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1. Properties of antisymmetric matrices

Let M be a complex d x d antisymmetric matrix, i.e. M = —M. Since
det M =det (—M") =det (—M) = (—1)%det M, (1)

it follows that det M = 0 if d is odd. Thus, the rank of M must be even. In these notes,
the rank of M will be denoted by 2n. If d = 2n then det M # 0, whereas if d > 2n, then
det M = 0. All the results contained in these notes also apply to real antisymmetric
matrices unless otherwise noted.

Two theorems concerning antisymmetric matrices are particularly useful.

Theorem 1: If M is an even-dimensional complex [or real] non-singular 2n x 2n an-
tisymmetric matrix, then there exists a unitary [or real orthogonal] 2n x 2n matrix U
such that:

T . — 1 0 mq 0 mo 0 my,
- saml(,5)- (4 %) () e

where N is written in block diagonal form with 2 x 2 matrices appearing along the
diagonal, and the m; are real and positive. Moreover, det U = e where —m < 0 < T,
is uniquely determined. N is called the real normal form of a non-singular antisymmetric
matrix [1-3].

If M is a complex [or real] singular antisymmetric d x d matrix of rank 2n (where d
is either even or odd and d > 2n), then there exists a unitary [or real orthogonal] d x d
matrix U such that

T N 0 my 0 mg) 0 my
UMU—N_dlag{<_m1 0),(_m2 0), ,<_mn O),Od_2n},(3)

where N is written in block diagonal form with 2 x 2 matrices appearing along the
diagonal followed by an (d — 2n) x (d — 2n) block of zeros (denoted by O4_s,), and
the m; are real and positive. N is called the real normal form of an antisymmetric
matrix [1-3]. Note that if d = 2n, then eq. (3) reduces to eq. (2).

Proof: Details of the proof of this theorem are given in Appendices A and B.



Theorem 2: If M is an even-dimensional complex non-singular 2n x 2n antisymmetric
matrix, then there exists a non-singular 2n x 2n matrix P such that:

M=P'JP, (4)
where the 2n x 2n matrix J written in 2 x 2 block form is given by:
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If M is a complex singular antisymmetric d x d matrix of rank 2n (where d is either
even or odd and d > 2n), then there exists a non-singular d X d matrix P such that

M=P'JP, (6)
and J is the d x d matrix that is given in block form by
(70
F=|-) (7)
O' 0

where the 2n x 2n matrix J is defined in eq. (5) and O is a zero matrix of the appropriate
number of rows and columns. Note that if d = 2n, then eq. (6) reduces to eq. (4).

Proof: The proof makes use of Theorem 1.! Simply note that for any non-singular
matrix A; with det A; = m; ! we have
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Define the d x d matrix A (where d > 2n) such that
A= diag{A1 Ay, o Ay (Dd—2n} ) (9)

where A is written in block diagonal form with 2 x 2 matrices appearing along the
diagonal followed by a (d — 2n) x (d — 2n) block of zeros (denoted by O4_2,). Then, in
light of egs. (3), (8) and (9), it follows that eq. (6) is established with P = UA. In the
case of d = 2n, where O,4_2, is absent in eq. (9), it follows that eq. (4) is established by
the same analysis.

REMARK: Two matrices M and B are said to be congruent (e.g., see Refs. [4-6]) if
there exists a non-singular matrix P such that

B=P"MP.

Note that if M is an antisymmetric matrix, then so is B. A congruence class of M
consists of the set of all matrices congruent to it. The structure of the congruence
classes of antisymmetric matrices is completely determined by Theorem 2. Namely,
egs. (4) and (6) imply that all complex d x d antisymmetric matrices of rank 2n (where
n < %d) belong to the same congruent class, which is uniquely specified by d and n.

1One can also prove Theorem 2 directly without resorting to Theorem 1. For completeness, I provide
a second proof of Theorem 2 in Appendix C.



