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A Quick Review of the Standard Model (1)

In 1954, C.N. Yang and Robert Mills gave us the tools necessary to build quantum field theories out of
Lagrangians that were invariant under any compact semisimple lie group, G. A combination of estimated
guesses and experiment has informed us as to what Nature’s choice of G might be. Whatever physics is
out there at higher energy scales, in the low energy limit, the group of choice appears to be

GSM = SU(3)×SU(2)L×U(1)Y

In an analogy with electromagnetism, we insert a kinetic (field strength) term for each gauge boson
corresponding to each normal subgroup of GSM into the Lagrangian. We guess that there is also a term for
each fermion, written as a contraction of 4-component spinors below.

LDirac = f̄ (i/∂ −mf )f (1)



An
overview of

SU(5)
grand

unification

Nicola
Canzano

A Quick Review of the Standard Model (2)

In QED and QCD, one introduces the covariant derivative at this point, giving rise to interactions between
the gauge bosons and fermions, and rectifying the gauge-covariance of LDirac. In the present case,
however, the fermion mass term −mf f̄ f =−mf (f̄LfR + f̄RfL) is not gauge invariant, since fR and fL
transform differently under GSM . We conclude that our guess for the fermion part of the Lagrangian was, at
least partially, incorrect. To fix this problem, one supposes the existence of a complex scalar field Φ, that is
a doublet under SU(2)L, and insert Yukawa interactions between Φ and the fermions into L . Now we
have non-kinetic fermion terms that are manifestly gauge singlets, but they are not mass terms. In order to
go meaningfully from L to matrix elements in scattering processes, we assumed a unique vanishing
vacuum expectation value, which Φ does not possess in its most general (renormalizable) manifestation in
the Lagrangian. We therefore redefine Φ by a simple shift so that the VEV is indeed 0, and this hides the
SU(2)L×U(1)Y symmetry under the guise of U(1)EM , giving mass to the fermions. The kinetic term for
Φ, LΦ,kinetic = |Dµ Φ|2 will contain interactions that, after symmetry breaking, give us terms that look like
mass eigenstates for linear combinations of the components of the gauge fields; these are the massive
gauge bosons of the standard model: the W+,W−, and Z. The missing, orthogonal mass eigenstate must
simply have a coefficient of 0, and we identify this as the photon. The shifted complex scalar field is
redefined in terms of a real scalar h, the Higgs boson. All of these particles’ existence and behaviours as
per the predictions of the standard model have been experimentally verified to extreme accuracy as of
2016.
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What is a GUT?

A Grand Unified Theory is a theory that unifies the strong, weak, and electromagnetic interactions under a
single gauge coupling. The motivation for such a theory, besides the usual endeavour to compactify and
generalize, is that at a certain energy scale, the gauge couplings of these three interactions become very
near to each other. Underneath this scale, then, the gauge symmetry group of a GUT should break up into
some combination of the groups that comprise GSM . Therefore, whatever we guess the GUT gauge group,
GGUT , to be, it had better contain GSM as a subgroup. The smallest such group that achieves this without
creating obvious problems from the start is GGUT ≡ SU(5).
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Generators and gauge bosons, choosing a convenient basis (1)

SU(n) has n2−1 generators, which means that a quantum field theory with an SU(5) symmetry will
contain 24 massless gauge bosons before symmetry breaking. Call these generators La, a = 1,2, . . . ,24,
and let us use a 5-dimensional representation. We should choose a basis for the generators that makes it
easy to identify the vector bosons Va

µ . We can choose the first 8 generators (a = 1, . . . ,8), so that only
SU(3) acts on the first three rows and columns, and the ninth and tenth generators so that the
non-diagonal generators of SU(2) act only on the fourth and fifth columns:

La=1,...,8 ≡


0 0

λ a 0 0
0 0

0 0 0 0 0
0 0 0 0 0

 L9 ≡


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 L10 ≡


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 i 0


Then Va=1,...,8

µ are the vector fields of this theory that should be associated with the gluons, and
1√
2
(V9

µ ± iV10
µ ) should be associated with the W± bosons.
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Generators and gauge bosons, choosing a convenient basis (1)
Diagonal generators

We get one diagonal generator out from whichever La we embed σ3 in, two from the Gell-Mann
embeddings, L3 and L8 above. Therefore 1 diagonal generator remains. The unique traceless generator
that satisfies the normalization Tr[LaLb] = 2δ ab is L12 below.

