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1. Properties of antisymmetric matrices

Let M be a complex d× d antisymmetric matrix, i.e. MT = −M . Since

det M = det (−MT) = det (−M) = (−1)d det M , (1)

it follows that det M = 0 if d is odd. Thus, the rank ofM must be even. In these notes,
the rank of M will be denoted by 2n. If d ≡ 2n then detM 6= 0, whereas if d > 2n, then
detM = 0. All the results contained in these notes also apply to real antisymmetric
matrices unless otherwise noted.

Two theorems concerning antisymmetric matrices are particularly useful.

Theorem 1: If M is an even-dimensional complex [or real] non-singular 2n × 2n an-
tisymmetric matrix, then there exists a unitary [or real orthogonal] 2n × 2n matrix U
such that:

UTMU = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)}
, (2)

where N is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal, and the mj are real and positive. Moreover, detU = e−iθ, where −π < θ ≤ π,
is uniquely determined. N is called the real normal form of a non-singular antisymmetric
matrix [1–3].

If M is a complex [or real] singular antisymmetric d× d matrix of rank 2n (where d
is either even or odd and d > 2n), then there exists a unitary [or real orthogonal] d× d
matrix U such that

UTMU = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)
, Od−2n

}
, (3)

where N is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal followed by an (d − 2n) × (d − 2n) block of zeros (denoted by Od−2n), and
the mj are real and positive. N is called the real normal form of an antisymmetric
matrix [1–3]. Note that if d = 2n, then eq. (3) reduces to eq. (2).

Proof: Details of the proof of this theorem are given in Appendices A and B.
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Theorem 2: If M is an even-dimensional complex non-singular 2n× 2n antisymmetric
matrix, then there exists a non-singular 2n× 2n matrix P such that:

M = PTJP , (4)

where the 2n× 2n matrix J written in 2× 2 block form is given by:

J ≡ diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}

︸ ︷︷ ︸
n

. (5)

If M is a complex singular antisymmetric d × d matrix of rank 2n (where d is either
even or odd and d > 2n), then there exists a non-singular d× d matrix P such that

M = PTJ̃P , (6)

and J̃ is the d× d matrix that is given in block form by

J̃ ≡




J O

O O


 , (7)

where the 2n×2n matrix J is defined in eq. (5) and O is a zero matrix of the appropriate
number of rows and columns. Note that if d = 2n, then eq. (6) reduces to eq. (4).

Proof: The proof makes use of Theorem 1.1 Simply note that for any non-singular
matrix Ai with detAi = m−1

i , we have

AT

i

(
0 mi

−mi 0

)
Ai =

(
0 1

−1 0

)
. (8)

Define the d× d matrix A (where d > 2n) such that

A = diag
{
A1 , A2 , · · · , An , Od−2n

}
, (9)

where A is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal followed by a (d− 2n)× (d− 2n) block of zeros (denoted by Od−2n). Then, in
light of eqs. (3), (8) and (9), it follows that eq. (6) is established with P = UA. In the
case of d = 2n, where Od−2n is absent in eq. (9), it follows that eq. (4) is established by
the same analysis.

REMARK: Two matrices M and B are said to be congruent (e.g., see Refs. [4–6]) if
there exists a non-singular matrix P such that

B = PTMP .

Note that if M is an antisymmetric matrix, then so is B. A congruence class of M
consists of the set of all matrices congruent to it. The structure of the congruence
classes of antisymmetric matrices is completely determined by Theorem 2. Namely,
eqs. (4) and (6) imply that all complex d× d antisymmetric matrices of rank 2n (where
n ≤ 1

2
d) belong to the same congruent class, which is uniquely specified by d and n.

1One can also prove Theorem 2 directly without resorting to Theorem 1. For completeness, I provide
a second proof of Theorem 2 in Appendix C.
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2. The pfaffian and its properties

For any even-dimensional complex 2n × 2n antisymmetric matrix M , we define the
pfaffian of M , denoted by pfM , as

pfM =
1

2nn!
ǫi1j1i2j2···injnMi1j1Mi2j2 · · ·Minjn , (10)

where ǫ is the rank-2n Levi-Civita tensor, and the sum over repeated indices is implied.
One can rewrite eq. (10) by restricting the sum over indices in such a way that removes
the combinatoric factor 2nn! in the denominator. Let P be the set of permutations,
{i1 , i2 , . . . , i2n} with respect to {1, 2, . . . , 2n}, such that [7, 8]:

i1 < j1 , i2 < j2 , . . . , i2n < j2n , and i1 < i2 < · · · < i2n . (11)

Then,

pfM =
∑

P

′

(−1)P Mi1j1Mi2j2 · · ·Minjn , (12)

where (−1)P = 1 for even permutations and (−1)P = −1 for odd permutations. The
prime on the sum in eq. (12) has been employed to remind the reader that the set of
permutations P is restricted according to eq. (11). Note that if M can be written in
block diagonal form as M ≡M1 ⊕M2 = diag(M1 , M2), then

Pf(M1 ⊕M2) = (PfM1)(PfM2) .