2. The pfaffian and its properties

For any even-dimensional complex 2n x 2n antisymmetric matrix M, we define the
pfaffian of M, denoted by pf M, as

1
pfM =—¢ - M;

anl 11j1%2J2 "injn

M

Mi injn Y (10)
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where € is the rank-2n Levi-Civita tensor, and the sum over repeated indices is implied.
One can rewrite eq. (10) by restricting the sum over indices in such a way that removes

the combinatoric factor 2"n! in the denominator. Let P be the set of permutations,

{i1, 2, ..., i2,} with respect to {1,2,...,2n}, such that [7,8]:
i1<j1,’é2<j2,...,’é2n<j2n, and 1 <lg < -+ <lgp,. (11)
Then,
/
pr = Z (—1)P MilleinQ s Minjn s (12)
P
where (—1) = 1 for even permutations and (—1)¥ = —1 for odd permutations. The

prime on the sum in eq. (12) has been employed to remind the reader that the set of
permutations P is restricted according to eq. (11). Note that if M can be written in
block diagonal form as M = M; & My = diag(M;, M), then

Pf(M, @ M,) = (Pf M) (Pf My) .

Finally, if M is an odd-dimensional complex antisymmetric matrix, the corresponding
pfaffian is defined to be zero.

The pfaffian and determinant of an antisymmetric matrix are closely related, as we
shall demonstrate in Theorems 3 and 4 below. For more details on the properties of the
pfaffian, see e.g. Ref. [7-9].

Theorem 3: Given an arbitrary 2n x 2n complex matrix B and complex antisymmetric
2n x 2n matrix M, the following identity is satisfied,

pf (BMBT) = pf M det B. (13)

Proof: Using eq. (10),

1
pf (BMBT) = B; Mklfl lefl)(B' Mszz széz) T (Binanknén Bjnfn)

= anleiljligjz---injn( i1k1 inks
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after rearranging the order of the matrix elements of M and B. We recognize the
definition of the determinant of a 2n x 2n-dimensional matrix,

det B Ek‘lélk‘zfzmknén = €i1j1i2j2~~~injnBi1k1 Bj1£1 Bizk‘z Bj252 U BlnknBJnZn . (14)



Inserting eq. (14) into the expression for pf (BABT) yields

1
pf (BMBT) = —— det B ey g oo, My o, M,

= Sur M, , =pftM detB.

iy

and Theorem 3 is proved. Note that the above proof applies to both the cases of singular
and non-singular M and/or B.

Here is a nice application of Theorem 3. Consider the following 2n x 2n complex
antisymmetric matrix written in block form,

M=([----3----|, (15)

where A is an n X n complex matrix and O is the n x n zero matrix. Then,
PfM = (=1)"™D/2det A. (16)

To prove eq. (16), we write M defined by eq. (15) as [9]

where 1 is the nxn identity matrix. Using eq. (17), Pf M is easily evaluated by employing
Theorem 3 and explicitly evaluating the corresponding determinant and pfaffian.

Theorem 4: If M is a complex antisymmetric matrix, then
det M = [pf M]*. (18)

Proof: First, we assume that M is a non-singular complex 2n X 2n antisymmetric
matrix. Using Theorem 3, we square both sides of eq. (13) to obtain

[pf(BMBT)]* = (pf M)*(det B)?. (19)
Using the well known properties of determinants, it follows that
det(BMBT) = (det M)(det B)?. (20)

By assumption, M is non-singular, so that det M # 0. If B is a non-singular matrix,
then we may divide egs. (19) and (20) to obtain

(ot M)* _ [pf(BMBT)]" o)
det M~ det(BMBT) °

Since eq. (21) is true for any non-singular matrix B, the strategy that we shall employ is
to choose a matrix B that allows us to trivially evaluate the right hand side of eq. (21).
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Motivated by Theorem 2, we choose B = PT, where the matrix P is determined by
eq. (4). Tt follows that
(pf M)* _ pfJ
det M detJ’
where J is given by eq. (5). Then, by direct computation using the definitions of the
pfaffian [cf. eq. (12)] and the determinant,

(22)

pfJ=detJ =1

Hence, eq. (22) immediately yields eq. (18). In the case where M is singular, det M = 0.
For d even, we note that Pf.J = 0 by direct computation [cf. eq. (7)]. Hence, eq. (13)
yields - ~

Pf M =Pf(PTJP) = (det P)*PfJ = 0.

For d odd, Pf M = 0 by definition. Thus, eq. (18) holds for both non-singular and
singular complex antisymmetric matrices M. The proof is complete.