L11 ≡


0

0
0

1 0
0 −1

 L12 ≡ 1√
15


−2

−2
−2

3
3


Notice that L11 we will relate with the W3, and L12 with the hyperphoton, B. Soon we will build the photon
out of these fields, and be able to make a prediction for the weak mixing angle.
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Generators and gauge bosons (2)
The other generators: the X and Y boson families (1)

The remaining generators of SU(5) do not correspond to any of the subgroups of GSM . They all take a
similar form, which resembles either σ1 or ±σ2 upon squinting, for example

L13 ≡


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 L14 ≡


0 0 0 i 0
0 0 0 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0


Notice the pattern: they are (anti)symmetric matrices that don’t take values on the 3×32×2
block-diagonal. It pays to define these generators as linear combinations of matrices ∆

j
k , whose entries are

all zero except that in the jth row, kth column, which is defined to be unity. Then, the relation can be
inverted; for example,

∆
4
1 =

1
2
(L13− iL14)

∆
1
4 =

1
2
(L13 + iL14)
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Generators and gauge bosons (3)
The other generators: the X and Y boson families (2)

Let us relabel once more, and call Xi
µ the gauge bosons corresponding to ∆i

4, i = 1,2,3, and X̄i
µ those

corresponding to ∆4
i . To ∆5

i and ∆i
5 we relate what we’ll call Y bosons, Ȳ i

µ and Y i
µ respectively. That is, for

example,

X1
µ =

1
2
(V13− iV14)

X̄1
µ =

1
2
(V13 + iV14)
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Generators and gauge bosons (4)
The field strength tensor

As in QCD, it is convenient to define

Vµ ≡
1√
2

Va
µ La

So that we may form

Lgauge,kinetic =−
1
4

Fa
µν Fµν

a =−1
4

Tr(F2
µν )

Fµν = ∂µ Vν −
i√
2

gVµ Vν −∂ν Vµ +
i√
2

gVν Vµ

We have, suppressing ubiquitous Lorentz indices,

Vµ =


G1

1−
2√
30

B G1
2 G1

3 X̄1 Ȳ1

G2
1 G2

2−
2√
30

B G2
3 X̄2 Ȳ2

G3
1 G3

2 G3
3−

2√
30

B X̄3 Ȳ3

X1 X2 X3 1√
2

W3 + 3√
30

B W+

Y1 Y2 Y3 W− − 1√
2

W3 + 3√
30

B


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Adding in the fermions
Spinor representations of SU(5)

The most natural spinor representation of SU(5) is the 5, that is, the 5-dimensional representation
ψ = (a1 a2 a3 a4 a5)T. The covariant derivative

Dµ = ∂µ −
i
2

gVµ

acts on these 5-component spinors to give interactions with the gauge bosons of the theory. Recall that the
SU(2) generators embedded within the SU(5) generators La=9,10,11 (contained in the hidden implicit sum
Vµ ) are the only generators that act on the bottommost components of ψ , a4, and a5. Nothing like SU(2)
operates on the upper three components of ψ , making a4 and a5 together an SU(2) doublet, and
(a1 a2 a3) an SU(2) singlet. Conversely, and by the same logic, (a1 a2 a3) is an SU(3) triplet, and (a1 a2)
an SU(3) singlet. We can therefore identify the top part of ψ with quarks, and the bottom part of ψ with
leptons.
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The photon and the weak mixing angle (1)
What about the photon?

If we have successfully embedded SU(2)×U(1) in SU(5), then the photon is made up of a linear
combination of the gauge fields associated with SU(5) the generators L11 and L12, as mentioned
previously in passing. Because the generators are all traceless, so too must be the charge operator, which
is a linear combination of traceless generators; that is, the sum of all charges in any given representation is
0. For a 5-spinor above, that means

∑
j

Qaj = 3Qquark +Qneutrino +Qchargedlepton = 0⇒ Qquark =−
1
3

e

And so we identify a1,a2 and a3 with the down quark color triplet, and the charge operator as

Q = diag(−1/3,−1/3,−1/3,1,0) =
1
2

(
L11 +

√
5
3

L12

)

What about the other fermions? Well, they must transform in a different representation. It turns out they
transform in a 10-dimensional representation.
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The photon and weak mixing angle (2)
Piecing the photon back together

The covariant derivative terms that act on the fields W3
µ and Bµ look like

Dµ = ∂µ − i
g
2

(
Wµ L11 +Bµ L12

)
As in the standard model, we may rewrite these in terms of two new fields Zµ and Aµ , the two pairs of
fields being related by a rotation matrix parametrized by the weak mixing angle, θW .