Finally, if M is an odd-dimensional complex antisymmetric matrix, the corresponding
pfaffian is defined to be zero.

The pfaffian and determinant of an antisymmetric matrix are closely related, as we
shall demonstrate in Theorems 3 and 4 below. For more details on the properties of the
pfaffian, see e.g. Ref. [7–9].

Theorem 3: Given an arbitrary 2n×2n complex matrix B and complex antisymmetric
2n× 2n matrix M , the following identity is satisfied,

pf (BMBT) = pfM detB . (13)

Proof: Using eq. (10),

pf (BMBT) =
1

2nn!
ǫi1j1i2j2···injn(Bi1k1

Mk1ℓ1
Bj1ℓ1)(Bi2k2

Mk2ℓ2
Bj2ℓ2) · · · (Binkn

Mknℓn
Bjnℓn)

=
1

2nn!
ǫi1j1i2j2···injnBi1k1

Bj1ℓ1Bi2k2
Bj2ℓ2 · · ·Binkn

BjnℓnMk1ℓ1
Mk2ℓ2

· · ·Mknℓn
,

after rearranging the order of the matrix elements of M and B. We recognize the
definition of the determinant of a 2n× 2n-dimensional matrix,

detB ǫk1ℓ1k2ℓ2···knℓn = ǫi1j1i2j2···injnBi1k1
Bj1ℓ1Bi2k2

Bj2ℓ2 · · ·Binkn
Bjnℓn . (14)
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Inserting eq. (14) into the expression for pf (BABT) yields

pf (BMBT) =
1

2nn!
detB ǫk1ℓ1k2ℓ2···knℓnMk1ℓ1

Mk2ℓ2
· · ·Mknℓn

= pfM detB .

and Theorem 3 is proved. Note that the above proof applies to both the cases of singular
and non-singular M and/or B.

Here is a nice application of Theorem 3. Consider the following 2n × 2n complex
antisymmetric matrix written in block form,

M ≡




O A

−AT O


 , (15)

where A is an n× n complex matrix and O is the n× n zero matrix. Then,

PfM = (−1)n(n−1)/2 detA . (16)

To prove eq. (16), we write M defined by eq. (15) as [9]

M ≡




O A

−AT O


 =




O 1

AT O







O −1

1 O







O A

1 O


 , (17)

where 1 is the n×n identity matrix. Using eq. (17), PfM is easily evaluated by employing
Theorem 3 and explicitly evaluating the corresponding determinant and pfaffian.

Theorem 4: If M is a complex antisymmetric matrix, then

detM = [pfM ]2 . (18)

Proof: First, we assume that M is a non-singular complex 2n × 2n antisymmetric
matrix. Using Theorem 3, we square both sides of eq. (13) to obtain

[
pf(BMBT)

]2
= (pfM)2(detB)2 . (19)

Using the well known properties of determinants, it follows that

det(BMBT) = (detM)(detB)2 . (20)

By assumption, M is non-singular, so that detM 6= 0. If B is a non-singular matrix,
then we may divide eqs. (19) and (20) to obtain

(pfM)2

detM
=

[
pf(BMBT)

]2

det(BMBT)
. (21)

Since eq. (21) is true for any non-singular matrix B, the strategy that we shall employ is
to choose a matrix B that allows us to trivially evaluate the right hand side of eq. (21).
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Motivated by Theorem 2, we choose B = PT, where the matrix P is determined by
eq. (4). It follows that

(pfM)2

detM
=

pf J

det J
, (22)

where J is given by eq. (5). Then, by direct computation using the definitions of the
pfaffian [cf. eq. (12)] and the determinant,

pf J = det J = 1

Hence, eq. (22) immediately yields eq. (18). In the case where M is singular, detM = 0.

For d even, we note that Pf J̃ = 0 by direct computation [cf. eq. (7)]. Hence, eq. (13)
yields

PfM = Pf(PTJ̃P ) = (detP )2Pf J̃ = 0 .

For d odd, Pf M = 0 by definition. Thus, eq. (18) holds for both non-singular and
singular complex antisymmetric matrices M . The proof is complete.