3. An alternative proof of det M = [pf M]?

In Section 2, a proof of eq. (18) was obtained by employing a particularly convenient
choice for B in eq. (21). Another useful choice for B is motivated by Theorem 1. In
particular, we shall choose B = UT, where U is the unitary matrix that yields the real
normal form of M [cf. eq. (2)],i.e. N =UTMU. Then, eq. (21) can be written as

(pf M)* _ (pf N)?

det M detN (23)

The right hand side of eq. (21) can now directly computed using the definitions of the
pfaffian [cf. eq. (12)] and the determinant. We find

pfN =mims---m,, (24)
det N =m3m3---m?. (25)

n

Inserting these results into eq. (23) yields
det M = [pf M]?, (26)

which completes this proof of Theorem 4 for non-singular antisymmetric matrices M.

If M is a singular complex antisymmetric 2n x 2n matrix, then det M = 0 and at
least one of the m; appearing in eq. (2) is zero [cf. eq. (3)]. Thus, eq. (24) implies that
pf N = 0. We can then use egs. (2) and (24) to conclude that

pf M = pf(U*NU") = pf Ndet U* = 0.

Finally, if M is a d x d matrix where d is odd, then det M = 0 [cf. eq. (1)] and pf M =0
by definition. In both singular cases, we have det M = [pf M]*> = 0, and eq. (26)

bt



is still satisfied. Thus, Theorem 4 is established for both non-singular and singular
antisymmetric matrices.
Many textbooks use eq. (26) and then assert incorrectly that

pf M = vdet M . WRONG!

The correct statement is

pf M = +vdet M, (27)

where the sign is determined by establishing the correct branch of the square root. To
accomplish this, we first note that the determinant of a unitary matrix is a pure phase.
It is convenient to write

detU = e, where —m <0 <. (28)

In light of egs. (24) and (25), we see that egs. (2) and (13) yield
mimg---my =pf N =pf(UTMU) = pf MdetU = e pf M, (29)
mima---m2 =det N = det(UT MU) = (det U)* det M = e~ det M . (30)

Then, egs. (29) and (30) yield eq. (26) as expected. In addition, since Theorem 1 states
that the m; are all real and non-negative, we also learn that

det M = e*%| det M|, pf M = | det M|/ . (31)

We shall employ a convention in which the principal value of the argument of a
complex number z, denoted by Argz, lies in the range —m < Argz < 7. Since the range
of 0 is specified in eq. (28), it follows that § = Arg(pf M) and

. 1 1
20, if —5m<0<3m,

Arg(det M) =< 20 — 7, if ir<6<m,

20 + 7, if —7T<9§—%7T.

Likewise, given a complex number z, we define the principal value of the complex square
root by /z = |z|'/? exp(%iArg z). This means that the principal value of the complex
square root of det M is given by

i0 1/2 e 1 <1
VAT — e’| det M| if —5m<6<3m,

—e®| det M|/? if %71’<9§7T or —7r<9§—%7r,

corresponding to the two branches of the complex square root function. Using this result
in eq. (31) yields

o vdet M, if —%7‘(‘<9§%7T, (32)
D _ 32
—vdet M , if —WS@S—%?T or %w<9§7r,

which is the more precise version of eq. (27).



As a very simple example, consider a complex antisymmetric 2 x 2 matrix M with
nonzero matrix elements My = —Mo;. Hence, pf M = My, and det M = (M;5)?. Thus
if My = |Mjs|e?® where —m < 6 < 7, then one must choose the plus sign in eq. (27)
if —%7‘(‘ <0 < %7‘(‘; otherwise, one must choose the minus sign. This conforms with
the result of eq. (32). In particular, if M, = —1 then pf M = —1 and det M = 1,
corresponding to the negative sign in eq. (27). More generally, to determine the proper
choice of sign in eq. (27), we can employ eq. (32), where § = Arg(pf M). In particular,
0 can be determined either by an explicit calculation of pf M as illustrated in our simple
example above, or by determining the real normal form of M and then extracting 6 from

the phase of det U according to eq. (28).
4. A proof of det M = [pf M]? using Grassmann integration

Another proof of Theorem 4 can be given that employs the technique of Grassmann
integration (e.g., see Refs. [9-11]). We begin with some preliminaries.

