m+

)

,

with m± = 1
2

[

√

M2 + 4m2
D ±M

]

and sin 2θ = 2mD/
√

M2 + 4m2
D.



If M ≫ mD, then the corresponding fermion masses are m− ≃ m2
D/M and

m+ ≃ M , while sin θ ≃ mD/M . The mass eigenstates, χi are given by

ψi = Ui
jχj; i.e. to leading order in md/M ,

iχ1 ≃ ψ1 −
mD

M
ψ2 , χ2 ≃ ψ2 +

mD

M
ψ1 .

Indeed, one can check that:

1
2mD(ψ1ψ2 + ψ2ψ1) +

1
2Mψ2ψ2 + h.c. ≃ 1

2

[

m2
D

M
χ1χ1 +Mχ2χ2 + h.c.

]

,

which corresponds to a theory of two Majorana fermions—one very light and

one very heavy (the see-saw).



In any theory containing a multiplet of fields, one can check for the existence

of global symmetries. The simplest case is a theory of two-component (12, 0)

fermion fields χ and η, with the free-field Lagrangian,

L = iχ†σµ∂µχ+ iη†σµ∂µη −m(χη + χ†η†) .

This Lagrangian possesses a U(1) global symmetry, χ→ eiθχ and η → e−iθη.

That is, χ and η are oppositely charged. The corresponding mass matrix

is ( 0 m
m 0 ). Performing the Takagi-diagonalization yields two degenerate two-

component fermions of massm. However, the corresponding mass-eigenstates

are not eigenstates of charge.

This is the analog of a free field theory of a complex scalar boson Φ with a

mass term m2|Φ|2. Writing Φ = (φ1 + iφ2)/
√
2, we can write Lagrangian

in terms of φ1 and φ2 with a diagonal mass term. But, φ1 and φ2 do not

correspond to states of definite charge.

Together, χ and η† constitute a single (four-component) Dirac fermion.



More generally, consider a collection charged Dirac fermions represented by

pairs of two-component interaction eigenstate fields χ̂αi(x), η̂
i
α(x), with

L = iχ̂†iσµ∂µχ̂i + iη̂†iσ
µ∂µη̂

i −M i
jχ̂iη̂

j −Mi
jχ̂†iη̂†j ,

where M is a complex matrix with matrix elements M i
j, and Mi

j ≡ (M i
j)

∗.

Introduce the mass eigenstate fields χi and ηi and the unitary matrices L

and R, such that χ̂i = Li
kχk and η̂i = Rikη

k and

LTMR = m = diag(m1,m2, . . .),

where the mi are non-negative real numbers. This is the singular value

decomposition of a complex matrix. Noting that R†(M †M)R = m2 , the

diagonal elements ofm are the non-negative square roots of the corresponding

eigenvalues of M †M . In terms of the mass eigenstate fields,

L = iχ†iσµ∂µχi + iη†iσ
µ∂µη

i −mi(χiη
i + χ†iη†i ) .



Fermion–scalar interactions

The most general set of interactions with the scalars of the theory φ̂I are then given by:

Lint = −1
2Ŷ

Ijkφ̂Iψ̂jψ̂k −
1
2ŶIjkφ̂

Iψ̂† jψ̂† k ,

where ŶIjk = (Ŷ Ijk)∗ and φ̂I = (φ̂I)
∗. The flavor index I runs over a collection of real

scalar fields ϕ̂i and pairs of complex scalar fields Φ̂j and Φ̂j ≡ (Φ̂j)
∗ [where a complex

field and its conjugate are counted separately]. The Yukawa couplings Ŷ Ijk are symmetric

under interchange of j and k.

The mass-eigenstate basis ψ is related to the interaction-eigenstate basis ψ̂ by a unitary

transformations:

ψ̂ ≡









ξ̂

χ̂

η̂









= Uψ ≡









Ω 0 0

0 L 0

0 0 R

















ξ

χ

η









,

where Ω, L, andR are constructed as described previously. Likewise a unitary transformation

yields the scalar mass-eigenstates via φ̂ = V φ. Thus, in terms of mass-eigenstate fields:

Lint = −1
2Y

Ijk
φIψjψk −

1
2YIjkφ

I
ψ

† j
ψ

† k
,

where Y Ijk = VJ
IUm

jUn
kŶ Jmn.