3. An alternative proof of detM = [pf M ]2

In Section 2, a proof of eq. (18) was obtained by employing a particularly convenient
choice for B in eq. (21). Another useful choice for B is motivated by Theorem 1. In
particular, we shall choose B = UT, where U is the unitary matrix that yields the real
normal form of M [cf. eq. (2)], i.e. N = UTMU . Then, eq. (21) can be written as

(pfM)2

detM
=

(pfN)2

detN
. (23)

The right hand side of eq. (21) can now directly computed using the definitions of the
pfaffian [cf. eq. (12)] and the determinant. We find

pfN = m1m2 · · ·mn , (24)

detN = m2
1m

2
2 · · ·m2

n . (25)

Inserting these results into eq. (23) yields

detM = [pfM ]2 , (26)

which completes this proof of Theorem 4 for non-singular antisymmetric matrices M .
If M is a singular complex antisymmetric 2n × 2n matrix, then detM = 0 and at

least one of the mi appearing in eq. (2) is zero [cf. eq. (3)]. Thus, eq. (24) implies that
pfN = 0. We can then use eqs. (2) and (24) to conclude that

pfM = pf(U∗NU †) = pfN detU∗ = 0 .

Finally, if M is a d× d matrix where d is odd, then detM = 0 [cf. eq. (1)] and pfM = 0
by definition. In both singular cases, we have det M = [pf M ]2 = 0, and eq. (26)
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is still satisfied. Thus, Theorem 4 is established for both non-singular and singular
antisymmetric matrices.

Many textbooks use eq. (26) and then assert incorrectly that

pfM =
√
detM . WRONG!

The correct statement is
pfM = ±

√
detM , (27)

where the sign is determined by establishing the correct branch of the square root. To
accomplish this, we first note that the determinant of a unitary matrix is a pure phase.
It is convenient to write

detU ≡ e−iθ , where −π < θ ≤ π . (28)

In light of eqs. (24) and (25), we see that eqs. (2) and (13) yield

m1m2 · · ·mn = pfN = pf(UTMU) = pfM detU = e−iθpfM , (29)

m2
1m

2
2 · · ·m2

n = detN = det(UTMU) = (detU)2 detM = e−2iθ detM . (30)

Then, eqs. (29) and (30) yield eq. (26) as expected. In addition, since Theorem 1 states
that the mi are all real and non-negative, we also learn that

detM = e2iθ| detM | , pfM = eiθ| detM |1/2 . (31)

We shall employ a convention in which the principal value of the argument of a
complex number z, denoted by Arg z, lies in the range −π < Arg z ≤ π. Since the range
of θ is specified in eq. (28), it follows that θ = Arg(pfM) and

Arg(detM) =






2θ , if −1
2
π < θ ≤ 1

2
π ,

2θ − π , if 1
2
π < θ ≤ π ,

2θ + π , if −π < θ ≤ −1
2
π .

Likewise, given a complex number z, we define the principal value of the complex square
root by

√
z ≡ |z|1/2 exp

(
1
2
iArg z

)
. This means that the principal value of the complex

square root of detM is given by

√
detM =





eiθ| detM |1/2 if −1

2
π < θ ≤ 1

2
π ,

−eiθ| detM |1/2 if 1
2
π < θ ≤ π or −π < θ ≤ −1

2
π ,

corresponding to the two branches of the complex square root function. Using this result
in eq. (31) yields

pfM =





√
detM , if −1

2
π < θ ≤ 1

2
π ,

−
√
detM , if −π ≤ θ ≤ −1

2
π or 1

2
π < θ ≤ π ,

(32)

which is the more precise version of eq. (27).
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As a very simple example, consider a complex antisymmetric 2 × 2 matrix M with
nonzero matrix elements M12 = −M21. Hence, pfM = M12 and detM = (M12)

2. Thus
if M12 = |M12|eiθ where −π < θ ≤ π, then one must choose the plus sign in eq. (27)
if −1

2
π < θ ≤ 1

2
π; otherwise, one must choose the minus sign. This conforms with

the result of eq. (32). In particular, if M12 = −1 then pf M = −1 and detM = 1,
corresponding to the negative sign in eq. (27). More generally, to determine the proper
choice of sign in eq. (27), we can employ eq. (32), where θ = Arg(pfM). In particular,
θ can be determined either by an explicit calculation of pfM as illustrated in our simple
example above, or by determining the real normal form ofM and then extracting θ from
the phase of detU according to eq. (28).

4. A proof of detM = [pf M ]2 using Grassmann integration

Another proof of Theorem 4 can be given that employs the technique of Grassmann
integration (e.g., see Refs. [9–11]). We begin with some preliminaries.

Given an antisymmetric 2n × 2n matrix M and 2n real Grassmann variables ηi
(i = 1, 2, . . . , 2n), the pfaffian of M is given by

pfM =

∫
dη1dη2 · · · dη2n exp

(
− 1

2
ηiMijηj

)
. (33)

The relevant rules for integration over real Grassmann variables are equivalent to the
rules of differentiation: ∫

dηi ηj =
∂

∂ηi
∂ηj = δij . (34)

To prove eq. (33), we expand the exponential and note that in light of eq. (34), only the
nth term of the exponential series survives. Hence,

pfM =
(−1)n

2nn!

