‘ Spin-1/2 fermions in quantum field theory |

First, recall that 4-vectors transform under Lorentz transformations, A*,, as
p'* = A¥ p”, where A €S0(3,1) satisfies A*,g,,A”x = gux." A Lorentz
transformation corresponds to a rotation by # about an axis i [0 = 07| and
a boost, f: ®tanh !

same Lorentz transformation, a generic field transforms as:

q”(w’) = Mr(A)®(z),

where Mpgr = exp( z ) are N xX N representation matrices of
the Lorentz group. Defining f E% (J +iK) and J_ = §(f— iK),
L, ] =it gE gL, ] =0,

Thus, the representations of the Lorentz algebra are characterized by (71, j2),

where the j; are half-integers. (0,0) is a scalar and (3, 3) is a four-vector. Of
interest to us here are the spinor representations (3,0) and (0, 3).

*In our conventions, g, = diag(1, —1, —1, —1).



(0,1): [M~1t = exp (%é’-&%é’-&), but also M* = io2[M 1] (ic?)~?

Transformation laws of 2-component fields

SZX — Mozﬁ ’557
ge=[(MHNz¢°,
gte =[N et

& =M.,
We use io? = (_] () = €* = €8 and (ic?)~! = —i0? = €ap = €45 tO
raise and lower spinor indices: £* = e*f 3 ; 5:; = €45 £1P | etc. Dotted and

undotted indices are related by hermitian conjugation: 5(2 = (&7,



Finally, we introduce the o-matrices:

ol = &), T = (L —F),

where [5 is the 2 x 2 identity matrix. The spinor index structure derives from

the relations:
MGHM = AP, 57, M oM HT = A+ 0"

For example, (MT)é‘BE“BVMf = A", 5% Note that the matrix M and its

inverse have the same spinor index structure. Some useful identities:

agd:eagedﬁ-ﬁ“ﬁﬁ, E“é‘o‘:eo‘ﬁe‘wagﬁ-.

The utility of o is that Lorentz 4-vectors can be built from spinor bilinears:
X' (@)o €T (a) = X (@) M o (M) s ()

= A, ()70 56 (2).



Spinor indices can be suppressed as long as one adopts a summation

convention where we contract indices as follows:

o' Q
o and &

For example, &En = &N,
&' =¢ln',
5ty = ¢la"ng,
cornt = gaaZBnTB.
In particular, for anticommuting spinors,

nE =n"a = —&an® =+ 1. = 0.

Note the behavior of spinor products under hermitian conjugation:

()t =9, (€@ =nsgt, (8T =9S¢,

where in each case X stands for any sequence of alternating o and @ matrices,

and X, is obtained from 3 by reversing the order of all of the o and @ matrices.



From the sigma matrices, one can construct the antisymmetrized products:

(O-W/)aﬂ — i (O%EWB _ Jgﬁgmﬂ) 7
o i iy
(J“”)O‘B = 1 (O’MOWO'};B — O'VOKYO',LYLB) .

We may write the (1,0) and (0, %) transformation matrices, respectively, as:
M = exp (—%HWJW) :
(M7 = exp (—%HWEW) :

where 0" is antisymmetric, with 0% = €“%0% and 9°° = (*. Consider a
pure boost of an on-shell spinor from its rest frame to the frame where
p* = (E,, p), with E, = (|p]2 + m?)1/2. Setting 67 = 0,

M = exp <_lc_’.5-’> _ [p-o _ (Ep-|—TTL)12 — a'-p7
’ m V2m(E, + m)

R - 17 =) _ p‘E_(Ep+m)I2+5:'ﬁ
0 o (1159) = [ - 22




Useful identities and Fierz relations

5 5 5 ¥ ) 5 A
60456’7 = _52665 + 5045%7 Gdﬁ'ev = —625 + 6d627
ol 7, = 2806%

O-Zdo-,uﬁﬂ' — 2604560’(6 : EﬂdaEﬁB _ 2€a5€d5 ’

[c"T" + JVE“]aﬂ = 29“'/56

o)

[cc” + 6”0“]0‘5 - 29“”6;; :