Given an antisymmetric 2n x 2n matrix M and 2n real Grassmann variables 7;
(1=1,2,...,2n), the pfaffian of M is given by

pf M = /dmdn2~-~dnzn exp ( — 51 Mijn;) - (33)

The relevant rules for integration over real Grassmann variables are equivalent to the
rules of differentiation:

0

To prove eq. (33), we expand the exponential and note that in light of eq. (34), only the
nth term of the exponential series survives. Hence,

(="
pf M = ol dmdns - - 'dn2n(77i1Mi1j177j1)(szisznjz) e (mnMinjnﬁjn) . (35)

Since Grassmann numbers anticommute, it follows that

D i~ Wi Mo = € jrinnminjn M2 Non—172n = (—1)"N2nNon—1 -+ 12 . (36)

The last step in eq. (36) is obtained by performing N interchanges of adjoining anticom-
muting Grassmann variables, where N = (2n— 1)+ (2n—2)+...+2+ 1 =n(2n—1).
Each interchange results in a factor of —1, so that the overall sign factor in eq. (36) is
(—1)"»=1) = (—1)" for any integer n. Inserting the result of eq. (36) back into eq. (35)
and performing the Grassmann integration yields

pf M = Millei : 'Minjn )

onpy) Cindrizgaingn 2j2

which is the definition of the pfaffian [cf. eq. (10)].



Likewise, given an n X n complex matrix A and n pairs of complex Grassmann
variables ¢; and ¢, (i =1,2,...,n),?

det A = /d@ldwldﬁzd% oo dip, dipy, exp(—@iAijwj) . (37)
The relevant rules for integration over complex Grassmann variables are:
[avi,= [@55,=6,.  [au¥, = [0 -0. (39)

To prove eq. (37), we expand the exponential and note that in light of eq. (38), only the
nth term of the exponential series survives. Hence,

Ainjnwjn) :
(39)
We now reorder the Grassmann variables in a more convenient manner, which produces

a factor of —1 for each separate interchange of adjoining Grassmann variables. We then
find that

in

1) [ _ _ _ _ _
dev 4 = S @i 0,060 @, Ay, 0 A @

W, = (L) g BT, T,

in

= (_1)n(n+1)/2 €iiamin eimmin%% ey, ¢1% .. En . (40)

as aresult of N =1+2+---n = in(n+1) interchanges, and

A diprdipydipy - dip,dipy = (=1)*" 2 i,y - dipydipydipdiy -+ dipadify
(41)
as aresult of N = [(2n—2)+(2n—4)+- - -+4+2]+[(n—1)+(n—2)+- - - 2+1] = 3n(n—1)
interchanges Inserting the results of eqgs. (40) and (41) into eq. (39) and performing the
Grassmann integration yields

detA:le € A A

n) Cidzegn Civigein gt izga T ingn 0

(42)

after noting that the overall sign factor is (—1)>"° = 1. Indeed, eq. (42) is consistent
with the general definition of the determinant of a matrix employed in eq. (14).

In order to prove Theorem 4, we introduce an additional 2n real Grassmann variables
Xi (i=1,2,...,2n). Then, it follows from eq. (33) that

[pf M]? = /dmdnz <+ dnan exp ( — 510 Mijm;) /dX1dX2 - dxan exp (= 5xiMijx;)

= /dmdm o dnon / dx1dxz -+ dx2n €xXp ( - %niMijnj - %XiMinj) ) (43)

2An alternative proof of eq. (37) that relies on egs. (15) and (16) can be found in Ref. [9].
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where we have used the fact that —%mMijnj and _%XiMinj commute, which allows us
to combine these terms inside the exponential. It will prove convenient to reorder the
differentials that appear in eq. (43). Due to the anticommutativity of the Grassmann
variables, it follows that

dmidns -+ - dnaadxidys - - - dxzn = (—1)"*" Vdxidnidxadns - - - dxaadne, . (44)
since in the process of reordering terms, we must anticommute N times where
N=2n+@2n—-1)+(2n—-2)+---+2+1=12n)2n+1) =n(2n+1).
Thus,
[pf M]? = (—1)"n+D) /dx1dn1dx2dn2 <+ - dXandnan exp (= 3n:Min; — $xiMijx;) . (45)
We now define complex Grassmann parameters,