∫
dη1dη2 · · · dη2n(ηi1Mi1j1

ηj1)(ηi2Mi2j2
ηj2) · · · (ηinMinjn

ηjn) . (35)

Since Grassmann numbers anticommute, it follows that

ηi1ηj1ηi2ηj2 · · ·ηinηjn = ǫi1j1i2j2···injnη1η2 · · · η2n−1η2n = (−1)nη2nη2n−1 · · ·η2η1 . (36)

The last step in eq. (36) is obtained by performing N interchanges of adjoining anticom-
muting Grassmann variables, where N = (2n− 1) + (2n− 2) + . . .+ 2+ 1 = n(2n− 1).
Each interchange results in a factor of −1, so that the overall sign factor in eq. (36) is
(−1)n(2n−1) = (−1)n for any integer n. Inserting the result of eq. (36) back into eq. (35)
and performing the Grassmann integration yields

pfM =
1

2nn!
ǫi1j1i2j2···injnMi1j1Mi2j2 · · ·Minjn ,

which is the definition of the pfaffian [cf. eq. (10)].
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Likewise, given an n × n complex matrix A and n pairs of complex Grassmann
variables ψi and ψi (i = 1, 2, . . . , n),2

detA =

∫
dψ1dψ1dψ2dψ2 · · ·dψndψn exp

(
−ψiAijψj

)
. (37)

The relevant rules for integration over complex Grassmann variables are:

∫
dψi ψj =

∫
dψi ψj = δij ,

∫
dψi ψj =

∫
dψi ψj = 0 . (38)

To prove eq. (37), we expand the exponential and note that in light of eq. (38), only the
nth term of the exponential series survives. Hence,

detA =
(−1)n

n!

∫
dψ1dψ1dψ2dψ2 · · · dψndψn (ψi1

Ai1j1
ψj1

)(ψ
i2
Ai2j2

ψj2
) · · · (ψ

in
Ainjn

ψjn
) .

(39)
We now reorder the Grassmann variables in a more convenient manner, which produces
a factor of −1 for each separate interchange of adjoining Grassmann variables. We then
find that

ψ
i1
ψj1

ψ
i2
ψj2

· · ·ψ
in
ψjn

= (−1)n(n+1)/2 ψj1
ψj2

· · ·ψjn
ψ

i1
ψ

i2
· · ·ψ

in

= (−1)n(n+1)/2 ǫj1j2···jn ǫi1i2···inψ1ψ2 · · ·ψn ψ1ψ2 · · ·ψn , (40)

as a result of N = 1 + 2 + · · ·n = 1
2
n(n+ 1) interchanges, and

dψ1dψ1dψ2dψ2 · · · dψndψn = (−1)3n(n−1)/2 dψndψn−1 · · · dψ2dψ1dψndψn−1 · · · dψ2dψ1 ,
(41)

as a result of N = [(2n−2)+(2n−4)+· · ·+4+2]+[(n−1)+(n−2)+· · ·2+1] = 3
2
n(n−1)

interchanges Inserting the results of eqs. (40) and (41) into eq. (39) and performing the
Grassmann integration yields

detA =
1

n!
ǫj1j2···jn ǫi1i2···inAi1j1

Ai2j2
· · ·Ainjn

, (42)

after noting that the overall sign factor is (−1)2n
2

= 1. Indeed, eq. (42) is consistent
with the general definition of the determinant of a matrix employed in eq. (14).

In order to prove Theorem 4, we introduce an additional 2n real Grassmann variables
χi (i = 1, 2, . . . , 2n). Then, it follows from eq. (33) that

[pfM ]2 =

∫
dη1dη2 · · · dη2n exp

(
− 1

2
ηiMijηj

) ∫
dχ1dχ2 · · · dχ2n exp

(
− 1

2
χiMijχj

)

=

∫
dη1dη2 · · · dη2n

∫
dχ1dχ2 · · ·dχ2n exp

(
− 1

2
ηiMijηj − 1

2
χiMijχj

)
, (43)

2An alternative proof of eq. (37) that relies on eqs. (15) and (16) can be found in Ref. [9].

8



where we have used the fact that −1
2
ηiMijηj and −1

2
χiMijχj commute, which allows us

to combine these terms inside the exponential. It will prove convenient to reorder the
differentials that appear in eq. (43). Due to the anticommutativity of the Grassmann
variables, it follows that

dη1dη2 · · · dη2ndχ1dχ2 · · · dχ2n = (−1)n(2n+1)dχ1dη1dχ2dη2 · · · dχ2ndη2n , (44)

since in the process of reordering terms, we must anticommute N times where

N = 2n+ (2n− 1) + (2n− 2) + · · ·+ 2 + 1 = 1
2
(2n)(2n+ 1) = n(2n + 1) .

