

Warming Up to Finite-Temperature Field Theory

Michael Shamma
UC Santa Cruz

March 2016

Overview

- Motivations
- Quantum statistical mechanics (quick!)
- Path integral representation of partition function in quantum mechanics
 - Quantum harmonic oscillator
- Path integral representation of partition function in quantum field theory
 - Partition function for free scalar field and its free energy density
 - Partition function for interacting scalar fields and free energy density

Motivations

- QFT formulated at zero-temperature
 - What are the effects of heating up QFTs?
- Initial motivations found in condensed matter physics
- Later applications to quantum chromodynamics, cosmology, and astrophysics
 - Quark-gluon plasmas (QGPs), heavy-ion collisions, baryogenesis, inflation and phase transitions in the early universe, stellar emission of neutrinos, etc.
- Advantages over kinetic/many-body theory
 - Path integral
 - Non-Abelian gauge interactions
 - Lorentz invariant

Quantum Statistical Mechanics

- For quantum system described by Hamiltonian H and set of conserved number operators \hat{N}_i that commute with H , the density matrix:

$$\hat{\rho} = \exp[-\beta(H - \mu_i \hat{N}_i)]$$

(natural units used throughout $\hbar = c = k_B = 1$)

- Can calculate expectation values of observables by

$$\langle \hat{A} \rangle = \frac{\text{Tr}[\hat{A}\hat{\rho}]}{\text{Tr}[\hat{\rho}]}$$

- The grand canonical partition function can be used to calculate thermodynamic properties of a system:

$$Z = \text{Tr}[\hat{\rho}]$$

- Pressure, entropy, particle number and free energy: $P = \frac{\partial(T \ln Z)}{\partial V}$, $N_i = \frac{\partial(T \ln Z)}{\partial \mu_i}$, $S = \frac{\partial(T \ln Z)}{\partial T}$, $F = -T \ln Z$

Partition Function: Harmonic Oscillator

- For the (bosonic) quantum harmonic oscillator, the number operator is $\hat{N} = a^\dagger a$ and the Hamiltonian is $H = \omega(\hat{N} + \frac{1}{2})$
- The partition function (with $\mu = 0$) can be written as

$$\begin{aligned} Z &= \exp\left[-\frac{\beta\omega}{2}\right] \text{Tr}[\exp[-\beta(\omega)\hat{N}]] = \exp\left[-\frac{\beta\omega}{2}\right] \sum_{n=0}^{\infty} \langle n | \exp[-\beta(\omega)\hat{N}] | n \rangle \\ &= \exp\left[-\frac{\beta\omega}{2}\right] \sum_{n=0}^{\infty} \exp[-\beta(\omega)n] = \exp\left[-\frac{\beta\omega}{2}\right] (1 - \exp[-\beta\omega])^{-1} \\ &= [2 \sinh\left(\frac{\omega\beta}{2}\right)]^{-1} \end{aligned}$$

Path Integral for Partition Function in QM

- There are few systems for which the partition function can be calculated exactly.
- A more useful representation is that of the path integral
- Start here, translate results to QFTs
- The partition function can be written as

$$Z = \text{Tr}[\exp(-\beta H)] = \int dx \langle x | \exp(-\beta H)$$

Defining $\beta = \epsilon N$ the exponential is split into a product of N pieces

$$Z = \int dx \langle x | \exp(-\epsilon H) \cdots \exp(-\epsilon H) | x \rangle$$

- Inserting $\mathbb{1} = \int \frac{dp_i}{2\pi} |p_i\rangle\langle p_i|$ on the left of each exponential and $\mathbb{1} = \int dx |x_i\rangle\langle x_i|$ on the right (i increasing from right to left in both cases with $i = 1, \dots, N$)

Path Integral for Partition Function in QM

the partition function becomes

$$\begin{aligned} Z = & \int \frac{dxdx_idp_i}{2\pi} \langle x|p_N\rangle \langle p_N|\exp(-\epsilon H)|x_N\rangle \langle x_N|p_{N-1}\rangle \\ & \times \langle p_{N-1}|\exp(-\epsilon H)|x_{N-1}\rangle \langle x_{N-1}|p_{N-2}\rangle \cdots \langle x_2|p_1\rangle \langle p_1|\exp(-\epsilon H)|x_1\rangle \langle x_1|x\rangle \end{aligned} \quad (1)$$

