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Overview

• Motivations

• Quantum statistical mechanics (quick!)

• Path integral representation of partition function in quantum me-

chanics

– Quantum harmonic oscillator

• Path integral representation of partition function in quantum field

theory

– Partition function for free scalar field and its free energy

density

– Partition function for interacting scalar fields and free energy

density



Motivations

• QFT formulated at zero-temperature

– What are the effects of heating up QFTs?

• Initial motivations found in condensed matter physics

• Later applications to quantum chromodynamics, cosmology, and

astrophysics

– Quark-gluon plasmas (QGPs), heavy-ion collisions, baryo-

genesis, inflation and phase transitions in the early universe,

stellar emission of neutrinos, etc.

• Advantages over kinetic/many-body theory

– Path integral

– Non-Abelian gauge interactions

– Lorentz invariant



Quantum Statistical Mechanics

• For quantum system described by Hamiltonian H and set of con-

served number operators N̂i that commute with H, the density

matrix:

ρ̂ = exp[−β(H − µiN̂i)]

(natural units used throughout h̄ = c = kB = 1)

• Can calculate expectation values of observables by

〈Â〉 =
Tr[Âρ̂]

Tr[ρ̂]

• The grand canonical partition function can be used to calculate

thermodynamic properties of a system:

Z = Tr[ρ̂]

• Pressure, entropy, particle number and free energy: P = ∂(T lnZ)
∂V ,

Ni = ∂(T lnZ)
∂µi

, S = ∂(T lnZ)
∂T , F = −T lnZ



Partition Function: Harmonic Oscillator

• For the (bosonic) quantum harmonic oscillator, the number op-

erator is N̂ = a†a and the Hamiltonian is H = ω(N̂ + 1
2 )

• The partition function (with µ = 0) can be written as

Z = exp[−βω
2

]Tr[exp[−β(ω)N̂ ]] = exp[−βω
2

]

∞∑
n=0

〈n|exp[−β(ω)N̂ ]|n〉

= exp[−βω
2

]
∞∑
n=0

exp[−β(ω)n] = exp[−βω
2

](1− exp[−βω])−1

= [2 sinh(
ωβ

2
)]−1



Path Integral for Partition Function in QM

• There are few systems for which the partition function can be

calculated exactly.

• A more useful representation is that of the path integral

• Start here, translate results to QFTs

• The partition function can be written as

Z = Tr[exp(−βH)] =

∫
dx〈x|exp(−βH)

Defining β = εN the exponential is split into a product of N

pieces

Z =

∫
dx〈x|exp(−εH) · · · exp(−εH)|x〉

• Inserting 1 =
∫
dpi
2π |pi〉〈pi| on the left of each exponential and

1 =
∫
dx|xi〉〈xi| on the right (i increasing from right to left in

both cases with i = 1, . . . , N)



Path Integral for Partition Function in QM

the partition function becomes

Z =

∫
dxdxidpi

2π
〈x|pN 〉〈pN |exp(−εH)|xN 〉〈xN |pN−1〉

×〈pN−1|exp(−εH)|xN−1〉〈xN−1|pN−2〉···〈x2|p1〉〈p1|exp(−εH)|x1〉〈x1|x〉
(1)

• On the very left of equation (1) above with 〈x| playing role of

〈xi+1| we have:

〈xi+1|pi〉〈pi|exp(−εH)|xi〉 = exp(ipixi+1)〈pi|exp(−εH)|xi〉

= exp(ipixi+1) exp(ipixi) exp[−ε( p
2
i

2m
+ V (xi) +O(ε))]

= exp[−ε( p
2
i

2m
− ipi

xi+1 − xi
ε

+ V (xi) +O(ε))]

• Using the delta function at the very right of equation (1), the

integral can be carried out over x yielding the partition function



Path Integral for Partition Function in QM

Z = lim
N→∞∫ [ N∏

i=1

dxidpi
2π

]
exp

[
−

N∑
j=1

ε(
p2j
2m
− ipj

xj+1 − xj
ε

+ V (xj) +O(ε))
]∣∣∣∣∣∣
xN+1=x1

(2)

• The momentum integral is Gaussian and can be easily evaluated

to be∫ ∞
−∞

dpi
2π

exp[−ε( p
2
i

2m
− ipi

xi+1 − xi
ε

)]

=

√
(
m

2πε
) exp(−m(xi+1 − xi)2

2ε
) (3)



Path Integral for Partition Function in QM

Thus the partition function becomes

Z = lim
N→∞

∫ [ ∞∏
i=1

dxi√
2πε
m

]
exp

[
−
∞∑
j=1

ε(
m

2
(
xj+1 − xj

ε
)2 + V (xj))