Thus,

[pfM ]2 = (−1)n(2n+1)

∫
dχ1dη1dχ2dη2 · · · dχ2ndη2n exp

(
− 1

2
ηiMijηj − 1

2
χiMijχj

)
. (45)

We now define complex Grassmann parameters,

ψi ≡
1√
2

(
χi + iηi

)
, ψi ≡

1√
2

(
χi − iηi

)
. (46)

One can express the χi and ηi in terms of ψi and ψi,
3

χi =
ψi + ψi√

2
, ηi =

ψi − ψi

i
√
2

. (47)

One can easily verify the identity

ψiMijψj =
1
2

(
ηiMijηj + χiMijχj

)
,

so that
exp

(
−ψiMijψj

)
= exp

(
− 1

2
ηiMijηj − 1

2
χiMijχj

)
. (48)

The Jacobian of the transformation given by eq. (47) is

Ji =
∂(χi, ηi)

∂(ψi, ψi)
= det




∂χi

∂ψi

∂ηi

∂ψi

∂χi

∂ψi

∂ηi
∂ψi


 =




1

i
√
2

− 1

i
√
2

1√
2

1√
2


 = −i .

Then,4

dχidηi = J−1
i dψidψi = i dψidψi . (49)

3The factors of
√
2 in the denominators of eqs. (46) and (47) ensure that the rules of Grassmann

integration for both real and complex Grassmann variables, eqs. (34) and (38), are satisfied with the
proper normalization.

4Note that for Grassmann variables, it is the determinant of the inverse of the Jacobian matrix that
enters in eq. (49). For further details, see Appendix D.
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It follows that

dχ1dη1dχ2dη2 · · · dχ2ndη2n = (−1)ndψ1dψ1dψ2dψ2 · · · dψ2ndψ2n , (50)

after using i2n = (−1)n. Combining eqs. (44) and (50) and noting that (−1)2n(n+1) = 1
for integer n, we obtain

dη1dη2 · · ·dη2ndχ1dχ2 · · ·dχ2n = dψ1dψ1dψ2dψ2 · · ·dψ2ndψ2n . (51)

Thus eqs. (45), (48) and (51) yield

[pfM ]2 =

∫
dψ1dψ1dψ2dψ2 · · ·dψ2ndψ2n exp

(
−ψiMijψj

)
.

Eq. (37) applied to 2n pairs of complex Grassmann variables yields

detM =

∫
dψ1dψ1dψ2dψ2 · · · dψ2ndψ2n exp

(
−ψiMijψj

)
.

We conclude that
[pfM ]2 = detM .

APPENDIX A: Singular values and singular vectors of a complex matrix

The material in this appendix is taken from Ref. [12] and provides some background
for the proof of Theorem 1 presented in Appendix B. The presentation is inspired by
the treatment of the singular value decomposition of a complex matrix in Refs. [13,14].

The singular values of the general complex n × n matrix M are defined to be the
real non-negative square roots of the eigenvalues of M †M (or equivalently of MM †).
An equivalent definition of the singular values can be established as follows. Since
M †M is an hermitian non-negative matrix, its eigenvalues are real and non-negative
and its eigenvectors, vk, defined by M †Mvk = m2

kvk, can be chosen to be orthonormal.5

Consider first the eigenvectors corresponding to the non-zero eigenvalues ofM †M . Then,
we define the vectors wk such that Mvk = mkw

∗
k. It follows that

m2
kvk =M †Mvk = mkM

†w∗
k =⇒ M †w∗

k = mkvk . (52)

Note that eq. (52) also implies that MM †w∗
k = m2

kw
∗
k. The orthonormality of the vk

implies the orthonormality of the wk, and vice versa. For example,

δjk = 〈vj |vk〉 =
1

mjmk
〈M †w∗

j |M †w∗
k〉 =

1

mjmk
〈wj|MM †w∗

k〉 =
mk

mj
〈w∗

j |w∗
k〉 , (53)

which yields 〈wk|wj〉 = δjk. IfM is a real matrix, then the eigenvectors vk can be chosen
to be real, in which case the corresponding wk are also real.

5We define the inner product of two vectors to be 〈v|w〉 ≡ v
†
w. Then, v and w are orthonormal if

〈v|w〉 = 0. The norm of a vector is defined by ‖v ‖ = 〈v|v〉1/2.
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If vi is an eigenvector of M †M with zero eigenvalue, then

0 = v†iM
†Mvi = 〈Mvi|Mvi〉 ,

which implies that Mvi = 0. Likewise, if w∗
i is an eigenvector of MM † with zero

eigenvalue, then
0 = wT

i MM †w∗
i = 〈MTwi|MTwi〉∗ ,

which implies that MTwi = 0.
Because the eigenvectors of M †M [MM †] can be chosen orthonormal, the eigenvec-

tors corresponding to the zero eigenvalues of M [M †] can be taken to be orthonormal.6

Finally, these eigenvectors are also orthogonal to the eigenvectors corresponding to the
non-zero eigenvalues of M †M [MM †]. That is, if the indices i and j run over the eigen-
vectors corresponding to the zero and non-zero eigenvalues ofM †M [MM †], respectively,
then

〈vj |vi〉 =
1

mj

〈M †w∗
j |vi〉 =

1

mj

〈w∗
j |Mvi〉 = 0 , (54)

and similarly 〈wj|wi〉 = 0.
Thus, we can define the singular values of a general complex n× n matrix M to be

the simultaneous solutions (with real non-negative mk) of:
7

Mvk = mkw
∗
k , wT

kM = mkv
†
k . (55)

The corresponding vk (wk), normalized to have unit norm, are called the right (left)
singular vectors of M . In particular, the number of linearly independent vk coincides
with the number of linearly independent wk and is equal to n.

