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where ε (not to be confused with ǫ) is a positive infinitesimal constant and ǫ is related to the
number of spacetime dimensions via

gµνgµν = n ≡ 4− 2ǫ .

In addition, we shall define
∫
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which corresponds to setting p2 = m2 = 0 in the first integral above under the assumption
that ǫ < 2 − r. However, in the dimensional regularization procedure, we shall adopt the
above definition for all r.

We can expand about ǫ = 0 by using
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where N is a non-negative integer, ψ(x) ≡ Γ′(x)/Γ(x) with Γ′(x) ≡ dΓ(x)/dx,

ψ(1) = −γ , ψ(N + 1) = −γ +
N
∑

k=1

1

k
,

and γ = −Γ′(1) = 0.5772 · · · is the Euler-Mascheroni constant. If the O(ǫ) terms are needed,
then one must use xΓ(x) = Γ(x+ 1) until Γ(1 + ǫ) is reached, and then use

log Γ(1 + ǫ) = −γǫ+

∞
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where ζ(k) is the Riemann zeta function.
When fermions are involved, we need to consider the Dirac matrix algebra in n-dimensions.

The Dirac gamma matrices are denoted by γ0, γ1, γ2, . . . , γn−1. The following n-dimensional
gamma matrix relations must be used:

1.
{

γµ , γν
}

= 2gµν

2. γµγ
µ = n

3. γµγ
αγµ = (2− n)γα

4. γµγ
αγβγµ = 4gαβ + (n− 4)γαγβ

5. γµγ
αγβγργµ = −2γργβγα + (4− n)γαγβγρ

6. γµγαγβγργσγ
µ = 2(γαγσγργβ + γβγργσγα) + (n− 4)γαγβγργσ

7. Trace formulae are unchanged. In particular, Tr γµγν = 4gµν , where the 4 in the trace
formula is purely conventional. However, is crucial to use gµνgµν = n in all calculations
in n-dimensions before taking the ǫ→ 0 limit.

The n-dimensional analog of γ
5
, which satisfes (γ

5
)2 = 1 and Tr γ5 = Tr γ5γµγν = 0, is

problematical since ǫαβρσ is inherently four-dimensional. In some applications, one can take
the anticommution relation,

{

γµ , γ
5

}

= 0, to be valid for n 6= 4, but some care is required.

Finally, we record some of the Feynman parameter formulae:
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