
Physics 217 Problem Set #1 Fall 2016

DUE: TUESDAY OCTOBER 11, 2016

1. It is often possible to derive a field theory as a limit of a discrete system. Perhaps
the simplest example is a one-dimensional infinite system of point masses, m, separated
by springs of spring constant k and equilibrium length a. Let ηi be the displacement
from equilibrium of the ith point mass. Derive the exact Lagrangian and Lagrange
equations for this system. Then consider the limit: m, a → 0, k → ∞, with µ ≡ m/a
and Y ≡ ka held fixed. Replacing ηi with a smooth function η(x, t), show that in this
limit the Lagrangian may be written in the following form:

L =

∫

dx 1

2

[

µ

(

∂η

∂t

)2

− Y

(

∂η

∂x

)2
]

.

Write down the corresponding (partial differential) Lagrange equations.

2. Consider a set of N real scalar fields φr(x) (r = 1, 2, . . . , N) and the corre-
sponding conjugate fields πr(x). To quantize the scalar field theory, one imposes the
equal-time commutation relations:

[φr(~x, t), πs(~y, t)] = i δrs δ
3(~x− ~y) ,

[φr(~x, t), φs(~y, t)] = [πr(~x, t), πs(~y, t)] = 0 .

(a) Show that the momentum operator of the fields,

P j ≡
∫

d3xπr(x)
∂φr(x)

∂xj

(implicit sum over r implied), satisfies the equations

[P j, φr(x)] = −i
∂φr(x)

∂xj

, [P j, πr(x)] = −i
∂πr(x)

∂xj

.

Hence, show that any operator F (φr(x), πr(x)), which can be expanded in a power
series in the field operators φr(x) and πr(x), satisfies

[P j, F (x)] = −i
∂F (x)

∂xj

.
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(b) Starting from Hamilton’s field equations, deduce the Heisenberg equations of
motion for the operator F (x) of part (a):

[H,F (x)] = −i
∂F (x)

∂t
,

where H is the Hamiltonian. Combine this result with the one from part (a) by
identifying H = P 0 to obtain a covariant form for the Heisenberg equations of motion.

(c) Under a translation of coordinates, xµ → x′

µ ≡ xµ + aµ (where aµ is a fixed
four-vector), a scalar field remains invariant:

φ′(x′) = φ(x) .

This may be rewritten as φ′(x) = φ(x − a). Show that the corresponding unitary
transformation

φ(x) → φ′(x) = U φ(x)U−1

is given by the unitary operator U = exp(−iaµP
µ), where P µ = (H ; P j) and P j is the

momentum operator of the field introduced in part (a).

3. Show that the Lagrangian density:

L = 1

2
[∂αV

α(x)][∂βV
β(x)]− 1

2
[∂αVβ(x)][∂

αV β(x)] + 1

2
m2 Vα(x)V

α(x)

for the real vector field V α(x) leads to the field equations

[

gαβ(�+m2)− ∂α∂β
]

V β(x) = 0 ,

and prove that V α(x) automatically satisfies the Lorentz condition: ∂αV
α(x) = 0

(assuming m 6= 0). [HINT: the latter follows from the field equations.]

4. Consider the free massless Klein-Gordon action:

S0 =
1

2

∫

d4x ∂µφ(x)∂µφ(x) .

The dilatation transformation is a space-time transformation defined by

x → x′ ≡ eαx ,

where x is the position four-vector and α is a real parameter. Under the dilatation
transformation, the scalar field φ(x) transforms as:

φ(x) → φ′(x′) = φ(x) exp(−dφα) ,

for some appropriate choice of the constant dφ.
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(a) Show that the dilatation transformation is a symmetry of the free massless
Klein-Gordon action for a unique choice of dφ.

(b) Find the Noether current associated to the dilatation symmetry. Verify that it
is conserved when φ(x) satisfies its Lagrange field equations.