APPENDIX B: Proof of Theorem 1

In this appendix, we provide a proof of Theorem 1, which we repeat here for the
convenience of the reader.

Theorem 1: If M is an even-dimensional complex [or real] non-singular 2n × 2n an-
tisymmetric matrix, then there exists a unitary [or real orthogonal] 2n × 2n matrix U
such that:

UTMU = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)}
, (56)

where N is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal, and the mj are real and positive. Moreover, detU = e−iθ, where −π < θ ≤ π,
is uniquely determined.

6This analysis shows that the number of linearly independent zero eigenvectors of M †M [MM †]
with zero eigenvalue, coincides with the number of linearly independent eigenvectors of M [M †] with
zero eigenvalue.

7One can always find a solution to eq. (55) such that the mk are real and non-negative. Given a
solution where mk is complex, we simply write mk = |mk|eiθ and redefine wk → wke

iθ to remove the
phase θ.
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If M is a complex [or real] singular antisymmetric d× d matrix of rank 2n (where d
is either even or odd and d > 2n), then there exists a unitary [or real orthogonal] d× d
matrix U such that

UTMU = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)
, Od−2n

}
,

(57)
where N is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal followed by a (d − 2n) × (d − 2n) block of zeros (denoted by Od−2n), and the
mj are real and positive. Note that if d = 2n, then eq. (57) reduces to eq. (56).

Proof: A number of proofs can be found in the literature [1–3, 13, 15, 16]. Perhaps
the simplest proof is the one given in Ref. [3]. The proof that is provided here was
inspired by Ref. [2] and is given in Appendix D.4 of Ref. [12]. The advantage of this
proof is that it provides a constructive algorithm for obtaining the unitary matrix U .

Following Appendix A, we first consider the eigenvalue equation for M †M :

M †Mvk = m2
kvk , mk > 0 , and M †Muk = 0 , (58)

where we have distinguished between the two classes of eigenvectors corresponding to
positive eigenvalues and zero eigenvalues, respectively. The quantities mk are the singu-
lar values of M . Noting that u†kM

†Muk = 〈Muk |Muk〉 = 0, it follows that

Muk = 0 , (59)

so that the uk are the eigenvectors corresponding to the zero eigenvalues ofM . For each
eigenvector of M †M with mk 6= 0, we define a new vector

wk ≡
1

mk

M∗v∗k . (60)

It follows that m2
kvk = M †Mvk = mkM

†w∗
k, which yields M †w∗

k = mkvk. Comparing
with eq. (55), we identify vk and wk as the right and left singular vectors, respectively,
corresponding to the non-zero singular values of M . For any antisymmetric matrix,
M † = −M∗. Hence,

Mvk = mkw
∗
k , Mwk = −mkv

∗
k , (61)

and
M †Mwk = −mkM

†v∗k = mkM
∗v∗k = m2

kwk , mk > 0 . (62)

That is, the wk are also eigenvectors of M †M .
The key observation is that for fixed k the vectors vk and wk are orthogonal, since

eq. (61) implies that:

〈wk|vk〉 = 〈vk|wk〉∗ = − 1

m2
k

〈Mwk|Mvk〉 = − 1

m2
k

〈wk|M †Mvk〉 = −〈wk|vk〉 , (63)
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which yields 〈wk|vk〉 = 0. Thus, if all the mk are distinct, it follows that m2
k is a doubly

degenerate eigenvalue of M †M , with corresponding linearly independent eigenvectors
vk and wk, where k = 1, 2, . . . , n (and n ≤ 1

2
d). The remaining zero eigenvalues are

(d−2n)-fold degenerate, with corresponding eigenvectors uk (for k = 1, 2, . . . , d−2n). If
some of the mk are degenerate, these conclusions still apply. For example, suppose that
mj = mk for j 6= k, which means that m2

k is at least a three-fold degenerate eigenvalue
of M †M . Then, there must exist an eigenvector vj that is orthogonal to vk and wk

such that M †Mvj = m2
kvj. We now construct wj ≡ M∗v∗j/mk according to eq. (60).

