Physics 217 Problem Set #b5 Fall 2016

DUE: WEDNESDAY DECEMBER 7, 2016

You must submit the final homework to my ISB mailbox by 6 pm on Wednesday December 7
in order to earn the proper credit. Solutions will then be posted on the class website.

1. Repeat the computation of problem 3 of Problem Set 4, but this time use the full rela-
tivistic expression for the matrix element. Show that the resulting spin-averaged differential

cross section is given by
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where p'is the three-momentum of the electron and 5 = v/c is the electron velocity. This
is the famous Mott formula for the Coulomb scattering of relativistic electrons.

2. In class, the total cross section for ete™ — pTp~ at very high center-of-mass energies
(v/s > m,,) was found to be o = 4ra?/(3s), where o ~ 1/137.

(a) Restore the appropriate factors of A and ¢ in the formula for o, so that you can
evaluate o in units of area.

(b) Find the value of ¢ in nanobarns (1 nb= 10723 ¢cm?), for /s = 10.58 GeV (this is
the center-of-mass energy of the B-factory at the KEKB collider in Tsukuba, Japan).

3. Compute the differential cross section, do/dS), in the center-of-momentum frame, for
Bhabha scattering, ete™ — eTe™ . You may assume that the total energy of the initial
ete” system in the center-of-momentum frame is much larger than the electron mass, m.,
in which case (to good approximation) you may set m, = 0 in your calculation. There are
two Feynman diagrams that contribute at second order in the perturbation series for the
S-matrix. These two contributions must be added in the invariant matrix element before
squaring. Be sure that you have the correct relative sign between these diagrams.

(a) After averaging over the initial state helicities and summing over the final state
helicities, express the result for the squared invariant matrix element for Bhabha scattering
in terms of the Mandelstam variables, s, t and u. Show that the differential cross-section
can be cast into the following form,
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where a = €?/(47). [NOTE: s+t +u = 0 in the approximation where m, = 0.]
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(b) Integrate over the azimuthal angle, and express do/dcosf as a function of the
center-of-momentum scattering angle 6. Sketch the shape of the angular distribution of the

scattered electron. What feature of the Feynman diagram is responsible for the divergence
of do/dcosf as § — 07

4. The interaction Lagrangian of scalar electrodynamics is:
L= —ieA" [H 9,H" — (0,H )H*| + A, A"H H",

where e is the usual coupling strength of quantum electrodynamics. This Lagrangian
describes the interaction of photons and charged scalars, H* (where H~ = [H*]"). The
Feynman rules for scalar electrodynamics are exhibited below.
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The four-momenta (specified in the first Feynman rule above) point in the direction of the
arrows as indicated.

(a) By explicitly computing the first-order S-matrix element for the scattering process
vy — HYH~, determine the number C that appears in the Feynman rule given above for
the vwH+H™ vertex.

(b) At O(e?), there are also contributions at second order to the S-matrix element.
Using the above Feynman rules, write down the complete O(e?) invariant matrix element
for the scattering process vy — HTH~. Simplify as much as possible each term that
contributes to the matrix element by using the kinematical constraints of the problem.

(c) The matrix element obtained in part (b) takes the form M = M, €/ (ki)e;(k2),
where k; and ky are the initial photon four-momenta and €; and €, are the corresponding
photon polarization four-vectors. Verify that ki M e (ks) = k5M,,€"(k1) = 0. That is,
the replacement of either ¢; — ky and/or e — ks in M yields an expression that vanishes.
These relations are consequences of the gauge invariance of electrodynamics and provide an
important check that all the contributing Feynman diagrams of O(e?) have been correctly
included. It also serves as a check of the value of C' that you obtained in part (a).



