

DUE: THURSDAY, APRIL 16, 2020

1. (a) Derive the result:

$$\int d^4z \frac{\delta^2 W[J]}{\delta J(x)\delta J(z)} \frac{\delta^2 \Gamma[\Phi]}{\delta \Phi(z)\delta \Phi(y)} = -\delta^4(x-y),$$

and interpret diagrammatically in terms of momentum space Green functions, under the assumption that the quantum field $\phi(x)$ has no vacuum expectation value. Here, $W[J]$ is the generating functional for the connected Green functions, $\Phi(x)$ is the classical field, and $\Gamma[\Phi]$ is the generating functional for the one particle irreducible (1PI) Green functions.

(b) By taking one further functional derivative, show that Γ generates the amputated connected three-point function.

2. Consider a quantum field theory of a real scalar field governed by the Lagrangian density,

$$\mathcal{L} = \frac{1}{2}\partial_\mu\phi\partial^\mu\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4.$$

(a) Evaluate perturbatively the generating functional for the connected Green functions, $W[J]$, keeping all terms up to and including terms of $\mathcal{O}(\lambda)$ as follows. First, show that $Z[J] \equiv \exp\{iW[J]\}$ can be written in the following form,

$$Z[J] = \mathcal{N} \left[1 - \frac{i\lambda}{4!} \int d^4y \left(\frac{1}{i} \frac{\delta}{\delta J(y)} \right)^4 + \mathcal{O}(\lambda^2) \right] \exp \left\{ -\frac{i}{2} \int d^4x_1 d^4x_2 J(x_1) \Delta_F(x_1 - x_2) J(x_2) \right\}, \quad (1)$$

where \mathcal{N} is the J -independent constant. Then, carry out the functional derivatives with respect to J , keeping all terms up to and including terms of $\mathcal{O}(\lambda)$. Using the result just obtained for $Z[J]$, obtain an expression for $W[J]$ keeping all terms up to and including terms of $\mathcal{O}(\lambda)$.

(b) Using the result of part (a) for $W[J]$, compute the four-point connected Green function. By taking the appropriate Fourier transform, derive the momentum space Feynman rule for the four-point scalar interaction.

(c) Evaluate perturbatively the classical field $\Phi(x)$ and the generating functional for the 1PI Green functions, $\Gamma[\Phi]$, keeping all terms up to and including terms of $\mathcal{O}(\lambda)$. Then, repeat part (b) for the four-point 1PI Green function.

3. Consider a quantum field theory of a real scalar field governed by the Lagrangian density,

$$\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi), \quad (2)$$

and the corresponding equation of motion,

$$\square \phi(x) + V'(\phi) = 0,$$

where $\square \equiv \partial^\mu \partial_\mu$ and $V' \equiv dV/d\phi$. The goal of this exercise is to derive the equation of motion for the Green function $\langle \Omega | T\{\phi(x)\phi(y)\} | \Omega \rangle$,

$$\square_x \langle \Omega | T\{\phi(x)\phi(y)\} | \Omega \rangle = -\langle \Omega | T\{V'(\phi(x))\phi(y)\} | \Omega \rangle - i\delta^4(x-y). \quad (3)$$

In order to obtain eq. (3), you should employ the following technique. Start from the path integral definition of the generating functional,

$$Z[J] = \mathcal{N} \int \mathcal{D}\phi \exp \left\{ i \int d^4x [\mathcal{L} + J(x)\phi(x)] \right\}, \quad (4)$$

where \mathcal{N} is chosen such that $Z[0] = 1$. Perform a change of variables in the path integral, $\phi(x) \rightarrow \phi(x) + \varepsilon(x)$, where $\varepsilon(x)$ is an arbitrary infinitesimal function of x . Noting that a change of variables¹ does not change the value of $Z[J]$, show that to first order in $\varepsilon(x)$,

$$\int \mathcal{D}\phi \exp \left\{ i \int d^4x [\mathcal{L} + J(x)\phi(x)] \right\} \int d^4x \varepsilon(x) [-\square \Phi - V'(\phi) + J(x)] = 0. \quad (5)$$

Since $\varepsilon(x)$ is arbitrary, we may choose $\varepsilon(x) = \epsilon \delta^4(x-y)$, where ϵ is an infinitesimal constant. With this choice for $\varepsilon(x)$, show that by taking the functional derivative of the eq. (5) with respect to $J(x)$ and then setting $J = 0$, one ends up with eq. (3).

HINT: What is the Jacobian corresponding to the change of variables, $\phi(x) \rightarrow \phi(x) + \varepsilon(x)$?

4. Consider a theory of a real scalar field governed by eq. (2) with $V(\phi) = \frac{1}{2}m^2\phi^2$.

(a) Compute exactly the free-field Feynman propagator, $\Delta_F(x)$, in coordinate space.

HINT: You will need to consult a good table of integrals such as I.S. Gradshteyn & I.M. Ryzhik, *Table of Integrals, Series and Products*. You should be able to find integrals that when differentiated with respect to a parameter yield the integral of interest for this problem.

(b) Evaluate the leading singularities of $\Delta_F(x)$ near the light cone, $x^2 = 0$.

(c) Using the Källen–Lehmann representation, comment on the leading singularity of the exact two-point function near the light cone.

¹Just as in the case of ordinary integration, a change of integration variables does not change the value of the functional integral.