- On the very left of equation (1) above with $\langle x|$ playing role of $\langle x_{i+1}|$ we have:

$$\begin{aligned} \langle x_{i+1}|p_i\rangle \langle p_i|\exp(-\epsilon H)|x_i\rangle &= \exp(ip_i x_{i+1}) \langle p_i|\exp(-\epsilon H)|x_i\rangle \\ &= \exp(ip_i x_{i+1}) \exp(ip_i x_i) \exp[-\epsilon(\frac{p_i^2}{2m} + V(x_i) + \mathcal{O}(\epsilon))] \\ &= \exp[-\epsilon(\frac{p_i^2}{2m} - ip_i \frac{x_{i+1} - x_i}{\epsilon} + V(x_i) + \mathcal{O}(\epsilon))] \end{aligned}$$

- Using the delta function at the very right of equation (1), the integral can be carried out over x yielding the partition function

Path Integral for Partition Function in QM

$$Z = \lim_{N \rightarrow \infty} \int \left[\prod_{i=1}^N \frac{dx_i dp_i}{2\pi} \right] \exp \left[- \sum_{j=1}^N \epsilon \left(\frac{p_j^2}{2m} - ip_j \frac{x_{j+1} - x_j}{\epsilon} + V(x_j) + \mathcal{O}(\epsilon) \right) \right] \Bigg|_{x_{N+1} = x_1} \quad (2)$$

- The momentum integral is Gaussian and can be easily evaluated to be

$$\begin{aligned} \int_{-\infty}^{\infty} \frac{dp_i}{2\pi} \exp \left[-\epsilon \left(\frac{p_i^2}{2m} - ip_i \frac{x_{i+1} - x_i}{\epsilon} \right) \right] \\ = \sqrt{\left(\frac{m}{2\pi\epsilon} \right)} \exp \left(-\frac{m(x_{i+1} - x_i)^2}{2\epsilon} \right) \quad (3) \end{aligned}$$

Path Integral for Partition Function in QM

Thus the partition function becomes

$$Z = \lim_{N \rightarrow \infty} \int \left[\prod_{i=1}^{\infty} \frac{dx_i}{\sqrt{\frac{2\pi\epsilon}{m}}} \right] \exp \left[- \sum_{j=1}^{\infty} \epsilon \left(\frac{m}{2} \left(\frac{x_{j+1} - x_j}{\epsilon} \right)^2 + V(x_j) \right) \right] \Bigg|_{x_{N+1} = x_1}$$

- In the continuum limit, defining $(\frac{m}{2\pi\epsilon})^{N/2} = C$, where C is infinite, the above equation becomes

$$Z = C \int_{x(\beta)=x(0)} \mathcal{D}[x] \exp \left[- \int_0^\beta \left(\frac{m}{2} \left(\frac{dx}{d\tau} \right)^2 + V(x) \right) \right]$$

- Compare to zero-temperature QM counterpart:

$$Z_0 = C \int \mathcal{D}[x] \exp(i \int dt \mathcal{L}_0)$$

- Finite-temp partition function can be achieved in four steps:

- Wick rotation using $\tau = it$
- Introduce “finite-temperature” Lagrangian: $L = \mathcal{L}_0(\tau = it) = \frac{m}{2} \left(\frac{dx}{d\tau} \right)^2 + V(x)$
- Restrict integration by $\int dt \rightarrow \int_0^\beta d\tau$
- Impose periodicity on $x(\tau)$ by $x(\beta) = x(0)$

- This process is the imaginary time formalism of doing field theory
- Can be used also in quantum field theory and can be used for fermions and bosons

