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In evaluating loop processes in QCD, infrared divergences due to the emission of soft
gluons and mass singularities due to the emission of collinear gluons by massless quarks must
be regulated. This is most easily accomplished by employing dimensional regularization. In
practice, the regularization procedure requires that the phase space integration should be
carried out in n spacetime dimensions when computing cross sections. In these notes, I will
evaluate the two-body and three-body phase space integrals in n spacetime dimensions in
the case where all final state particles are massless.

1. Massless two-body phase space integrals in n dimensions

The two-body phase space integral in n — 1 space dimensions (and one time dimension)

is defined by
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corresponding to the production of two massless particles with n-dimensional spacetime mo-
mentum vectors, ky = (E1; k1) and ky = (Es; ko), with £y = |k¢| and Ey = |ks|. Momentum
conservation, ¢ = ky + ko, is enforced by the delta function in eq. (1). In particular, we can
identify @ = \/? with the invariant mass of the two outgoing particles.

Employing the identity,*
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after integrating over the n-dimensional vector ky = (k10; k1), Hence, it follows that
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after using k3 = 0.
To evaluate eq. (3), it is convenient to work in the rest frame of the two-body system,

corresponding to ¢ = 0. The, ¢-k = qoFy = QFE,, where Q = \/q2 — q> = qo. Hence, after
employing spherical coordinates,
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The integral over the solid angle yields the (n — 2)-dimensional surface area of the boundary
of an (n — 1)-dimensional solid ball, which is well known,
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where 65 is the polar angle of ky, with respect to a fixed z-axis.

'To derive eq. (2), write d"k; = dkod™ 'k; and 6(k?) = 6(k?, — k?). One can then integrate over kg by
making use of this delta function.




Hence, we end up with,
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In terms of e = 2 — %n,
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2. Massless three-body phase space integrals in n dimensions

The three-body phase space integral in n — 1 space dimensions (and one time dimension)
is defined by
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Since the three outgoing particles are massless, we have F; = |k;| for i = 1,2,3. To evaluate
this integral, it is convenient to work in the rest frame of the three-body system, correspond-
ing to ¢ = 0, in which case g9 = /¢ — ¢> = Q. We can immediately integrate over k3 using
one of the delta functions to obtain,
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where we have employed spherical coordinates for the remaining integrations over k; and k.
To make further progress, we shall choose the z-axis to lie along the direction of k;. Then,
we can do the integration over the angles of k; for free. Using eq. (5), it follows that
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where 05 is the is the polar angle of ks with respect to the fixed z-axis (that lies along k).
We can now make use of momentum conservation, Q = k; + ko + k3 to obtain,

E32 = |k:3|2 = |k1 + k2|2 = E12 + E22 + 2E1E2 COS 92 . (11)
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Consequently,
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after using eq. (11) to compute dcosfy/dEs;. Employing the result of eq. (12) in eq. (10)
yields,
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after using eq. (11) to substitute for sin® €@, = 1 — cos? f,.
One can obtain a more useful form for Z3 by employing the Lorentz invariant quantities,
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where
s1+ 5+ 53=1¢, (17)
holds in light of k¥ = k3 = k3 = 0. Noting that
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where we have evaluated the s; in the frame where q = 0, it follows that
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Hence we can change integration variables from {Ej, Fr} to {s1,s2}. The Jacobian of the
transformation yields ds,ds, = 4Q*dE,dE,. Moreover,
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Hence, eq. (13) yields
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To determine the limits of the integration region, it is convenient to define dimensionless
variables 1 and x5 as follows,

S1 = Q2(1 — .flfl) s SS9 = Q2(1 — LUQ) . (22)

Note that E; > 0 imply that z; > 0 for : = 1,2. In addition, s; > 0 imply that z; < 1 for

i = 1,2. Finally, using eq. (17) in the frame where q = 0, it follows that s; + sy + s3 = Q%

3



Hence, s3 > 0 implies that Q> — s; — so = Q*(x; + 23 — 1) > 0, and we conclude that
Ty + Tg > 1.

Thus, the integration region for the massless three-body phase space integral is deter-
mined by,

0<z <1, 0<uzy<1, subjecttothe constraint, z; + x5 > 1. (23)

Hence,

(47‘(‘)1 n Q2 n—3

To —
’ 2T (n — 2)

/d:@/lxzdxl (1= )1 —2o)(o + 20— D], (24)

It is desirable to uncouple the two integrals. This can be done by defining new dimen-
sionless variables,
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T = T2, Yy =
T2

It follows that dzidxs = x dxdy. Moreover, 0 < x,y < 1 without any additional constraints.
Hence, we arrive at our final expression,
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where € = 2 — %n and

= Q%xy, sy =Q*(1—2), s3=Q%x(1 —y). (27)