According to eq. (63), wj is orthogonal to vj . But, we still must show that wj is also
orthogonal to vk and wk. But this is straightforward:

〈wj|wk〉 = 〈wk|wj〉∗ =
1

m2
k

〈Mvk|Mvj〉 =
1

m2
k

〈vk|M †Mvj〉 = 〈vk|vj〉 = 0 , (64)

〈wj|vk〉 = 〈vk|wj〉∗ = − 1

m2
k

〈Mwk|Mvj〉 = − 1

m2
k

〈wk|M †Mvj〉 = −〈wk|vj〉 = 0 , (65)

where we have used the assumed orthogonality of vj with vk and wk, respectively. It
follows that vj , wj, vk and wk are linearly independent eigenvectors corresponding to a
four-fold degenerate eigenvalue m2

k of M †M . Additional degeneracies are treated in the
same way.

Thus, the number of non-zero eigenvalues of M †M must be an even number, de-
noted by 2n above. Moreover, one can always choose the complete set of eigenvectors
{uk , vk , wk} of M †M to be orthonormal. These orthonormal vectors can be used to
construct a unitary matrix U with matrix elements:

Uℓ , 2k−1 = (wk)ℓ , Uℓ , 2k = (vk)ℓ , k = 1 , 2 , . . . , n ,

Uℓ , k+2p = (uk)ℓ , k = 1 , 2 , . . . , d− 2n , (66)

for ℓ = 1 , 2 , . . . , d, where e.g., (vk)ℓ is the ℓth component of the vector vk with respect
to the standard orthonormal basis. The orthonormality of {uk , vk , wk} implies that
(U †U)ℓk = δℓk as required. Eqs. (59) and (61) are thus equivalent to the matrix equation
MU = U∗N , which immediately yields eq. (57), and the theorem is proven. If M is a
real antisymmetric matrix, then all the eigenvectors of M †M can be chosen to be real,
in which case U is a real orthogonal matrix.

Finally, we address the non-uniqueness of the matrix U . For definiteness, we fix
an ordering of the 2 × 2 blocks containing the mk in the matrix N . In the subspace
corresponding to a non-zero singular value of degeneracy d, the matrix U is unique up
to multiplication on the right by a 2d× 2d unitary matrix S that satisfies:

STJS = J , (67)

where the 2r × 2r matrix J , defined by

J = diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}

︸ ︷︷ ︸
r

, (68)
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is a block diagonal matrix with r blocks of 2×2 matrices. A unitary matrix S that satis-
fies eq. (67) is an element of the unitary symplectic group, Sp(d). Since the determinant
of a symplectic matrix is unity,8 it follows that detU = e−iθ is uniquely determined in
eq. (56). In particular, this means that principal value of θ = arg detU (typically chosen
such that −1

2
π < θ ≤ π) is uniquely determined in eq. (56).

If there are no degeneracies among the mk, then r = 1. Since Sp(1)∼=SU(2), it
follows that within the subspace corresponding to a non-degenerate singular value, U
is unique up to multiplication on the right by an arbitrary SU(2) matrix. Finally, in
the subspace corresponding to the zero eigenvalues of M , the matrix U is unique up to
multiplication on the right by an arbitrary unitary matrix.

APPENDIX C: Alternative Proof of Theorem 2

In this appendix, we provide an alternative proof [4–6] of Theorem 2 that does not
employ the results of Theorem 1.

Theorem 2: If M is an even-dimensional complex non-singular 2n× 2n antisymmetric
matrix, then there exists a non-singular 2n× 2n matrix P such that:

M = PTJP , (69)

where the 2n× 2n matrix J written in 2× 2 block form is given by:

J ≡ diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}

︸ ︷︷ ︸
n

. (70)

If M is a complex singular antisymmetric d × d matrix of rank 2n (where d is either
even or odd and d > 2n), then there exists a non-singular d× d matrix P such that

M = PTJ̃P , (71)

and J̃ is the d× d matrix that is given in block form by

J̃ ≡




J O

O O


 , (72)

where the 2n×2n matrix J is defined in eq. (70) and O is a zero matrix of the appropriate
number of rows and columns. Note that if d = 2n, then eq. (71) reduces to eq. (69).

8By definition, a symplectic matrix S satisfies eqs. (67) and (68). Choosing B = S T and A = J in
Theorem 3 and making use of eq. (67) yields pf J = pf J detS. Using the definition of the pfaffian given
in eq. (12), it follows that pf J = 1. Hence, detS = 1 for all symplectic matrices S [17].
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Proof: Recall that an elementary row operation consists of one of the following three
operations:

1. Interchange two rows (Ri ↔ Rj for i 6= j);

2. Multiply a given row Ri by a non-zero constant scalar (Ri → cRi for c 6= 0);

3. Replace a given row Ri as follows: Ri → Ri + cRj for i 6= j and c 6= 0.

Each elementary row operation can be carried out by the multiplication of an appro-
priate non-singular matrix (called the elementary row transformation matrix) from the
left.9 Likewise, one can define elementary column operations by replacing “row” with
“column” in the above. Each elementary column operation can be carried out by the mul-
tiplication of an appropriate non-singular matrix (called the elementary column trans-
formation matrix) from the right.9 Finally, an elementary cogredient operation10 is an
elementary row operation applied to a square matrix followed by the same elementary
column operation (i.e., one performs the identical operation on the columns that was
performed on the rows) or vice versa.

