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In evaluating loop processes in QCD, infrared divergences due to the emission of soft
gluons and mass singularities due to the emission of collinear gluons by massless quarks must
be regulated. This is most easily accomplished by employing dimensional regularization. In
practice, the regularization procedure requires that the phase space integration should be
carried out in n spacetime dimensions when computing cross sections. In these notes, I will
evaluate the two-body and three-body phase space integrals in n spacetime dimensions in
the case where all final state particles are massless.

1. Massless two-body phase space integrals in n dimensions

The two-body phase space integral in n− 1 space dimensions (and one time dimension)
is defined by

I2 = (2π)n
∫

dn−1k1

(2π)n−1 2E1

∫

dn−1k2

(2π)n−1 2E2

δn(q − k1 − k2) , (1)

corresponding to the production of two massless particles with n-dimensional spacetime mo-
mentum vectors, k1 = (E1;k1) and k2 = (E2;k2), with E1 = |k1| and E2 = |k2|. Momentum
conservation, q = k1 + k2, is enforced by the delta function in eq. (1). In particular, we can
identify Q ≡

√

q2 with the invariant mass of the two outgoing particles.
Employing the identity,1
∫

dn−1k1

(2π)n−1 2E1
δ4(q − k1 − k2) =

∫

dnk1 δ(k
2
1)Θ(k10)δ

n(q − k1 − k2) = δ
[

(q − k2)
2
]

, (2)

after integrating over the n-dimensional vector k1 = (k10;k1), Hence, it follows that

I2 =
1
2
(2π)−n

∫

dn−1k2

E2
δ(q2 − 2q ·k2) , (3)

after using k2
2 = 0.

To evaluate eq. (3), it is convenient to work in the rest frame of the two-body system,
corresponding to q = 0. The, q ·k = q0E2 = QE2, where Q ≡

√

q20 − q2 = q0. Hence, after
employing spherical coordinates,

I2 =
1
2
(2π)2−n

∫

En−3
2 dE2 dΩn−2 δ(Q

2 − 2QE2) =
(2π)2−n

4Q

(

Q

2

)n−3 ∫

dΩ
(n−2)
2 . (4)

The integral over the solid angle yields the (n−2)-dimensional surface area of the boundary
of an (n− 1)-dimensional solid ball, which is well known,

∫

dΩ
(n−2)
2 =

2π
1
2
n−1

Γ(1
2
n− 1)

∫ 1

−1

(sin θ2)
n−4 d cos θ2 = (4π)

1
2
n−1Γ(

1
2
n− 1)

Γ(n− 2)
=

2π(n−1)/2

Γ
(

n−1
2

) , (5)

where θ2 is the polar angle of k2 with respect to a fixed z-axis.
1To derive eq. (2), write d

n
k1 = dk0 d

n−1k1 and δ(k2
1
) = δ(k2

10
− k

2). One can then integrate over k10 by
making use of this delta function.
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Hence, we end up with,

I2 =
1

8π

(

Q2

4π

)

1
2
n−2 Γ(1

2
n− 1)

Γ(n− 2)
. (6)

In terms of ǫ ≡ 2− 1
2
n,

I2 =
1

8π

(

Q2

4π

)

−ǫ

Γ(1− ǫ)

Γ(2− 2ǫ)
. (7)

2. Massless three-body phase space integrals in n dimensions

The three-body phase space integral in n− 1 space dimensions (and one time dimension)
is defined by

I3 = (2π)n
∫

dn−1k1

(2π)n−1 2E1

∫

dn−1k2

(2π)n−1 2E2

∫

dn−1k3

(2π)n−1 2E3
δn(q − k1 − k2 − k3)

=
(2π)3−2n

8

∫

dn−1k1 d
n−1k2 d

n−1k3

E1E2E3

δ(n−1)(q − k1 − k2 − k3) δ(q0 −E1 − E2 −E3).(8)

Since the three outgoing particles are massless, we have Ei = |ki| for i = 1, 2, 3. To evaluate
this integral, it is convenient to work in the rest frame of the three-body system, correspond-
ing to q = 0, in which case q0 =

√

q20 − q2 = Q. We can immediately integrate over k3 using
one of the delta functions to obtain,

I3 =
(2π)3−2n

8

∫

E n−3
1 dE1 dΩ

(n−2)
1 E n−3

2 dE2 dΩ
(n−2)
2

E3

δ(Q− E1 −E2 − E3) , (9)

where we have employed spherical coordinates for the remaining integrations over k1 and k2.
To make further progress, we shall choose the z-axis to lie along the direction of k1. Then,
we can do the integration over the angles of k1 for free. Using eq. (5), it follows that