1 _
v = ﬁ (Xi + im) ) Y,

Sl

(Xi - im) . (46)

One can express the y; and 7; in terms of ¢; and v;,®

¥ + ¢ ._¢i_$i‘

) = ) 1 T 47
X NG "= (47)
One can easily verify the identity
EiMiqubj = %(niMz’jnj + XiMinj) )
so that B
exp(—1; M;1;) = exp (— sm:Min; — $xiMijx;) - (48)
The Jacobian of the transformation given by eq. (47) is
o on\ (1L
g Q) g fave | (R TR L
(i, i) Oxi  Oni 1L
oy Oy V2 V2
Then,* B B
dyidn; = J7 dydipy = i dipydi; (49)

3The factors of /2 in the denominators of eqs. (46) and (47) ensure that the rules of Grassmann
integration for both real and complex Grassmann variables, eqs. (34) and (38), are satisfied with the
proper normalization.

4Note that for Grassmann variables, it is the determinant of the inverse of the Jacobian matrix that
enters in eq. (49). For further details, see Appendix D.



It follows that

dxidnidxadns - - - dxandne, = (—1)"di dydiydips - - - dipo, dibs,, (50)

after using i?® = (—1)". Combining egs. (44) and (50) and noting that (—1)?""+1) =1
for integer n, we obtain

dnydng - - - dnandxidxs - - - dxan = d%dwld%dwz o 'G@Qnd%n . (51)

Thus eqgs. (45), (48) and (51) yield

(bt MJ? = / 0, iy iy - - - Ty dtbom exp (— T Migy)

Eq. (37) applied to 2n pairs of complex Grassmann variables yields

det M = / Ay Ay APy - - - Ay ding exp (=, Mty .

We conclude that
[pf M]? = det M .

APPENDIX A: Singular values and singular vectors of a complex matrix

The material in this appendix is taken from Ref. [12] and provides some background
for the proof of Theorem 1 presented in Appendix B. The presentation is inspired by
the treatment of the singular value decomposition of a complex matrix in Refs. [13,14].

The singular values of the general complex n x n matrix M are defined to be the
real non-negative square roots of the eigenvalues of MM (or equivalently of MMT).
An equivalent definition of the singular values can be established as follows. Since
MM is an hermitian non-negative matrix, its eigenvalues are real and non-negative
and its eigenvectors, vy, defined by MTMuvj;, = m2uvy, can be chosen to be orthonormal.®
Consider first the eigenvectors corresponding to the non-zero eigenvalues of MTM. Then,
we define the vectors wy such that Mwvy, = mywj. It follows that

mivk = MTM’Uk = mkMTw,: - ]\4“1];;< = MUk . (52)

Note that eq. (52) also implies that M MTw; = miw}. The orthonormality of the vy
implies the orthonormality of the wy, and vice versa. For example,

(M M) = —

3Tk 3 j

= (vjlv) = ;

(MM = T uilug), (53)

which yields (wg|w;) = ;. If M is a real matrix, then the eigenvectors vy, can be chosen
to be real, in which case the corresponding wy are also real.

®We define the inner product of two vectors to be (v|w) = viw. Then, v and w are orthonormal if
(v|w) = 0. The norm of a vector is defined by ||v || = (v|v)!/2.
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If v; is an eigenvector of MTM with zero eigenvalue, then
0 = ol MTMuv; = (Muv;|Mv;)

which implies that Mv; = 0. Likewise, if w} is an eigenvector of MM with zero
eigenvalue, then
0 = w; MMw} = (M w;| M w;)*

which implies that M Tw; = 0.

Because the eigenvectors of MM [MMT] can be chosen orthonormal, the eigenvec-
tors corresponding to the zero eigenvalues of M [M1] can be taken to be orthonormal.’
Finally, these eigenvectors are also orthogonal to the eigenvectors corresponding to the
non-zero eigenvalues of MM [MMT]. That is, if the indices 7 and j run over the eigen-
vectors corresponding to the zero and non-zero eigenvalues of MM [M MT], respectively,
then .

(MYwv) = —(wi|Muv;) =0, (54)

1
(ilo) = - "
and similarly (w;|w;) = 0.
Thus, we can define the singular values of a general complex n x n matrix M to be
the simultaneous solutions (with real non-negative my) of:”

Muv, = mpwy,, wy M = mkv,i. (55)

The corresponding v (wg), normalized to have unit norm, are called the right (left)
singular vectors of M. In particular, the number of linearly independent v, coincides
with the number of linearly independent w;, and is equal to n.