—V 124 1% 124 . VpK
oG o = g ol — g"o + g P 4 i P o,
Fho'E" = g"'E’ — g"'EY + ¢"PF" — i,
where €"1?% = —¢y193 = +1 in our conventions. Computations of cross sections and decay

rates often require traces of alternating products of o and & matrices:
Tr(oc"T"] = Tr[c"c"] = 2¢"",
Tr[o"5"0"0"] =2 (99" — g""g"" + g""g"" + i""")
Tr[c"c"c 0" = 2 (g""g"" — ¢""g"" + ¢""g"" — i""P") .
Traces involving an odd number of o and & matrices cannot arise, since there is no way to

connect the spinor indices consistently.



We shall deal with both commuting and anticommuting spinors, which we shall denote

generically by z;. Then, the following identities hold

21292 —(—1)A2221
A
2] = —(—=1)"2]z]

zlaﬂz; = (—1)Az;E”z1

_ A _

Zla'MO'VZQ = —(—1) ZQO'VGMZl
t—=p v T _ A_t=v _n T
21000 zg = —(—1)" 250 o'z,

T—=p _p—=v_ __ A v—p _p_t
21000 29 = (—1)" 200 0 0" 2,

where (—1)* = +1[—1] for commuting [anticommuting] spinors. Finally, the Fierz

identities are given by:

(z122)(2324) = —(2123)(2422) — (2124)(2223) ,

(212D (2d2]) = — (212D (2l2]) — (212D (212))
(210" 28) (255 u24) = —2(2124) (2d2))
(215" 22) (215 ,20) = 2(2]20) (2422) ,

(z106"2]) (230,2)) =  2(2123)(2}2]) -



Free field theories involving fermions

The (3,0) spinor field &, (z) describes a neutral Majorana fermion. The

free-field Lagrangian is:

L =if15"9,6 — ym(e€ + £1¢T),
which is hermitian up to a total divergence since we can rewrite the above

Lagrangian as
L = %ifTﬁ“guf = %m(fﬁ + £7¢T) + total divergence,
where §TE“<5M§ = ¢151(0,€) — (9,6)T+ €.

Generalizing to a multiplet of two-component fermion fields, £,;(x), labeled

by flavor index i.
L =iTG10,8 — %M”ézég — %MijéT T

where hermiticity implies that M;; = (M")* is a complex symmetric matrix.



To identify the physical fermion fields, we express the so-called interaction
eigenstate fields, ém(x) in terms of mass-eigenstate fields £(x) = Q_lé(a:),

where () is unitary and chosen such that
Q"M Q = m = diag(m1, ma, .. .),

where the m; are non-negative real numbers. In linear algebra, this is called
the Takagi-diagonalization of a complex symmetric matrix M. To compute

the values of the diagonal elements of m, one may simply note that
Q'MMTQ* = m?.

MMT is hermitian, and thus it can be diagonalized by a unitary matrix.
Thus, the m; of the Takagi diagonalization are the non-negative square-roots

of the eigenvalues of M MT. In terms of the mass eigenstate fields,

L =i 10,8 — gmi(G + 1T



Example: the see-saw mechanism

The see-saw Lagrangian is given by:

L =1 (EE“({?M% + Wﬁuﬁu%) — M), — Miﬁw,

Mij _ 0 mp
mp M ’

and (without loss of generality) mp and M are positive. The Takagi

where

diagonalization of this matrix is QT MQ = Mp, where
O _ 1cosf sind | My, — m_ 0 |
—isinf  cos6 0 my

with my = 2 [\/M2+4m2D:I:M} and sin 20 = 2mp/\/M? + 4m3,.




If M > mp, then the corresponding fermion masses are m_ ~ m%/M and
my ~ M, while sinf ~ mp/M. The mass eigenstates, y; are given by

v; = U x;; i.e. to leading order in mgq/M,
. mp mp
’LX12¢1—W¢27 X22¢2+W¢1'

Indeed, one can check that:

2

m
%mD(¢1¢2 + Potpy) + %M¢2¢2 + h.c. ~ % ﬁXle + Mxaox2 +h.c.|,

which corresponds to a theory of two Majorana fermions—one very light and

one very heavy (the see-saw).