Dµ = ∂µ − i
g
2

[
(sinθW L11 + cosθW L12)Aµ +(cosθW L11− sinθW L12)Zµ

]
≡ ∂µ − i(eQAµ +gW QZZµ )

(2)

This definition encompasses the relation e = gsinθW . Recall that this was also derived in the standard
model by the action of the covariant derivative on fermions, which in the case of SU(5) clearly breaks up
into the groups we are familiar with. We can therefore read off e = gsinθW from, for example,
Dµ νe = ∂µ νe +0, just as we did before, where now the neutrino is just the component of a doublet within a
quintuplet rather than just a doublet. The action of SU(2) on the lepton doublet within the 5-component
spinor doesn’t get mixed up with the other groups, so nothing is different.
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The photon and weak mixing angle (3)

Comparing both sides of equation (2), we can see that

eQ =
g
2

(
sinθW L11 + cosθW L12

)
sinθW diag(−1/3,−1/3,−1/3,1,0) =

1
2

sinθW


0

0
0

1 0
0 −1

+ cosθW


−2

−2
−2

3
3




This is a general relation giving 5 redundant equations. Reading off just the last corner of each matrix after
dividing everything by sinθW , one has

0 =−1
2
+

1
2

√
3
5

cotθW

and so this theory predicts

tanθW =

√
3
5
, sinθW =

√
3
8

and, using the above in e = gsinθW ,

g =

√
8
3

e
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Interactions: X and Y bosons, leptoquarks, B−L conservation (1)

X

d̄

e+

µ
ig√

2
γµ

X

u

u

µ
ig√

2
γµ

When we actually expand out ψ̄ /Dψ , we can read off the feynman rules for the fermion interactions. The
new bosons will allow quarks and leptons to interact directly. The X boson couples, for example, down
quarks to electrons, and up quarks to up quarks, as shown above. An interesting feature of all these
interactions of the X and Y bosons is that they preserve baryon number minus lepton number, while
violating both of those symmetries separately, both of which were present (if not by accident) in the
standard model. Examples of processes that violate B and L, but preserve B−L are proton decay and
neutron-antineutron oscillations, phenomena which have been the focus of experimentalists for decades
now.
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Interactions: X and Y bosons, leptoquarks, B−L conservation (2)

Y

d

u

ū, d̄

e+, ν̄e

X

u

u

d̄

e+

Shown above are some tree-level processes in the Georgi-Glashow model. Notice that it is because of
diagrams like the above and interactions like on the page previous that proton decay, e.g. via p+→ e+π0

(uud→ e+ud̄) is possible. Using the Feynman rules from before, we know that each vertex will give
something ∝ g2, and the propgators will be inversely proportional to m2, so, crudely,

Mp+→e+π0 ≈
g2

X,Y

m2
X,Y
⇒ τp+ ≈

m2
X,Y

g4
X,Y m5

p+

The extremely stringent limits currently placed on the proton lifetime constrain the masses of the X and Y
bosons to be absurdly large. If they exist, they are morbidly obese particles with mX,Y & 1015GeV.
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Spontaneous symmetry breaking in SU(5) (1)
The dream scheme

There is, in fact, more than one way to break down SU(5) in such a way that we get phenomenologically
acceptable results. I will proceed to break the symmetry in a two-step fashion,

SU(5)→ SU(3)×SU(2)×U(1)→ SU(3)×U(1)EM

Using this method, the first stage of breaking is achieved through a duododecuplet (a 24-plet), Σa=1,...,24.
The covariant derivative that acts on Σ must then be in the adjoint (24-dimensional) representation,

Dµ Σ = ∂µ Σ− i
g
2

Vk
µ Fk

Σ

i.e. Fk
aa′ are twenty-four 24×24 matrices that form a represenation of SU(5).
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Spontaneous symmetry breaking in SU(5) (2)
Representation reorganization

Just like the matrix of bosons we saw before, we can represent the 24 degrees of freedom in Σ as a
traceless 5×5 matrix, which we can write as a linear combination of generators of SU(5).

Σ≡ La
Σ

a

In that case, it transforms differently, i.e. like the adjoint representation of the group, and so we can write
the action of the covariant derivative as a commutator, as we have seen before,

Dµ Σ = ∂µ Σ− i
g
2
[Va

µ La,Σ]

and write the kinetic term like we did for the vector bosons:

LΣ,kinetic = Tr[(Dµ Σ)†(Dµ Σ)]
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Spontaneous symmetry breaking in SU(5) (3)

Expanding out the previous two equations, we see that after Σ acquires a vacuum expectation value, (call it
〈Σ〉), LΣ,kinetic gets terms like

g2

4
Tr
(
[Vµ ,〈Σ〉]2

)
≡ m2

abVa
µ Vµb

Since is this is just the first stage of breaking, we don’t want the Goldstone bosons relating to GSM to
acquire mass yet, so we must have a Σ that is traceless but gives mass only to those Va=13,...,24

µ . Notice
that a matrix of the form diag(a,a,a,b,b) will commute with all La=1,...,12, and so a 〈Σ〉 of this form will not
give mass to the first twelve bosons we’d like to associate with the second breaking of symmetry.
Therefore, since we want 〈Σ〉 to be diagonal, the fact that it must be traceless then fixes