]∣∣∣∣∣∣
xN+1=x1

• In the continuum limit, defining ( m
2πε )

N/2 = C, where C is infi-

nite, the above equation becomes

Z = C

∫
x(β)=x(0)

D[x] exp
[
−
∫ β

0

(
m

2
(
dx

dτ
)2 + V (x))

]
• Compare to zero-temperature QM counterpart:

Z0 = C

∫
D[x] exp(i

∫
dtL0)

• Finite-temp partition function can be achieved in four steps:



– Wick rotation using τ = it

– Introduce “finite-temperature” Lagrangian: L = L0(τ =

it) = m
2 (dxdτ )2 + V (x)

– Restrict integration by
∫
dt→

∫ β
0
dτ

– Impose periodicity on x(τ) by x(β) = x(0)

• This process is the imaginary time formalism of doing field theory

• Can be used also in quantum field theory and can be used for

fermions and bosons



Path Integral for QHO

• To go to momentum space, write x(τ) as Fourier series: x(τ) =

T
∑∞
n=−∞ xn exp(iωnτ)

• Periodicity requires eiωnβ = 1⇒ ωn = 2πnT

• Impose reality on the x(τ)⇒ x∗(τ) = x(τ) making the x∗n = x−n

and can now write xn = an + ibn ⇒ x∗n = an − ibn = x−n =

a−n + ib−n ⇒ an = a−n, bn = −b−n

• Letting b0 = 0 and putting this all together,

x(τ) = T
[
a0 +

∞∑
n=1

[(an + ibn)eiωnτ + (an − ibn)e−iωnτ ]
]

(4)

• Fourier representation allows quadratics of the form∫ β

0

dτx(τ)y(τ) = T 2
∑
m,n

xnym

∫ β

0

dτei(ωn+ωm)



=
∑
m,n

xnymδn,−m =
∑
n

xny−n

• Next, using the four steps above for the action of the quantum

harmonic oscillator:

−
∫ β

0

dτ
m

2
[
dx

dτ

dx

dτ
+ ω2x(τ)x(τ)]

= −mT
2

∞∑
n=−∞

xn(−ωnω−n + ω2)x−n

and using ω−n = −ωn the action becomes:

S = −mT
2
ω2a20 −mT

∞∑
n=1

(ω2
n + ω2)(a2 + b2)

• Turning our attention to the product of integrals D[x] this can

be rewritten by changing variables to an, bn to obtain

D[x] = |det(δx(τ)

δxn
)|da0[

∏
n≥1

dandbn]



• Defining a new constant C ′ = C|det( δx(τ)δxn
)| the harmonic oscilla-

tor partition function is

Z = C ′
∫ ∞
−∞

da0

∫ ∞
−∞

[ ∏
n≥1

dandbn

]
× exp

[
− mT

2
ω2a20 −mT

∑
n≥1

(ω2
n + ω2)(a2n + b2n)

]
(5)

• Solving the Gaussian integrals above (and solving for C ′) yields

Z =
1

ωβ

∞∏
n=1

ω2
n

ω2
n + ω2

Remarks

– The partition function as well as other extensive quantities

like volume, temperature, and pressure are all finite, but

with the path integral, this is not immediately clear.



– In quantum field theory, however, these divergences may re-

main.

– When calculating most physically relevant variables, this in-

finite constant falls out.



Free Scalar Fields

• For free scalar fields, we can follow essentially the same procedure

taking x(τ)→ φ(τ, ~x)

• Why can we do this?

– The Lagrangian for a scalar field, given by L = 1
2∂µφ∂

µφ−
V (φ) = (∂tφ)2 − 1

2 (∂iφ)(∂iφ)− V (φ) which is a collection of

near-independent harmonic oscillators (with m=1).

– Interact through spatial derivatives, approximately given

∂iφ ≈
φ(t, ~x+ ε~ei)− φ(t, ~x)

ε

and since the Hamiltonian depends only on terms quadratic

in canonical momentum, this coupling cannot change the

previous derivation fundamentally



• Taking derivation from previous section

Z =

∫
φ(β,~x)=φ(0,~x)

∏
x

CD[φ] exp[−
∫ β

0

dτ

∫
d3L]

where

L = −L(t = iτ) =
1

2
(
∂φ

∂τ
)2 +

3∑
i=1

1

2
(
∂φ

∂xi
)2 + V (φ)

• As with standard QM case, expand the fields in a Fourier series:

φ(τ, ~x) = T

∞∑
n=−∞

φ̃(ωn, ~x)eiωnτ

• In this case, it is convenient to let the directions of the spatial

coordinates be momentarily finite. Denoting these directions as

Li and using

f(xi) =
1

Li

∞∑
ni=−∞

f̃(ni)e
ikixi



where ki = 2πni

Li

• Taking the volume to infinity gives

1

Li

∑
ni

=
1

2π

∑
ni

∆ki →
∫
dki
2π

where ∆ki = 2π
Li

and

φ(τ, ~x) =
T

V

∑
ωn

∑
~k

φ̃(τ,~k) exp(iωnτ − i~k · ~x)

• For brevity, will quote result (follow similar steps as previous

section)

Z = exp(−
∫ β

0

dτ

∫
L) =∏

~k

[
exp [− T

2V

∑
ωn

(ω2
n + ~k2 +m2)|φ̃(ωn,~k|)2]

]
(6)



• Looks like product of harmonic oscillator partition functions

• Comparing to the quantum harmonic oscillator ω2 → ~k2 +m2 =

E2
k, m→ 1

V , |xn|2→ |φ̃(ωn,~k)|2

• Continuing with the analogies to QHO,

Z =
∏
~k

[
T

∞∏
n=−∞

(ω2
n + E2

k)−1/2
∏
n 6=0

(ω2
n)1/2

]

= exp
[∑

~k

ln(T )+
1

2

∑
n 6=0

ln(ω2
n)− 1

2

∑
n

ln(ω2
n+E2

k)
]

= exp(−F
T

)

• In order to obtain the free energy density, take limit at volume

goes to infinity to find

lim
V→∞

F

V
=

∫
d3k

(2π)3

[
T
∑
ωn

1

2
ln(ω2

n+E2
k)−T

∑
ωn6=0

1

2
ln(ω2

n)−T ln(T )
]



Interacting Theory

• As in zero temperature QFT, free theory is only exactly solvable

theory

• But because of the way the thermal theory is built, we can use

perturbative techniques in much the same way to approximate

interactions

• In much the same way as was done in this course, we can write

the partition function as

Z =

∫
D[φ]exp[− S0 + SI ]

where S0 is the action of the free scalar field theory and SI is the

action of the interacting theory

• This can be written in the form

Z = C

∫
D[φ]e−S0 [1− SI +

1

2!
S2
I −

1

3!
S3
I ]



and using

〈SnI 〉 =

∫
D[φ]SnI e

−S0∫
D[φ]e−S0

⇒ Z = Z0(1− 〈SI〉+
1

2!
〈S2
I 〉+ · · ·)

• Taking the logarithm, it becomes obvious that the first term in

the above equation corresponds to a term proportional to the

free energy density and the terms following correspond to the

corrections due to interactions



Feynman Rules for φ4-theory

• Taking the logarithm of the the partition function for interacting

fields

lnZ = lnZ0 + ln(1− 〈SI〉+
1

2!
〈S2
I 〉+ · · ·)

• The second logarithm corresponds to the interacting fields, lnZI =

ln(1−〈SI〉+ 1
2! 〈S

2
I 〉+ · · ·) and can be expanded using ln(1−x) ≈

−x− x2

2 −
x3

3 − · · · to find the first order correction:

lnZ1 ≈ −〈SI〉0 =
λ

4

[∫ β
0
dτ
∫
d3x

∫
D[φ] exp(−S0)φ4∫

D[φ] exp(−S0)

]
• Skipping the steps of evaluating the above formula, which involve

Fourier expanding the fields, the first order correction for a φ4-

theory is

lnZ1 = −3

4
λβV

[
T
∑
n

∫
d3p

(2π)3
1

ω2
n + ~k2 +m2

]2



• As in zero-temperature QFT, this has a diagrammatic represen-

tation

• “Finite-Temperature Feynman Rules” for φ4-theory

– Draw all connected diagrams

– Determine the combinatoric factor for each diagram

– Include a factor of T
∑
n

∫
[ d3p
(2π)3 ]D0(ωn, ~p)

– Include a factor of −λ for each vertex

– Include a factor of (2π)3δ( ~pin − ~pout)βδωin,ωout for each ver-

tex, corresponding to energy-momentum conservation. There

will be one factor of β(2π)3δ~0 = βV left over.



Summary/Next Steps

• Calculated the partition function of the QHO using a path inte-

gral

• Developed the general tools necessary for calculating observable

quantities

• Were able to extend this to a simple scalar QFT

• Somethings missing: chemical potential, physical behavior dis-

cussions

• Extend to more concepts in QFTs: gauge theories, symmetry

breaking, lattice-QCD/QGP calculations...
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