APPENDIX B: Proof of Theorem 1

In this appendix, we provide a proof of Theorem 1, which we repeat here for the
convenience of the reader.

Theorem 1: If M is an even-dimensional complex [or real] non-singular 2n x 2n an-
tisymmetric matrix, then there exists a unitary [or real orthogonal] 2n x 2n matrix U
such that:

T N — 0 my 0 me 0 m,
UMU_N_ohag{<_m1 o)’<—m2 o)’ ,<_mn 0)} (56)

where N is written in block diagonal form with 2 x 2 matrices appearing along the
diagonal, and the m; are real and positive. Moreover, det U = e ¥ where —m < 0 <,
is uniquely determined.

6This analysis shows that the number of linearly independent zero eigenvectors of MM [M MT]
with zero eigenvalue, coincides with the number of linearly independent eigenvectors of M [MT] with
zero eigenvalue.

"One can always find a solution to eq. (55) such that the my are real and non-negative. Given a
solution where my is complex, we simply write m; = |mk|ei9 and redefine wy;, — wie? to remove the
phase 6.
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If M is a complex [or real] singular antisymmetric d x d matrix of rank 2n (where d
is either even or odd and d > 2n), then there exists a unitary [or real orthogonal] d x d
matrix U such that

T . 0 my 0 mg 0 m,
o = v =ding{ (L0 0) (L 6 (e ) O
(57)
where N is written in block diagonal form with 2 x 2 matrices appearing along the
diagonal followed by a (d — 2n) x (d — 2n) block of zeros (denoted by O4_s,), and the
m; are real and positive. Note that if d = 2n, then eq. (57) reduces to eq. (56).

Proof: A number of proofs can be found in the literature [1-3,13,15,16]. Perhaps
the simplest proof is the one given in Ref. [3]. The proof that is provided here was
inspired by Ref. [2] and is given in Appendix D.4 of Ref. [12]. The advantage of this
proof is that it provides a constructive algorithm for obtaining the unitary matrix U.

Following Appendix A, we first consider the eigenvalue equation for MTM:

MMy, = mivg my > 0, and M'Mu, =0, (58)

where we have distinguished between the two classes of eigenvectors corresponding to

positive eigenvalues and zero eigenvalues, respectively. The quantities m; are the singu-
lar values of M. Noting that ul MTMuy, = (Muy, | Muy) = 0, it follows that

so that the u; are the eigenvectors corresponding to the zero eigenvalues of M. For each
eigenvector of MTM with my # 0, we define a new vector

wy = — M. 60

=M (60)

It follows that m2v, = MTMuv, = mMTw};, which yields MTw; = myvy. Comparing
with eq. (55), we identify v, and wy as the right and left singular vectors, respectively,

corresponding to the non-zero singular values of M. For any antisymmetric matrix,
Mt = —M*. Hence,

M’Uk = msz s ka = —mk’UZ y (61)

and
MTMuwy, = —my Mo} = mM*vj = miwy,,  mp > 0. (62)

That is, the wy, are also eigenvectors of MTM.
The key observation is that for fixed k the vectors vy and wy are orthogonal, since
eq. (61) implies that:

« 1 1
<wk|Uk> = <Uk|wk> = ——2<ka\]\401¢> = ——z(wk|MTMUk> = - <wk‘vk> ) (63)
my, my,
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which yields (wy|vg) = 0. Thus, if all the my, are distinct, it follows that m2 is a doubly
degenerate eigenvalue of MTM, with corresponding linearly independent eigenvectors
vp and wg, where £k = 1,2,...,n (and n < %d) The remaining zero eigenvalues are
(d—2n)-fold degenerate, with corresponding eigenvectors uy, (for k =1,2,...,d—2n). If
some of the m;, are degenerate, these conclusions still apply. For example, suppose that
m; = my, for j # k, which means that mj is at least a three-fold degenerate eigenvalue
of MTM. Then, there must exist an eigenvector v; that is orthogonal to vy and wy
such that MTMv; = miv;. We now construct w; = M*v¥/my according to eq. (60).
According to eq. (63), w; is orthogonal to v;. But, we still must show that w; is also
orthogonal to v and wy. But this is straightforward:

