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Overview

Motivations

Quantum statistical mechanics (quick!)

Path integral representation of partition function in quantum me-
chanics

— Quantum harmonic oscillator

Path integral representation of partition function in quantum field
theory

— Partition function for free scalar field and its free energy
density

— Partition function for interacting scalar fields and free energy
density



Motivations

e QFT formulated at zero-temperature
— What are the effects of heating up QFTs?
e Initial motivations found in condensed matter physics

e Later applications to quantum chromodynamics, cosmology, and

astrophysics

— Quark-gluon plasmas (QGPs), heavy-ion collisions, baryo-
genesis, inflation and phase transitions in the early universe,

stellar emission of neutrinos, etc.
e Advantages over kinetic/many-body theory

— Path integral
— Non-Abelian gauge interactions

— Lorentz invariant



Quantum Statistical Mechanics

e For quantum system described by Hamiltonian H and set of con-
served number operators N; that commute with H, the density
matrix:

p = exp[—B(H — ,uz'Ni)]

(natural units used throughout i =c=kp =1)

e Can calculate expectation values of observables by

TrAf)
T[]

(4) =

e The grand canonical partition function can be used to calculate

thermodynamic properties of a system:
Z =1y

e Pressure, entropy, particle number and free energy: P = %,

N; = 5’(7;)}22), §=2007 p— Thz




Partition Function: Harmonic Oscillator

e For the (bosonic) quantum harmonic oscillator, the number op-

erator is N = a'a and the Hamiltonian is H = w(N + 3)

e The partition function (with x4 = 0) can be written as

2 = expl - 2 Trfexpl - 8() K] = expl - 2] S (mlespl - B) ¥jm)
n=0
= expl~ 2] 3" expl-B(e)n] = expl~ 2] (1 — exp[~pu]) !
n=0



Path Integral for Partition Function in QM

e There are few systems for which the partition function can be
calculated exactly.

e A more useful representation is that of the path integral
e Start here, translate results to QFTs

e The partition function can be written as

2= Triexp(~5H)| = [ dalalexp(~6H)

Defining 8 = €N the exponential is split into a product of N
pieces

Z = /dw<x|exp(—eH) - exp(—eH)|x)

e Inserting 1 = [ & dp; |pi)(pi] on the left of each exponential and
1 = [dz|x;)(x;| on the right (i increasing from right to left in
both cases withi=1,..., N)



Path Integral for Partition Function in QM

the partition function becomes

27
x(pn—1lexp(—eH)|zn-1)(xN-1|pN—2)(z2|p1)(p1]exp(—€eH)|z1)(z1|T)

(1)

e On the very left of equation (1) above with (z| playing role of

7 - / M<m|pN><pN|eXp(—eH)|xN><$N|pN—1>

(2i41] we have:
(wiy1|pi) (pilexp(—eH)|z;) = exp(ipivit1)(pilexp(—eH)|z;)

2
= exp(ip;x;it1) exp(ip;z;) eXp[—e(QpT; + V(z;) + O(e))]
2

om i
e Using the delta function at the very right of equation (1), the

i T LV () + O(e)]

= exp[—¢(

integral can be carried out over x yielding the partition function



Path Integral for Partition Function in QM

Z = lim

N—o0

N daydp; Noopr g —ay
/{H 21 ]eXp[_Ze(ﬁ_”’i%ﬂLV(:ﬂjHO(E))}

i=1 j=1

e The momentum integral is Gaussian and can be easily evaluated
to be

< dp, 2 Ly —
/ Ph expl—e(2L — ip )

oo 2m




Path Integral for Partition Function in QM

Thus the partition function becomes

7= Jim [ T2 exp [~ o2 EET0)2 1 y(ay)]

N—oo . 2me - €
i=1 o j=1
TN41=T1

e In the continuum limit, defining (ﬁ)N/Q‘ = (C, where C is infi-

nite, the above equation becomes

B om dx 9
Z:C’/I(ﬁ)_z(o)l)[m] exp[—/o (5(5) +V($))]

e Compare to zero-temperature QM counterpart:
Zy = C’/D[m] exp(i/dtﬁo)

e Finite-temp partition function can be achieved in four steps:



Wick rotation using 7 = it

— Introduce “finite-temperature” Lagrangian: L = Lo(r =
it) = 2(£)* + V(2)

Restrict integration by [ dt — foﬁ dr

Impose periodicity on z(7) by z(8) = 2(0)
e This process is the imaginary time formalism of doing field theory

e Can be used also in quantum field theory and can be used for

fermions and bosons



Path Integral for QHO

e To go to momentum space, write z:(7) as Fourier series: x(71) =

T xnexpiw,T)
e Periodicity requires e’“nf =1 = w,, = 2mnT
e Impose reality on the z(7) = z*(7) = z(7) making the 2 = z_,

and can now write x, = an + b, = x = a, —ib, = x_,, =

a_p+ib_p =y =a_pn, by =—-b_y

e Letting by = 0 and putting this all together,

2(r) = Tag + D [(an + iba)e™ ™ + (an — iba)e ]| (4)

n=1
e Fourier representation allows quadratics of the form
B

B .
dra(t)y(t) = T? Z TnYm dTez(‘”"J“”m)
0 — 0



= anymén,fm = Z:Enyfn
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e Next, using the four steps above for the action of the quantum

harmonic oscillator:

[P eyt

mT & 9
=—5 Z T (—Wnw_p + W) _p
n=—oo
and using w_, = —w, the action becomes:
ml 5 — 2 2\/,2 2
S = — WA - mTZ(wn+w )(a® + b%)

n=1

e Turning our attention to the product of integrals D[z] this can

be rewritten by changing variables to a,,, b, to obtain

Dlz] = aol [ | dandb,]

n>1




e Defining a new constant C’ = C/|det( 6;357) )| the harmonic oscilla-

tor partition function is
(oo} (oo}
Z=C' / day / | I danae,|
-0 -0 T3
T
X exp {— m—oﬂa% —mT Z(wi +w?)(a? + bi)} (5)
2
n>1
e Solving the Gaussian integrals above (and solving for C’) yields

1 w?
7 =— —n
wﬂgw%Jruﬂ

Remarks

— The partition function as well as other extensive quantities
like volume, temperature, and pressure are all finite, but

with the path integral, this is not immediately clear.



— In quantum field theory, however, these divergences may re-

main.

— When calculating most physically relevant variables, this in-

finite constant falls out.



Free Scalar Fields

e For free scalar fields, we can follow essentially the same procedure
taking z(7) — ¢(7, )

e Why can we do this?

— The Lagrangian for a scalar field, given by £ = %8”(;58’% —
V() = (019)* — 3(9;¢)(9i¢) — V() which is a collection of

near-independent harmonic oscillators (with m=1).
— Interact through spatial derivatives, approximately given

P(t, T+ e€i) — (¢, 7)
€

09 ~

and since the Hamiltonian depends only on terms quadratic
in canonical momentum, this coupling cannot change the

previous derivation fundamentally



e Taking derivation from previous section

Z:/ HC’D[¢] exp[— / dT/d3
#(B,7)=¢(0,) "

where

3
L=—L(t=ir)= 1(%)2 + Z %( (%_)2 +V(0)

e As with standard QM case, expand the fields in a Fourier series:

=T Z ¢Wn7 zwnT

n=—oo

e In this case, it is convenient to let the directions of the spatial
coordinates be momentarily finite. Denoting these directions as
L; and using

=7 S et

P ni=—o0



where k; = —22"_“

e Taking the volume to infinity gives

dk

1 1 i
LZ:%ZA;H/ .

where Ak; = QL—” and

o(1, %) = % Z Z (;5(7', E) exp(iw, T — ik - z)
wn  k

e For brevity, will quote result (follow similar steps as previous

section)

Z:exp(—/oﬂdT/L):

TT [l 5 S0+ 7 4 m2)ldten, )] (6)

i Wn



Looks like product of harmonic oscillator partition functions

Comparing to the quantum harmonic oscillator w? — k2 +m? =
B2, m— &, |on = [@(wn, F)|?

Continuing with the analogies to QHO,

= H[ H 2+ B2 T w2

n=—o0 n#0
=ex [Zln(T)—f—lZln(wQ)—EZln(MZ—FEQ)] =ex (—E)
—PLE 2 T g LR TR TR

In order to obtain the free energy density, take limit at volume
goes to infinity to find

d3k
v%ov / TZ In(w2+E?) TZ In(w?)—T1n(T)

Wn#£0



Interacting Theory

e As in zero temperature QFT, free theory is only exactly solvable

theory

e But because of the way the thermal theory is built, we can use
perturbative techniques in much the same way to approximate
interactions

e In much the same way as was done in this course, we can write

the partition function as

Z:/DM%M—%+&]

where Sy is the action of the free scalar field theory and Sy is the
action of the interacting theory

e This can be written in the form

1 1
Z = C’/D[gb]e’s()[l —Sr+ 55? - 55?]



and using 1 S?eiso
= Dl

= Z=Zo(1— (S1) + (ST ++ )

e Taking the logarithm, it becomes obvious that the first term in
the above equation corresponds to a term proportional to the
free energy density and the terms following correspond to the

corrections due to interactions



Feynman Rules for ¢*-theory

e Taking the logarithm of the the partition function for interacting
fields .
InZ=1InZy+1In(1 - (S;) + 5(5%) +--9)

e The second logarithm corresponds to the interacting fields, In Z; =
In(1—(Sr) + 5;(5%) +--) and can be expanded using in(1 — ) ~
—r -5 -5 —... to find the first order correction:

:A[foﬂdwd%f@ ) exp(—So)o*
4

11121 ~ —<S[>0 fD eXp S )

e Skipping the steps of evaluating the above formula, which involve
Fourier expanding the fields, the first order correction for a ¢*-

theory is

InZ = ——ABV Z/

]2
w2+k2+m2



e As in zero-temperature QFT, this has a diagrammatic represen-

tation

In Zl o
(pl,wm )(p2’ wn'.z)

o “Finite-Temperature Feynman Rules” for ¢*-theory

— Draw all connected diagrams
— Determine the combinatoric factor for each diagram
— Include a factor of T, [[4 (Qﬂ)3 Do (wn, P)

Include a factor of —\ for each vertex

— Include a factor of (2m)30(pin — Pout)B0ws, w,., fOr €ach ver-
tex, corresponding to energy-momentum conservation. There
will be one factor of 5(27)350 = SV left over.



Summary/Next Steps

Calculated the partition function of the QHO using a path inte-
gral

Developed the general tools necessary for calculating observable

quantities
Were able to extend this to a simple scalar QFT

Somethings missing: chemical potential, physical behavior dis-

cussions

Extend to more concepts in QFTs: gauge theories, symmetry
breaking, lattice-QCD/QGP calculations...
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