In any theory containing a multiplet of fields, one can check for the existence
of global symmetries. The simplest case is a theory of two-component (%, 0)

fermion fields x and 1, with the free-field Lagrangian,

L = iXTE‘L@MX - inTﬁ“ﬁun —m(xn+x"n").
This Lagrangian possesses a U(1) global symmetry, x — €y and n — e ~%n.
That is, x and 7n are oppositely charged. The corresponding mass matrix
is ([0 ). Performing the Takagi-diagonalization yields two degenerate two-

component fermions of mass m. However, the corresponding mass-eigenstates

are not eigenstates of charge.

This is the analog of a free field theory of a complex scalar boson ® with a
mass term m?|®|?. Writing ® = (¢ + i¢2)/V/2, we can write Lagrangian
in terms of ¢; and ¢5 with a diagonal mass term. But, ¢; and ¢5 do not

correspond to states of definite charge.

Together, x and ' constitute a single (four-component) Dirac fermion.



More generally, consider a collection charged Dirac fermions represented by

pairs of two-component interaction eigenstate fields \.;(x), 77 (z), with

L = ix 110, % + infar 0, — MY jxa — MRt

where M is a complex matrix with matrix elements M*;, and M, = (M";)*.

Introduce the mass eigenstate fields y; and n* and the unitary matrices L
and R, such that x; = L;*xj and #* = R%n"* and

L'MR = m = diag(my,ma, .. .),

where the m; are non-negative real numbers. This is the singular value
decomposition of a complex matrix. Noting that RT(MTM)R = m?, the
diagonal elements of m are the non-negative square roots of the corresponding

eigenvalues of MTM. In terms of the mass eigenstate fields,

& = ixVo"0,xi + infa* dun’ — mi(xin' + X)) .



Fermion—scalar interactions

The most general set of interactions with the scalars of the theory cﬁf are then given by:
ATk L 5 5 I~ 2L 5td otk
Ly = =3V b1y — 1Y b

where Y7 = (Y17%)* and ¢! = (¢1)*. The flavor index I runs over a collection of real
scalar fields (; and pairs of complex scalar fields ®; and &7 = (&;)* [where a complex
field and its conjugate are counted separately]. The Yukawa couplings Y1 are symmetric

under interchange of 5 and k.

The mass-eigenstate basis 1) is related to the interaction-eigenstate basis 1@ by a unitary

transformations:

£ Q 0 0 ¢
) = x| =U¢y=10 L O X | s
N 0O 0 R n

where €2, L, and R are constructed as described previously. Likewise a unitary transformation

yields the scalar mass-eigenstates via ngS = V' @. Thus, in terms of mass-eigenstate fields:
Ijk I 1§ 1k
Lo = =5V i — SV T

where Y17k = v, Iy Jyu, FyTmn



Fermion—gauge boson interactions

In the gauge-interaction basis for the two-component fermions the corresponding interaction
Lagrangian is given by

Lt = =9 ALY T (T,
where the index a labels the (real or complex) vector bosons A!" and is summed over. If
the gauge symmetry is unbroken, then the index a runs over the adjoint representation of
the gauge group, and the (T“)@-j are hermitian representation matrices' of the gauge group

acting on the fermions. There is a separate coupling g, for each simple group or U(1) factor

of the gauge group G.

In the case of spontaneously broken gauge theories, one must diagonalize the vector boson
squared mass matrix. The above form still applies where AZ are gauge boson fields of
definite mass, although in this case for a fixed value of a, g, T is some linear combination
of the original g,T" of the unbroken theory. Henceforth, we assume that that the AZ are

the gauge boson mass-eigenstate fields.

TFor a U (1) gauge group, the T'“ are replaced by real numbers corresponding to the U(1) charges of the
(%, 0) fermions.



In terms of mass-eigenstate fermion fields,
L = — AL T (G4
where G* = g, U'T*U (no sum over a).