(wyluon) = (il = — (Mg Mug) = o (o MIM)) = (o) =0, (64)

my my

(o) = Cwnluny)” = o (Mu M) =~ wn MTMuy) = — (ufoy) = 0., (65)

my my

where we have used the assumed orthogonality of v; with v, and wy, respectively. It

follows that v;, w;, vi and wy, are linearly independent eigenvectors corresponding to a

four-fold degenerate eigenvalue m?2 of MTM. Additional degeneracies are treated in the
same way.

Thus, the number of non-zero eigenvalues of MTM must be an even number, de-
noted by 2n above. Moreover, one can always choose the complete set of eigenvectors
{uy, v, wp} of MTM to be orthonormal. These orthonormal vectors can be used to
construct a unitary matrix U with matrix elements:

Up o1 = (wg)e, Us,on = (U)o, k=1,2,...,n,
Ug,]ﬁ_gp:(uk)g, ]{?:1,2,...,61—271, (66)
for ¢ =1,2,...,d, where e.g., (vg), is the fth component of the vector vy, with respect

to the standard orthonormal basis. The orthonormality of {uy, vy, wy} implies that
(UTU) g = dgi as required. Egs. (59) and (61) are thus equivalent to the matrix equation
MU = U*N, which immediately yields eq. (57), and the theorem is proven. If M is a
real antisymmetric matrix, then all the eigenvectors of MM can be chosen to be real,
in which case U is a real orthogonal matrix.

Finally, we address the non-uniqueness of the matrix U. For definiteness, we fix
an ordering of the 2 x 2 blocks containing the my in the matrix N. In the subspace
corresponding to a non-zero singular value of degeneracy d, the matrix U is unique up
to multiplication on the right by a 2d x 2d unitary matrix S that satisfies:

STJS =7, (67)

where the 2r x 2r matrix J, defined by
: 0 1 0 1 0 1
e (0 0) (00 ()
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is a block diagonal matrix with r blocks of 2 x 2 matrices. A unitary matrix S that satis-
fies eq. (67) is an element of the unitary symplectic group, Sp(d). Since the determinant
of a symplectic matrix is unity,® it follows that det U = =% is uniquely determined in
eq. (56). In particular, this means that principal value of § = argdet U (typically chosen
such that —im < @ < ) is uniquely determined in eq. (56).

If there are no degeneracies among the myg, then » = 1. Since Sp(1) =SU(2), it
follows that within the subspace corresponding to a non-degenerate singular value, U
is unique up to multiplication on the right by an arbitrary SU(2) matrix. Finally, in
the subspace corresponding to the zero eigenvalues of M, the matrix U is unique up to
multiplication on the right by an arbitrary unitary matrix.

APPENDIX C: Alternative Proof of Theorem 2

In this appendix, we provide an alternative proof [4-6] of Theorem 2 that does not
employ the results of Theorem 1.

Theorem 2: If M is an even-dimensional complex non-singular 2n x 2n antisymmetric
matrix, then there exists a non-singular 2n x 2n matrix P such that:

M =PTJP, (69)
where the 2n x 2n matrix J written in 2 x 2 block form is given by:

a3 ()Y e

.
v
n

If M is a complex singular antisymmetric d X d matrix of rank 2n (where d is either
even or odd and d > 2n), then there exists a non-singular d x d matrix P such that

M=P'jpP, (71)

and J is the d x d matrix that is given in block form by
J=|--—"--]|, (72)

where the 2n x 2n matrix J is defined in eq. (70) and O is a zero matrix of the appropriate
number of rows and columns. Note that if d = 2n, then eq. (71) reduces to eq. (69).

8By definition, a symplectic matrix S satisfies eqs. (67) and (68). Choosing B = ST and A = J in
Theorem 3 and making use of eq. (67) yields pf J = pf J det S. Using the definition of the pfaffian given
in eq. (12), it follows that pf J = 1. Hence, det S = 1 for all symplectic matrices S [17].
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Proof: Recall that an elementary row operation consists of one of the following three
operations:

1. Interchange two rows (R; <> R, for i # j);
2. Multiply a given row R; by a non-zero constant scalar (R; — cR; for ¢ # 0);
3. Replace a given row R; as follows: R; — R; + cR; for i # j and ¢ # 0.