Path Integral for QHO

- To go to momentum space, write $x(\tau)$ as Fourier series: $x(\tau) = T \sum_{n=-\infty}^{\infty} x_n \exp(i\omega_n \tau)$
- Periodicity requires $e^{i\omega_n \beta} = 1 \Rightarrow \omega_n = 2\pi n T$
- Impose reality on the $x(\tau) \Rightarrow x^*(\tau) = x(\tau)$ making the $x_n^* = x_{-n}$ and can now write $x_n = a_n + i b_n \Rightarrow x_n^* = a_n - i b_n = x_{-n} = a_{-n} + i b_{-n} \Rightarrow a_n = a_{-n}, b_n = -b_{-n}$
- Letting $b_0 = 0$ and putting this all together,

$$x(\tau) = T \left[a_0 + \sum_{n=1}^{\infty} [(a_n + i b_n) e^{i\omega_n \tau} + (a_n - i b_n) e^{-i\omega_n \tau}] \right] \quad (4)$$

- Fourier representation allows quadratics of the form

$$\int_0^\beta d\tau x(\tau) y(\tau) = T^2 \sum_{m,n} x_n y_m \int_0^\beta d\tau e^{i(\omega_n + \omega_m) \tau}$$

$$= \sum_{m,n} x_n y_m \delta_{n,-m} = \sum_n x_n y_{-n}$$

- Next, using the four steps above for the action of the quantum harmonic oscillator:

$$\begin{aligned} & - \int_0^\beta d\tau \frac{m}{2} \left[\frac{dx}{d\tau} \frac{dx}{d\tau} + \omega^2 x(\tau) x(\tau) \right] \\ &= -\frac{mT}{2} \sum_{n=-\infty}^{\infty} x_n (-\omega_n \omega_{-n} + \omega^2) x_{-n} \end{aligned}$$

and using $\omega_{-n} = -\omega_n$ the action becomes:

$$S = -\frac{mT}{2} \omega^2 a_0^2 - mT \sum_{n=1}^{\infty} (\omega_n^2 + \omega^2) (a_n^2 + b_n^2)$$

- Turning our attention to the product of integrals $\mathcal{D}[x]$ this can be rewritten by changing variables to a_n, b_n to obtain

$$\mathcal{D}[x] = \left| \det \left(\frac{\delta x(\tau)}{\delta x_n} \right) \right| da_0 \left[\prod_{n \geq 1} da_n db_n \right]$$

- Defining a new constant $C' = C|det(\frac{\delta x(\tau)}{\delta x_n})|$ the harmonic oscillator partition function is

$$Z = C' \int_{-\infty}^{\infty} da_0 \int_{-\infty}^{\infty} \left[\prod_{n \geq 1} da_n db_n \right] \times \exp \left[-\frac{mT}{2} \omega^2 a_0^2 - mT \sum_{n \geq 1} (\omega_n^2 + \omega^2) (a_n^2 + b_n^2) \right] \quad (5)$$

- Solving the Gaussian integrals above (and solving for C') yields

$$Z = \frac{1}{\omega\beta} \prod_{n=1}^{\infty} \frac{\omega_n^2}{\omega_n^2 + \omega^2}$$

Remarks

- The partition function as well as other extensive quantities like volume, temperature, and pressure are all finite, but with the path integral, this is not immediately clear.

- In quantum field theory, however, these divergences may remain.
- When calculating most physically relevant variables, this infinite constant falls out.

Free Scalar Fields

- For free scalar fields, we can follow essentially the same procedure taking $x(\tau) \rightarrow \phi(\tau, \vec{x})$
- Why can we do this?
 - The Lagrangian for a scalar field, given by $\mathcal{L} = \frac{1}{2}\partial_\mu\phi\partial^\mu\phi - V(\phi) = (\partial_t\phi)^2 - \frac{1}{2}(\partial_i\phi)(\partial_i\phi) - V(\phi)$ which is a collection of near-independent harmonic oscillators (with $m=1$).
 - Interact through spatial derivatives, approximately given

$$\partial_i\phi \approx \frac{\phi(t, \vec{x} + \epsilon\vec{e}_i) - \phi(t, \vec{x})}{\epsilon}$$

and since the Hamiltonian depends only on terms quadratic in canonical momentum, this coupling cannot change the previous derivation fundamentally