(c) Suppose we add an interaction term to S0:

S = 1

2

∫

d4x
{

∂µφ(x)∂µφ(x)− λ [φ(x)]4
}

.

What is the mass dimension of the coupling λ? Is the dilatation transformation a
symmetry of the modified action S?

(d) Show that the dilatation transformation is not a symmetry of the free massive

Klein-Gordon action:

S = 1

2

∫

d4x
{

∂µφ(x)∂µφ(x)−m2 [φ(x)]2
}

.

(e) Based on the results of this problem, can you guess a rule for determining by
inspection when the dilatation symmetry is present or absent?

5. Consider a single real scalar field φ(x), which is a function of the four-vector x. The
vacuum expectation value of the product of free scalar fields is defined by

D(x, y) ≡ 〈0|φ(x)φ(y)|0〉 .

(a) Show that D(x, y) is translationally invariant, which means that D(x, y) is a
function only of x− y. As a result of this observation, we are free to set y = 0 with no
loss of generality.

HINT: You may assume that the vacuum is translationally invariant, i.e., P µ|0〉 = 0.

(b) Employing the expansion of a free scalar field in terms of creation and annihi-
lation operators, derive the following integral expression for D(x) ≡ D(x, 0),

D(x) =

∫

d3p

(2π)3
1

2Ep

e−ip·x ,

where p·x ≡ gµνp
µxν , with pµ = (Ep ; ~p) and Ep =

√

|~p|2 +m2.

(c) Show that D(x) satisfies the Klein-Gordon equation, i.e., (�+m2)D(x) = 0.

HINT: First, prove the identity:

1

2Ep

δ(p0 − Ep) = δ(p2 −m2)Θ(p0) ,
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where p2 = p2
0
− |~p|2 is the square of the momentum four-vector and Θ(x) is the step

function,

Θ(x) ≡
{

1 x > 0 ,

0 x < 0 .

Using the above identity, convert D(x) above from a three-dimensional integral to a
four-dimensional integral over d4p ≡ d3p dp0, where −∞ < p0 < ∞. In this form, it is
easy to prove that D(x) satisfies the Klein-Gordon equation.

(d) Evaluate D(x) explicitly in terms of Bessel functions.

(e) Determine the precise form of the singularities of D(x) on the light cone [i.e.,
for x2 ≡ t2 − |~x|2 = 0]. NOTE: these will involve terms such as δ(x2) and 1/x2.

HINTS for parts (d) and (e): There are a number of ways to compute the integral of
this problem. Here is one way. First write d3p = p2 dp dΩ and integrate over angles.
To compute the remaining integral over p requires a trick, since this integral is not
formally convergent. Technically, D(x) is not a function; instead it is a distribution
(like the delta function). But, one can easily write the integral as the derivative (with
respect to the radial distance r ≡ |~x|) of another integral that is well defined. Then,
consult the integral tables (such as Gradshteyn and Ryzhik) and convince yourself that:

∫

∞

0

sin(t
√

p2 +m2)
√

p2 +m2
cos pr dp =

π

2
ǫ(t)Θ(t2 − r2)J0(m

√
t2 − r2) ,

∫

∞

0

cos(t
√

p2 +m2)
√

p2 +m2
cos pr dp = −π

2
Θ(t2 − r2)N0(m

√
t2 − r2)

+ Θ(r2 − t2)K0(m
√
r2 − t2) ,

where J0 and N0 are Bessel functions of the first and second kind, and K0 is one of
the modified Bessel functions. The step function Θ(x) was defined in part (b), and the
sign function is

ǫ(x) ≡ x

|x| =
{

1 x > 0 ,

−1 x < 0 .

Note that the delta function is related to the step function:

δ(x) =
dΘ(x)

dx
.

Using the integrals quoted above, complete the evaluation of D(x). Finally, employing
small argument expansions of the Bessel functions, determine the leading behavior of
D(x) near the light cone (you may discard any term that vanishes as x2 → 0).
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