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The running mass, m(s) is the solution to the differential equation,1

s
dm(s)

ds
= m(s)

[
γm

(
gs(s)

)
− 1] , where m(s = 1) = m. (1)

In eq. (1), g(s) is the running coupling, γm is the mass anomalous dimension, and m is the
renormalized mass parameter. In this note, we assume that the renormalized parameters of
QCD are defined in the MS renormalization scheme. The parameter s is dimensionless and
can be identified as s = Q/µ, where Q is a physical momentum scale2 and µ is an arbitrary
mass parameter introduced in the dimensional regularization procedure to ensure that the
renormalized coupling g is dimensionless.

It is convenient to set s = et, in which case eq. (1) takes the form,

dm(t)

dt
= m(t)

[
γm

(
gs(t)

)
− 1] , where m(t = 0) = m. (2)

The solution to this differential equation is given by

m(t) = m(0) e−t exp

{∫ t

0

γm
(
gs(t

′)
)
dt′

}
. (3)

For s = Q/µ, then

t = 1
2
ln

(
Q2

µ2

)
. (4)

Then, one can rewrite eq. (3) as

m(Q2) = m(µ2)

(
µ2

Q2

)1/2

exp






∫ 1
2
ln(Q2/µ2)

0

γm
(
gs(t

′)
)
dt′




 . (5)

The one-loop running coupling constant of QCD is given by

g2(Q2) =
16π2

b0 ln(Q2/Λ2)
, (6)

where the one-loop QCD β-function is β(gs) = −b0g
3
s/(16π

2) with

b0 =
11N

3
−

2

3
nf , (7)

1My notation follows that of Pierre Ramond, Field Theory: A Modern Primer, Second Edition (Westview
Press, Boulder, CO, 1990). In most of the physics literature, γm is defined with the opposite sign.

2In practical applications, one often defines Q ≡ (q2)1/2 for a timelike four-momentum q and Q ≡ (−q2)1/2

for a spacelike four-momentum q.
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in the case of an SU(N) color group and nf flavors of quarks. The parameter Λ is a physical
parameter of QCD,

Λ2
≡ µ2 exp

(
−16π2

b0 g
2
s(µ)

)
. (8)

One can formally prove that dΛ/dµ = 0 since the explicit dependence on µ (in the one-loop
approximation) is exactly cancelled out by the implicit dependence on µ in g2s(µ

2).
The one-loop mass anomalous dimension will be denoted by

γm(gs) =
g2s

16π2
γ(0)
m . (9)

As in eq. (4), we define t′ = 1
2
ln(Q′ 2/Λ2). Then,

1
2
ln

(
Q′ 2

Λ2

)
= 1

2
ln

(
Q′ 2

µ2

)
+ 1

2
ln

(
µ2

Λ2

)
= t′ + 1

2
ln

(
µ2

Λ2

)
, (10)

and it follows that

m(Q2) = m(µ2)

(
µ2

Q2

)1/2

exp




γ
(0)
m

2b0

∫ 1
2
ln(Q2/µ2)

0

dt′

t′ + 1
2
ln(µ2/Λ2)



 . (11)

The integral is elementary and we end up with,

m(Q2) = m(µ2)

(
µ2

Q2

)1/2

exp

{
γ
(0)
m

2b0

[
ln

(
1
2
ln

Q2

Λ2

)
− ln

(
1
2
ln

µ2

Λ2

)]}

= m(µ2)

(
µ2

Q2

)1/2



1
2
ln
(

µ2

Λ2

)

1
2
ln
(

Q2

Λ2

)



−γ

(0)
m /(2b0)

. (12)

In the MS renormalization scheme in the one-loop approximation (with an SU(N) color
group),

γ(0)
m = −6

(
N2

− 1

2N

)
, (13)

which along with b0 is gauge independent. One can define a renormalization group invariant
mass parameter m̂ as follows,

m̂ ≡ m(µ2)

[
1
2
ln

(
µ2

Λ2

)]
−γ

(0)
m /(2b0)

. (14)

We leave it as an exercise to the reader to show that

dm̂

dµ
= 0 , (15)
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by showing that the explicit µ dependent is exactly canceled out (in the one-loop approx-
imation) by the implicit µ dependence of m(µ2). It then follows that the running mass of
QCD in the one-loop approximation is given by,

m(Q2) =

(
µ2

Q2

)1/2
m̂

[
1
2
ln(Q2/Λ2)

]
−γ

(0)
m /(2b0)

. (16)

In the literature, one often defines dimensionless quantities, x ≡ m/µ and x(s) = m(s)/µ,
in which case eq. (16) is rewritten as,

x(Q2) =

(
1

Q2

)1/2
m̂

[
1
2
ln(Q2/Λ2)

]
−γ

(0)
m /(2b0)

. (17)

In this convention, a slightly different running mass is introduced,

m̃(Q2) ≡ (Q2)1/2 x(Q2) =
m̂

[
1
2
ln(Q2/Λ2)

]
−γ

(0)
m /(2b0)

. (18)

Note that m(µ) = m̃(µ) = m. One advantage of employing m̃(Q2) is that it is independent
of µ.

We end these notes with a few remarks. First, note that m(Q2) → 0 as Q2
→ ∞. Recall

that the solution to the renormalization group equation for the N -point 1PI Green function
of QCD is given by,

Γ(N)(sp1, sp2, . . . , spN ; gs, m, a, µ) = sd exp

{
−

∫ s

1

ds′

s′
γΓ
(
gs(s

′), a(s′)
)}

×Γ(N)(p1, p2, . . . , pN ; gs(s), m(s), a(s), µ) , (19)

where d = 4−nB−3nF (for an N -point 1PI Green function with nB external gluons and 2nF

external fermions), γΓ ≡ nBγ3+2nFγ2 with γi =
1
2
d lnZi/d lnµ (for i = 2, 3), and a(s) is the

running gauge parameter. In the asymptotic regime corresponding to s → ∞, we see that
both m(s) → 0 and g(s) → 0 [the latter assumes that b0 < 0; i.e., the number of fermions
is not so large as to spoil asymptotic freedom of the QCD β-function]. This means that for
large values of s, the perturbative expansion of Γ(N) becomes more reliable and mass effects
can be ignored to a very good approximation.

It is noteworthy that if one takes ratios of running quark masses at some fixed value of
Q2, then

mi(Q
2)

mj(Q2)
=

m̂i

m̂j
, (20)

independently of the value of Q2 and of µ2, where the indices i and j label the quark flavor.
This means that these ratios are renormalization group invariant quantities. They can also be
related to ratios of on-shell masses defined at the pole of the quark propagator. Nevertheless,
relating either of these quantities to physical observables is subtle since, strictly speaking,
quarks are confined and thus cannot be observed as free particles.
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