- Taking derivation from previous section

$$Z = \int_{\phi(\beta, \vec{x}) = \phi(0, \vec{x})} \prod_x C\mathcal{D}[\phi] \exp\left[-\int_0^\beta d\tau \int d^3L\right]$$

where

$$L = -\mathcal{L}(t = i\tau) = \frac{1}{2}\left(\frac{\partial\phi}{\partial\tau}\right)^2 + \sum_{i=1}^3 \frac{1}{2}\left(\frac{\partial\phi}{\partial x_i}\right)^2 + V(\phi)$$

- As with standard QM case, expand the fields in a Fourier series:

$$\phi(\tau, \vec{x}) = T \sum_{n=-\infty}^{\infty} \tilde{\phi}(\omega_n, \vec{x}) e^{i\omega_n \tau}$$

- In this case, it is convenient to let the directions of the spatial coordinates be momentarily finite. Denoting these directions as L_i and using

$$f(x_i) = \frac{1}{L_i} \sum_{n_i=-\infty}^{\infty} \tilde{f}(n_i) e^{ik_i x_i}$$

where $k_i = \frac{2\pi n_i}{L_i}$

- Taking the volume to infinity gives

$$\frac{1}{L_i} \sum_{n_i} = \frac{1}{2\pi} \sum_{n_i} \Delta k_i \rightarrow \int \frac{dk_i}{2\pi}$$

where $\Delta k_i = \frac{2\pi}{L_i}$ and

$$\phi(\tau, \vec{x}) = \frac{T}{V} \sum_{\omega_n} \sum_{\vec{k}} \tilde{\phi}(\tau, \vec{k}) \exp(i\omega_n \tau - i\vec{k} \cdot \vec{x})$$

- For brevity, will quote result (follow similar steps as previous section)

$$Z = \exp\left(-\int_0^\beta d\tau \int L\right) = \prod_{\vec{k}} \left[\exp\left[-\frac{T}{2V} \sum_{\omega_n} (\omega_n^2 + \vec{k}^2 + m^2) |\tilde{\phi}(\omega_n, \vec{k})|^2\right]\right] \quad (6)$$

- Looks like product of harmonic oscillator partition functions
- Comparing to the quantum harmonic oscillator $\omega^2 \rightarrow \vec{k}^2 + m^2 = E_k^2$, $m \rightarrow \frac{1}{V}$, $|x_n|^2 \rightarrow |\tilde{\phi}(\omega_n, \vec{k})|^2$
- Continuing with the analogies to QHO,

$$\begin{aligned}
 Z &= \prod_{\vec{k}} \left[T \prod_{n=-\infty}^{\infty} (\omega_n^2 + E_k^2)^{-1/2} \prod_{n \neq 0} (\omega_n^2)^{1/2} \right] \\
 &= \exp \left[\sum_{\vec{k}} \ln(T) + \frac{1}{2} \sum_{n \neq 0} \ln(\omega_n^2) - \frac{1}{2} \sum_n \ln(\omega_n^2 + E_k^2) \right] = \exp(-\frac{F}{T})
 \end{aligned}$$

- In order to obtain the free energy density, take limit at volume goes to infinity to find

$$\lim_{V \rightarrow \infty} \frac{F}{V} = \int \frac{d^3 k}{(2\pi)^3} \left[T \sum_{\omega_n} \frac{1}{2} \ln(\omega_n^2 + E_k^2) - T \sum_{\omega_n \neq 0} \frac{1}{2} \ln(\omega_n^2) - T \ln(T) \right]$$

Interacting Theory

- As in zero temperature QFT, free theory is only exactly solvable theory
- But because of the way the thermal theory is built, we can use perturbative techniques in much the same way to approximate interactions
- In much the same way as was done in this course, we can write the partition function as

$$Z = \int \mathcal{D}[\phi] \exp[-S_0 + S_I]$$

where S_0 is the action of the free scalar field theory and S_I is the action of the interacting theory