The case of gauge interactions of charged Dirac fermions can be treated as follows. Consider
pairs of (%,O) interaction-eigenstate fermions x,; and 7' that transform as conjugate
representations of the gauge group (hence the difference in the flavor index heights). The

Lagrangian for the gauge interactions of Dirac fermions can be written in the form:
L = —9a 4R TU(T") R + 9aALT, T (T

where the AZ are gauge boson mass-eigenstate fields. Here we have used the fact
that if (T'*);/ are the representation matrices for the ;, then the %" transform in the
complex conjugate representation with generator matrices —(T'*)* = —(T%)”. In terms

of mass-eigenstate fermion fields,
L = = Al X TG Ixs — 0l FU(GR) ]

where G% = g, L'T*L and G} = g, R'T*R (no sum over a).



‘ Four-component spinor notation I

The correspondence between the two-component and four-component spinor language is
most easily exhibited in the basis in which =5 is diagonal (this is called the chiral

representation). In 2x2 blocks, the gamma matrices are given by:

0 o’ . 0.1 2 3 —80" 0
V= _us P wmEivyaTy = S
g s

0 0 0%
The chiral projections operators are: P, = (1 — v5) and Pg = 3(1 + 75).

In addition, we identify the generators of the Lorentz group in the (3,0) @ (0,3)

) o P 0
lzﬁw = _ u) v @ | ,
; 4[7 7] 0w,

where 3" satisfies the duality relation, 53/ = %ie“””TZpT.

representation:i

HIn most textbooks, 31 is called "Y' . Here, we use the former symbol so that there is no confusion with

the two-component definition of "



A four component Dirac spinor field, W(x), is made up of two mass-degenerate

two-component spinor fields, x.(x) and n,(x) as follows:

Xa(T)

U(x) = .
n'“(x)

Note that P; and Ppgr project out the upper and lower components, respectively. The Dirac

conjugate field U and the charge conjugate field U are defined by
U(e) =W'A = (n"(2),x}),

N (T)
x" ()

where the Dirac conjugation matrix A and the charge conjugation matrix C' satisfy

Uo(z) = O () =

AP AT = 41T ClyrC = -1

It is conventional to impose two additional conditions: (i) W = AT [which guarantees
that UV is hermitian] and (ii) (¥°)¢ = W. It follows that

At =4, c'=—C, (AC)™ ' = (AC)* .



In the chiral representation, A and C' are explicitly given by

0 &% €ag O
A = . C = .
(5a6 0 > < 0 €a6>

Note the numerical equalities, A = +° and C' = iy"~?, although these identifications do

not respect the structure of the undotted and dotted indices specified above.

One can relate bilinear covariants in two-component and four-component notation.

U Wy = méa + 5177;

Uy 0s = —miés + 5177;
Uy Uy = 6,576 — i m
Ty'ys Uy = —£15"6 — nia'm

U MWy = 2(mo"Es + SIEWUD

TS ys Ty = —2(no™ € — €17 n)) .



Relating bilinear covariants in two-component and four-component notation

€1(x) £0(2)
Vi(x) = , Vo(x) = .
1) ( ol () ) ) ( nh () )

W PLWy = miéo WSPLUS = &
U, PpUy = &l WePRUe = nigl

1FR¥ 2 172 1TR¥ 2 = 71S2
WP Wy = €167 U,y PLUS = mimy
U, Pplg = €l¢] U PrUs = nin)

18R 152 1T R¥*2 UEUD,
U1 P, = £l Tt PLWs = nlatn,
Ty Prlly = & 0] U1 y" Pr¥y = motn)
Elzupr\Ifg = 27710'“1/52 EEEFWPL\I/; = 2510‘”’/?72
U S PR, = 2€154 ] | Wi PRos = 2 nigivel

S = L[y*,4"]. Note that we may also write: U~ Pprly = —77;5“771, etc.



For Majorana fermions defined by W, = ¥, = Cﬁf\;, the following additional conditions

are satisfied:

W Waye = Wa¥a,
UarysPare = Uaravs W
Uan " Uare = =Wy " W,

Uy vs ¥ are = oy vs Wt
U W = =0 S W,

Ui My W = — W3S v Wy .

In particular, if W1 = W0 = W)y, then

EM’YM\I/M == EMZW/\I/M = EMZW/’Y5\I/M =0.
One additional useful result is:

Uany ' PrVare = =Wy " Pr¥asn .