Each elementary row operation can be carried out by the multiplication of an appro-
priate non-singular matrix (called the elementary row transformation matrix) from the
left.? Likewise, one can define elementary column operations by replacing “row” with
“column” in the above. Each elementary column operation can be carried out by the mul-
tiplication of an appropriate non-singular matrix (called the elementary column trans-
formation matrix) from the right.® Finally, an elementary cogredient operation'® is an
elementary row operation applied to a square matrix followed by the same elementary
column operation (i.e., one performs the identical operation on the columns that was
performed on the rows) or vice versa.

The key observation is the following. If M and B are square matrices, then M is
congruent to B if and only if B is obtainable from M by a sequence of elementary cogre-
dient operations.'! That is, a non-singular matrix R exists such that B = RT M R, where
RT is the non-singular matrix given by the product of the elementary row operations
that are employed in the sequence of elementary cogredient operations.

With this observation, it is easy to check that starting from a complex d x d anti-
symmetric matrix, one can apply a simple sequence of elementary cogredient operations
to convert M into the form given by

01 Of
s SR O I (73)
0O 0 ' B

where B is a (d—2) x (d—2) complex antisymmetric matrix, and O is (d —2)-dimensional
column vector made up entirely of zeros. (Try it!) If B = 0, then we are done. Otherwise,
we repeat the process starting with B. Using induction, we see that the process continues
until M has been converted by a sequence of elementary cogredient operations into J or
J. In particular, if the rank of M is equal to 2n, then A will be converted into J after n
steps. Hence, in light of the above discussion, it follows that M = PTJP, where [PT]™!

is the product of all the elementary row operation matrices employed in the sequence of
elementary cogredient operations used to reduce M to its canonical form given by J if
d=2n or J if d > 2n. That is, Theorem 2 is proven.

9 Note that elementary row and column transformation matrices are always non-singular.

0The term cogredient operation employed by Refs. [4,5], is not commonly used in the modern litera-
ture. Nevertheless, I have introduced this term here as it is a convenient way to describe the sequential
application of identical row and column operations.

UThis is Theorem of 5.3.4 of Ref. [5].
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APPENDIX D: Grassmann integration after a linear change of variables

Suppose we integrate a function f(n;), where the n; (i = 4,2,...,n) are Grassmann
variables. We now consider a linear change of variables, x; = x;(n;); i.e., the x; are
linear combinations of the n;. To perform the Grassmann integration over the new set
of Grassmann variables, we must express dy1dxs - - - dx,, in terms of dnydns - - - dn,,. Using
eq. (34) and the anticommutativity properties of the 9/0y; and 9/0n; along with the
chain rule (summing implicitly over pairs of repeated indices), it follows that

/dd...d—ﬁa...ﬁ—ie 0 2.0
X1aX2 Xn_axl 0X2 aXn_n' i1ig-in aXh axiz aX

in

— i € anjl anjz anj” 0 9 0
n' 1112 *ln ale aX’LQ ain a/r/jl 877]2 a/r/]n
1 on; o 0 d

o\ @ 9 0 / on;
— == - ) 4
det (5%-) O Ony Oy il - i det (8xi  (14)

after using the definition of the determinant. Note that since x; = x;(n;) is a linear
transformation, the partial derivative factors dn;/0y; are commuting numbers, so that
the location of these factors do not depend on their order.

Given a linear change of variables x; = x;i(7;), the Jacobian determinant is defined
by

M o O
om ony Onn
S O(X1, X255 Xn) et | Om O Mo | _ et ((%-) |
8(7]17 2y - 7nn> . . . 877]
aXn aXn “ e aX”
om ony oy,

where we have introduced a shorthand notation for the matrix elements of the Jacobian
matrix. The determinant of the inverse Jacobian matrix is

~ O, m2, .- 1y) (077-)
J = = det 2.
a(XlaXQa .. 7Xn) aXZ

Therefore, eq. (74) yields

Note that the determinant of the inverse Jacobian matrix appears in eq. (75) in contrast
to the case of ordinary commuting variables, where the Jacobian matrix is employed.
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