- This can be written in the form

$$Z = C \int \mathcal{D}[\phi] e^{-S_0} [1 - S_I + \frac{1}{2!} S_I^2 - \frac{1}{3!} S_I^3]$$

and using

$$\langle S_I^n \rangle = \frac{\int \mathcal{D}[\phi] S_I^n e^{-S_0}}{\int \mathcal{D}[\phi] e^{-S_0}}$$

$$\Rightarrow Z = Z_0 \left(1 - \langle S_I \rangle + \frac{1}{2!} \langle S_I^2 \rangle + \dots \right)$$

- Taking the logarithm, it becomes obvious that the first term in the above equation corresponds to a term proportional to the free energy density and the terms following correspond to the corrections due to interactions

Feynman Rules for ϕ^4 -theory

- Taking the logarithm of the the partition function for interacting fields

$$\ln Z = \ln Z_0 + \ln(1 - \langle S_I \rangle + \frac{1}{2!} \langle S_I^2 \rangle + \dots)$$

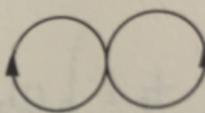
- The second logarithm corresponds to the interacting fields, $\ln Z_I = \ln(1 - \langle S_I \rangle + \frac{1}{2!} \langle S_I^2 \rangle + \dots)$ and can be expanded using $\ln(1 - x) \approx -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots$ to find the first order correction:

$$\ln Z_1 \approx -\langle S_I \rangle_0 = \frac{\lambda}{4} \left[\frac{\int_0^\beta d\tau \int d^3x \int \mathcal{D}[\phi] \exp(-S_0) \phi^4}{\int \mathcal{D}[\phi] \exp(-S_0)} \right]$$

- Skipping the steps of evaluating the above formula, which involve Fourier expanding the fields, the first order correction for a ϕ^4 -theory is

$$\ln Z_1 = -\frac{3}{4} \lambda \beta V \left[T \sum_n \int \frac{d^3p}{(2\pi)^3} \frac{1}{\omega_n^2 + \vec{k}^2 + m^2} \right]^2$$

- As in zero-temperature QFT, this has a diagrammatic representation

$\ln Z_1 = 3$ 
 $(\mathbf{p}_1, \omega_{n_1})(\mathbf{p}_2, \omega_{n_2})$

- “Finite-Temperature Feynman Rules” for ϕ^4 -theory
 - Draw all connected diagrams
 - Determine the combinatoric factor for each diagram
 - Include a factor of $T \sum_n \int \left[\frac{d^3 p}{(2\pi)^3} \right] \mathcal{D}_0(\omega_n, \vec{p})$
 - Include a factor of $-\lambda$ for each vertex
 - Include a factor of $(2\pi)^3 \delta(\vec{p}_{in} - \vec{p}_{out}) \beta \delta_{\omega_{in}, \omega_{out}}$ for each vertex, corresponding to energy-momentum conservation. There will be one factor of $\beta(2\pi)^3 \delta^3 \vec{0} = \beta V$ left over.

Summary/Next Steps

- Calculated the partition function of the QHO using a path integral
- Developed the general tools necessary for calculating observable quantities
- Were able to extend this to a simple scalar QFT
- Somethings missing: chemical potential, physical behavior discussions
- Extend to more concepts in QFTs: gauge theories, symmetry breaking, lattice-QCD/QGP calculations...

References

- [1] Altherr, T. “Introduction to Thermal Field Theory” (1993). arXiv:hep-ph/9307277v1
- [2] Laine, M.;Vourinen, A. “Basics of Thermal Field Theory: A tutorial on perturbative calculations” (2016). Springer International Publishing. ISBN 978-3-319-31933-9
- [3] Kapusta, J.; Gale, C. “Finite-Temperature Field Theory Principles and Applications” (2006). Cambridge Monographs on Mathematical Physics, Cambridge University Press. ISBN:978-0-521-82082-0
- [4] Bellac, M.L. “Thermal Field Theory” (2000). Cambridge Monographs on Mathematical Physics, Cambridge University Press. ISBN: 978-0-521-65477-7
- [5] Zinn-Justin, J. “Quantum Field Theory at Finite Temperature: An Introduction” (2000). arXiv:hep-ph/0005272v1