The key observation is the following. If M and B are square matrices, then M is
congruent to B if and only if B is obtainable fromM by a sequence of elementary cogre-
dient operations.11 That is, a non-singular matrix R exists such that B = RTMR, where
RT is the non-singular matrix given by the product of the elementary row operations
that are employed in the sequence of elementary cogredient operations.

With this observation, it is easy to check that starting from a complex d × d anti-
symmetric matrix, one can apply a simple sequence of elementary cogredient operations
to convert M into the form given by




0 1 OT

−1 0 OT

O O B


 , (73)

where B is a (d−2)×(d−2) complex antisymmetric matrix, and O is (d−2)-dimensional
column vector made up entirely of zeros. (Try it!) If B = 0, then we are done. Otherwise,
we repeat the process starting with B. Using induction, we see that the process continues
until M has been converted by a sequence of elementary cogredient operations into J or
J̃ . In particular, if the rank of M is equal to 2n, then A will be converted into J̃ after n
steps. Hence, in light of the above discussion, it follows that M = PTJP , where [PT]−1

is the product of all the elementary row operation matrices employed in the sequence of
elementary cogredient operations used to reduce M to its canonical form given by J if
d = 2n or J̃ if d > 2n. That is, Theorem 2 is proven.

9 Note that elementary row and column transformation matrices are always non-singular.
10The term cogredient operation employed by Refs. [4,5], is not commonly used in the modern litera-

ture. Nevertheless, I have introduced this term here as it is a convenient way to describe the sequential
application of identical row and column operations.

11This is Theorem of 5.3.4 of Ref. [5].
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APPENDIX D: Grassmann integration after a linear change of variables

Suppose we integrate a function f(ηj), where the ηj (i = j, 2, . . . , n) are Grassmann
variables. We now consider a linear change of variables, χi = χi(ηj); i.e., the χi are
linear combinations of the ηj. To perform the Grassmann integration over the new set
of Grassmann variables, we must express dχ1dχ2 · · · dχn in terms of dη1dη2 · · · dηn. Using
eq. (34) and the anticommutativity properties of the ∂/∂χi and ∂/∂ηj along with the
chain rule (summing implicitly over pairs of repeated indices), it follows that

∫
dχ1dχ2 · · ·dχn =

∂

∂χ1

∂

∂χ2
· · · ∂

∂χn
=

1

n!
ǫi1i2···in

∂

∂χi1

∂

∂χi2

· · · ∂

∂χin

=
1

n!
ǫi1i2···in

∂ηj1
∂χi1

∂ηj2
∂χi2

· · ·
∂ηjn
∂χin

∂

∂ηj1

∂

∂ηj2
· · · ∂

∂ηjn

=
1

n!
det

(
∂ηj
∂χi

)
ǫj1j2···jn

∂

∂ηj1

∂

∂ηj2
· · · ∂

∂ηjn

= det

(
∂ηj
∂χi

)
∂

∂η1

∂

∂η2
· · · ∂

∂ηn
=

∫
dη1dη2 · · ·dηn det

(
∂ηj
∂χi

)
, (74)

after using the definition of the determinant. Note that since χi = χi(ηj) is a linear
transformation, the partial derivative factors ∂ηj/∂χi are commuting numbers, so that
the location of these factors do not depend on their order.

Given a linear change of variables χi = χi(ηj), the Jacobian determinant is defined
by

J ≡ ∂(χ1, χ2, . . . , χn)

∂(η1, η2, . . . , ηn)
= det




∂χ1

∂η1

∂χ1

∂η2
· · · ∂χ1

∂ηn
∂χ2

∂η1

∂χ2

∂η2
· · · ∂χ2

∂ηn
...

...
. . .

...

∂χn

∂η1

∂χn

∂η2
· · · ∂χn

∂ηn




≡ det

(
∂χi

∂ηj

)
,

where we have introduced a shorthand notation for the matrix elements of the Jacobian
matrix. The determinant of the inverse Jacobian matrix is

J−1 =
∂(η1, η2, . . . ηn)

∂(χ1, χ2, . . . , χn)
≡ det

(
∂ηj
∂χi

)
.

Therefore, eq. (74) yields
∫
dχ1dχ2 · · · dχn =

∫
dη1dη2 · · ·dηn J−1 . (75)

Note that the determinant of the inverse Jacobian matrix appears in eq. (75) in contrast
to the case of ordinary commuting variables, where the Jacobian matrix is employed.
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