〈Σ〉= vdiag
(

1,1,1,−3
2
,−3

2

)
=−
√

15
2

vL12

up to some constant v. If one now plugs in the Vµ boson matrix from before into the topmost equation of
this slide, one finds, via brute force,

g2

4
([V,〈Σ〉])2 =−1

2
25g2v2

8


X1X̄1 +Y1Ȳ1 X2X̄1+Y2Ȳ1 X3X̄1 +Y3Ȳ1 0 0
X1X̄2 +Y1Ȳ2 X2X̄2 +Y2Ȳ2 X3X̄2 +Y3Ȳ2 0 0
X1X̄3 +Y1Ȳ3 X2X̄3 +Y2Ȳ3 X3X̄3 +Y3Ȳ3 0 0

0 0 0 XiX̄i XiȲi
0 0 0 X̄iYi YiȲi


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Spontaneous symmetry breaking in SU(5) (4)
Potential Potentials

Taking the trace of the above, then, we find

m2
X = m2

Y =
25
8

g2v2

We need a potential which can lead us to the form of the VEV we had just a second ago. This involves
discussions of renormalizability, so I will quote the result

V(Σ) =−µ
2 Tr(Σ2)+

a
4

[
Tr(Σ2)

]2
+

b
2

Tr(Σ4)

The unique minimum to the above is the one we want, so long as b > 0,µ2 > 0,a >−7b/5. Plugging this
in and setting V = 0, one has

µ
2 =

(
15
2

a+
7
2

b
)

v2

And so we have effectively hidden the SU(5) symmetry, since now the gauge invariance in the Yukawa
interaction terms for the X and Y bosons with Σ is no longer rectified by a simultaneous transformation in Σ.
What remains unbroken are the terms related to the twelve “original" generators of GSM , as we had hoped.
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Spontaneous symmetry breaking in SU(5) (5)

We now need to break the symmetry again, down into SU(3)×U(1)EM . The simplest possibility turns out
to be a 5-component Higgs field H = (h1 h2 h3 h+ −h0)T . In analogy with the 5-spinor we chose earlier,
we’d like the upper three components to be a triplet under SU(3) (and a singlet under SU(2)), and the
bottom two to be a doublet under SU(2) (and a singlet under SU(3)) (just like the SM Higgs is a doublet
under SU(2) and a singlet under U(1), the group we want to break into). We introduce an analogous
potential for the Higgs field to the SM case,

V(H) =− v′2

2
|H|2 + λ

4
(|H|2)2; v′2,λ > 0

Right now the W and Z bosons are still massless, but when we add a kinetic term for H to the lagrangian, it
interacts with the remaining twelve massless bosons via the covariant derivative. When we break this
symmetry down by giving H a VEV, these bosons acquire mass. The equation above defines a VEV which
we can take to be in the neutral direction

〈−h0〉= v0

〈H〉= (0 0 0 0 v0)
T , v′2 = λv2

0

This produces the pattern of symmetry breaking we’d like, with

m2
W = m2

Z cos2
θW =

1
4

g2
W v2

0
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Interpreting the theory (1)

Pros

The main attractive quality of the Georgi-Glashow model is that it successfully unifies the electroweak
and strong gauge couplings of the Standard Model and gives the correct mass terms to particles, as
we saw for the W and Z bosons.

It explains charge quantization, an issue which the Standard Model has been thought to be silent
about (although some research claims that it accounts for this just fine with things like non-linear
sigma models). Even if we turn out to be underestimating the SM, the quantization of charge in SU(5)
is natural and simple.

It is renormalizable.

It generalizes the Standard Model in a most intuitive, minimal fashion; a "simple as possible, but no
simpler" approach. It elegantly echoes results of standard model calculations while predicting new
phenomena.

Cons

Predicts many unobserved phenomena such as proton decay and other baryon- and lepton-number
violating processes. Predicts particles so heavy that we can’t hope to detect them directly any time
soon.

Suffers from something called the doublet-triplet splitting problem, which is a hierarchy problem in
which the higgs triplet part of the 5-component higgs needs to be 1014 times as massive as the higgs
doublet. This is an arguably unnatural difference in mass scales.

Naively predicts an incorrect value for the weak mixing angle. Even when the scale-dependence of
the couplings is considered, the predicted value is about 0.214. Very close, but not within the
experimental range.
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Interpreting the theory (2)

I leave you with a quote by Lee Smolin,

After some [thirty] years, we are still waiting. No protons have decayed. We have been waiting long enough
to know that SU(5) grand unification is wrong. It’s a beautiful idea, but one that nature seems not to have
adopted. Page 64.
Indeed, it would be hard to underestimate the implications of this negative result. SU(5) is the most elegant
way imaginable of unifying quarks with leptons, and it leads to a codification of the properties of the
standard model in simple terms. Even after [thirty] years, I still find it stunning that SU(5) doesn’t work.
Page 65.
Smolin, Lee (2007). The Trouble with Physics.
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