I3 =
(2π)3−2n(4π)

1
2
n−1Γ(1

2
n− 1)

8Γ(n− 2)

∫

E n−3
1 dE1E

n−3
2 dE2

E3

×
(2π)

1
2
n−1

Γ(1
2
n− 1)

∫

(sin θ2)
n−4 d cos θ2 δ(Q− E1 −E2 − E3)

=
(2π)1−n

4 Γ(n− 2)

∫

E n−3
1 dE1E

n−3
2 dE2

E3

∫

(sin θ2)
n−4 d cos θ2 δ(Q− E1 − E2 −E3) . (10)

where θ2 is the is the polar angle of k2 with respect to the fixed z-axis (that lies along k1).
We can now make use of momentum conservation, Q = k1 + k2 + k3 to obtain,

E2
3 = |k3|

2 = |k1 + k2|
2 = E2

1 + E2
2 + 2E1E2 cos θ2 . (11)
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Consequently,
∫

d cos θ2 δ(Q− E1 −E2 − E3) =

∫

dE3
d cos θ2
dE3

δ(Q−E1 − E2 −E3) =
E3

E1E2

, (12)

after using eq. (11) to compute d cos θ2/dE3. Employing the result of eq. (12) in eq. (10)
yields,

I3 =
(2π)1−n

4 Γ(n− 2)

∫

E n−4
1 dE1E

n−4
2 dE2

[

1−

(

E2
3 − E2

1 −E2
2

2E1E2

)2
]

1
2
n−2

, (13)

after using eq. (11) to substitute for sin2 θ2 = 1− cos2 θ2.
One can obtain a more useful form for I3 by employing the Lorentz invariant quantities,

s1 = (k2 + k3)
2 = (q − k1)

2 , (14)

s2 = (k1 + k3)
2 = (q − k2)

2 , (15)

s3 = (k1 + k2)
2 = (q − k3)

2 , (16)

where
s1 + s2 + s3 = q2 , (17)

holds in light of k2
1 = k2

2 = k2
3 = 0. Noting that

si = (q − ki)
2 = q2 − 2ki ·q = Q2 − 2EiQ , (18)

where we have evaluated the si in the frame where q = 0, it follows that

Ei =
Q2 − si
2Q

. (19)

Hence we can change integration variables from {E1, E2} to {s1, s2}. The Jacobian of the
transformation yields ds1ds2 = 4Q2dE1dE2. Moreover,

1−

(

E2
3 − E2

1 − E2
2

2E1E2

)2

=
4Q2s1s2(Q

2 − s1 − s2)

(Q− s1)2(Q− s2)2
. (20)

Hence, eq. (13) yields

I3 =
(4π)1−n(Q2)1−

1
2
n

2 Γ(n− 2)

∫

ds1 ds2
[

s1s2(Q
2 − s1 − s2)

]
1
2
n−2

. (21)

To determine the limits of the integration region, it is convenient to define dimensionless
variables x1 and x2 as follows,

s1 = Q2(1− x1) , s2 = Q2(1− x2) . (22)

Note that Ei ≥ 0 imply that xi ≥ 0 for i = 1, 2. In addition, si ≥ 0 imply that xi ≤ 1 for
i = 1, 2. Finally, using eq. (17) in the frame where q = 0, it follows that s1 + s2 + s3 = Q2.
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Hence, s3 ≥ 0 implies that Q2 − s1 − s2 = Q2(x1 + x2 − 1) ≥ 0, and we conclude that
x1 + x2 ≥ 1.

Thus, the integration region for the massless three-body phase space integral is deter-
mined by,

0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1 , subject to the constraint, x1 + x2 ≥ 1. (23)

Hence,

I3 =
(4π)1−n(Q2)n−3

2 Γ(n− 2)

∫ 1

0

dx2

∫ 1

1−x2

dx1

[

(1− x1)(1− x2)(x1 + x2 − 1)
]
1
2
n−2

. (24)

It is desirable to uncouple the two integrals. This can be done by defining new dimen-
sionless variables,

x = x2 , y =
1− x1

x2

. (25)

It follows that dx1dx2 = x dxdy. Moreover, 0 ≤ x, y ≤ 1 without any additional constraints.
Hence, we arrive at our final expression,

I3 =
(Q2)1−2ǫ

2(4π)3−2ǫ Γ(2− 2ǫ)

∫ 1

0

x1−2ǫ(1− x)−ǫ dx

∫ 1

0

y−ǫ(1− y)−ǫ dy , (26)

where ǫ ≡ 2− 1
2
n and

s1 = Q2xy , s2 = Q2(1− x) , s3 = Q2x(1− y) . (27)
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