Fermion–gauge boson interactions

In the gauge-interaction basis for the two-component fermions the corresponding interaction

Lagrangian is given by

Lint = −gaA
µ
aψ̂

† i
σµ(T

a
)i
j
ψ̂j ,

where the index a labels the (real or complex) vector bosons Aµ
a and is summed over. If

the gauge symmetry is unbroken, then the index a runs over the adjoint representation of

the gauge group, and the (T a)i
j are hermitian representation matrices† of the gauge group

acting on the fermions. There is a separate coupling ga for each simple group or U(1) factor

of the gauge group G.

In the case of spontaneously broken gauge theories, one must diagonalize the vector boson

squared mass matrix. The above form still applies where Aa
µ are gauge boson fields of

definite mass, although in this case for a fixed value of a, gaT
a is some linear combination

of the original gaT
a of the unbroken theory. Henceforth, we assume that that the Aa

µ are

the gauge boson mass-eigenstate fields.

†For a U(1) gauge group, the T a are replaced by real numbers corresponding to the U(1) charges of the

(12, 0) fermions.



In terms of mass-eigenstate fermion fields,

Lint = −A
µ
aψ

† i
σµ(G

a
)i
j
ψj ,

where Ga = gaU
†T aU (no sum over a).

The case of gauge interactions of charged Dirac fermions can be treated as follows. Consider

pairs of (12, 0) interaction-eigenstate fermions χ̂i and η̂i that transform as conjugate

representations of the gauge group (hence the difference in the flavor index heights). The

Lagrangian for the gauge interactions of Dirac fermions can be written in the form:

Lint = −gaA
µ
aχ̂

† i
σµ(T

a
)i
j
χ̂j + gaA

µ
aη̂

†
i σµ(T

a
)j
i
η̂
j
,

where the Aa
µ are gauge boson mass-eigenstate fields. Here we have used the fact

that if (T a)i
j are the representation matrices for the χ̂i, then the η̂i transform in the

complex conjugate representation with generator matrices −(T a)∗ = −(T a)T . In terms

of mass-eigenstate fermion fields,

Lint = −Aµ
a

[

χ† i σµ(G
a
L)i

jχj − η†i σµ(G
a
R)j

iηj
]

,

where Ga
L = gaL

†T aL and Ga
R = gaR

†T aR (no sum over a).



Four-component spinor notation

The correspondence between the two-component and four-component spinor language is

most easily exhibited in the basis in which γ5 is diagonal (this is called the chiral

representation). In 2×2 blocks, the gamma matrices are given by:

γµ =





0 σµ
αβ̇

σµα̇β 0



 , γ5 ≡ iγ0γ1γ2γ3 =

(

−δα
β 0

0 δα̇β̇

)

.

The chiral projections operators are: PL ≡ 1
2(1 − γ5) and PR ≡ 1

2(1 + γ5).

In addition, we identify the generators of the Lorentz group in the (12, 0) ⊕ (0, 12)

representation:‡

1
2Σ

µν ≡
i

4
[γµ, γν] =

(

σµνα
β 0

0 σµνα̇β̇

)

,

where Σµν satisfies the duality relation, γ5Σ
µν = 1

2iǫ
µνρτΣρτ .

‡In most textbooks, Σµν is called σµν . Here, we use the former symbol so that there is no confusion with

the two-component definition of σµν .



A four component Dirac spinor field, Ψ(x), is made up of two mass-degenerate

two-component spinor fields, χα(x) and ηα(x) as follows:

Ψ(x) ≡





χα(x)

η† α̇(x)



 .

Note that PL and PR project out the upper and lower components, respectively. The Dirac

conjugate field Ψ and the charge conjugate field Ψc are defined by

Ψ(x) ≡ Ψ
†
A = (η

α
(x), χ

†
α̇) ,

Ψc(x) ≡ CΨ
T
(x) =





ηα(x)

χ† α̇(x)



 ,

where the Dirac conjugation matrix A and the charge conjugation matrix C satisfy

Aγ
µ
A

−1
= γ

µ†
, C

−1
γ
µ
C = −γ

µT
.

It is conventional to impose two additional conditions: (i) Ψ = A−1Ψ
†
[which guarantees

that ΨΨ is hermitian] and (ii) (Ψc)c = Ψ. It follows that

A
†
= A , C

T
= −C , (AC)

−1
= (AC)

∗
.



In the chiral representation, A and C are explicitly given by

A =

(

0 δα̇β̇

δα
β 0

)

, C =

(

ǫαβ 0

0 ǫα̇β̇

)

.

Note the numerical equalities, A = γ0 and C = iγ0γ2, although these identifications do

not respect the structure of the undotted and dotted indices specified above.

One can relate bilinear covariants in two-component and four-component notation.

Ψ1Ψ2 = η1ξ2 + ξ
†
1η

†
2

Ψ1γ5Ψ2 = −η1ξ2 + ξ†1η
†
2

Ψ1γ
µΨ2 = ξ1σ

µξ2 − η†2σ
µη1

Ψ1γ
µ
γ5Ψ2 = −ξ

†
1σ

µ
ξ2 − η

†
2σ

µ
η1

Ψ1Σ
µνΨ2 = 2(η1σ

µνξ2 + ξ†1σ
µνη†2)

Ψ1Σ
µν
γ5Ψ2 = −2(η1σ

µν
ξ2 − ξ

†
1σ

µν
η
†
2) .



Relating bilinear covariants in two-component and four-component notation

Ψ1(x) ≡





ξ1(x)

η
†
1(x)



 , Ψ2(x) ≡





ξ2(x)

η
†
2(x)



 .

Ψ1PLΨ2 = η1ξ2 Ψc
1PLΨ

c
2 = ξ1η2

Ψ1PRΨ2 = ξ†1η
†
2 Ψc

1PRΨ
c
2 = η†1ξ

†
2

Ψc
1PLΨ2 = ξ1ξ2 Ψ1PLΨ

c
2 = η1η2

Ψ1PRΨ
c
2 = ξ†1ξ

†
2 Ψc

1PRΨ2 = η†1η
†
2

Ψ1γ
µPLΨ2 = ξ†1σ

µξ2 Ψc
1γ

µPLΨ
c
2 = η†1σ

µη2

Ψc
1γ

µPRΨ
c
2 = ξ1σ

µξ†2 Ψ1γ
µPRΨ2 = η1σ

µη†2

Ψ1Σ
µνPLΨ2 = 2 η1σ

µνξ2 Ψc
1Σ

µνPLΨ
c
2 = 2 ξ1σ

µνη2

Ψ1Σ
µνPRΨ2 = 2 ξ†1σ

µνη†2 Ψc
1Σ

µνPRΨ
c
2 = 2 η†1σ

µνξ†2

Σµν ≡ i
2[γ

µ, γν]. Note that we may also write: Ψ1γ
µPRΨ2 = −η†2σ

µη1, etc.



For Majorana fermions defined by ΨM = Ψc
M = CΨ

T

M , the following additional conditions

are satisfied:

ΨM1ΨM2 = ΨM2ΨM1 ,

ΨM1γ5ΨM2 = ΨM2γ5ΨM1 ,

ΨM1γ
µ
ΨM2 = −ΨM2γ

µ
ΨM1 ,

ΨM1γ
µγ5ΨM2 = ΨM2γ

µγ5ΨM1 ,

ΨM1Σ
µν
ΨM2 = −ΨM2Σ

µν
ΨM1 ,

ΨM1Σ
µν
γ5ΨM2 = −ΨM2Σ

µν
γ5ΨM1 .

In particular, if ΨM1 = ΨM2 ≡ ΨM , then

ΨMγ
µ
ΨM = ΨMΣ

µν
ΨM = ΨMΣ

µν
γ5ΨM = 0 .

One additional useful result is:

ΨM1γ
µPLΨM2 = −ΨM2γ

µPRΨM1 .




