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1. Consider a quantum field theory of interacting real scalar and Dirac fermion of mass mR

and M respectively. The interaction Lagrangian is given by,

Lint = −gψ̄ψφ− λ

4!
φ4 .

(a) Compute the wave function renormalization constant of the scalar field using MS
renormalization, in the one loop approximation.

To compute the wave function renormalization, we must evaluate the diagrams that con-
tribute to the renormalized two-point 1PI Green function, Γ

(2)
R (p). In a quantum field theory

of interacting real scalar and Dirac fermion of mass mR and M respectively, the Feynman
diagram representation of iΓ

(2)
R (p), in the one loop approximation, consists of the following

diagrams:

− ( )−1 + + + ×

where scalars are represented by dashed lines, fermions are represented by solid lines (with
arrows denoting the direction of flow of fermion number), and the dashed line with the ×

indicates the counterterm.
In class, we have already evaluated the diagrams involving scalars alone. The result

obtained in class was given by,

iΓ
(2)
R (p2) = i

{

p2Zφ −m2
R

[

ZmZφ −
λR
32π2

(

1

ǫ
− γ + ln(4π) + 1 + ln

(

µ2

m2
R

))]}

. (1)

We must now compute the fermion loop contribution to iΓ
(2)
R (p), which is new. We shall

employ the Feynman rule for the scalar-fermion-fermion vertex,

−iµǫgR

where the factor of µǫ appears so that gR is dimensionless in n = 4−2ǫ spacetime dimensions.
This interaction vertex is obtained by writing g = Zgµ

ǫgR, φ = Z
1/2
φ φR and ψ = Z

1/2
ψ ψR and

then separating L into terms that involve renormalized fields, masses and couplings plus
counterterms. However, the new counterterms do not contribute to iΓ

(2)
R (p) in the one-loop

approximation.
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Thus, we now focus on the computation of the fermion loop graph, denoted by −iΣ(p2),

p p

q

q − p

where the four-momenta of the external and internal lines are specified. Using the Feynman
rules to evaluate the above graph, we obtain

−iΣ(p2) = −(−iµǫgR)2
∫

dnq

(2π)n
i2 Tr

{

(q/+M)(q/ − /p+M)
}

(q2 −M2 + iε)
[

(q − p)2 −M2 + iε
]

= −4µ2ǫg2R

∫

dnq

(2π)n
M2 + q ·(q − p)

(q2 −M2 + iε)
[

(q − p)2 −M2 + iε
] , (2)

where we are distinguishing the infinitesimal parameter ε that appears in the Feynman rule
for the fermion propagator from ǫ = 2− 1

2
n.

Introducing Feynman parameters,

−iΣ(p2) = −4µ2ǫg2R

∫ 1

0

dx

∫

dnq

(2π)n
M2 + q ·(q − p)

(1− x)(q2 −M2 + iε) + x[(q − p)2 −M2 + iε]

= −4µ2ǫg2R

∫ 1

0

dx

∫

dnq

(2π)n
M2 + q ·(q − p)

(

q2 − 2xq ·p+ xp2 −M2 + iε
)2 . (3)

The integral over q can be evaluating by using the formulae given in the class handout entitled,
Useful formulae for computing one-loop integrals,1

∫

dnq

(2π)n
1

(q2 + 2q ·p−m2 + iε)r
= i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 2)

Γ(r)
, (4)

∫

dnq

(2π)n
qµ

(q2 + 2q ·p−m2 + iε)r
= −i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 2)

Γ(r)
pµ , (5)

∫

dnq

(2π)n
qµqν

(q2 + 2q ·p−m2 + iε)r
= i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 3)

Γ(r)
. (6)

It follows that
∫

dnq

(2π)n
M2 + q ·(q − p)

(

q2 − 2xq ·p+ xp2 −M2 + iε
)2 = i(4π)ǫ−2Γ(ǫ)

[

M2 − p2x(1− x)
]−ǫ

×
[(

1 +
2− ǫ

1− ǫ

)

(M2 − xp2) +

(

3− 2ǫ

1− ǫ

)

x2p2
]

= i(4π)ǫ−2Γ(ǫ)

(

3− 2ǫ

1− ǫ

)

[

M2 − p2x(1− x)
]1−ǫ

. (7)

1On the right hand side of eqs. (4)–(6), one should really write m2 − iε in place of m2. The iε factors can
be restored later if necessary.
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Hence,

−iΣ(p2) = − ig2R
4π2

(4π)ǫΓ(ǫ)

(

3− 2ǫ

1− ǫ

)
∫ 1

0

(

M2 − p2x(1− x)

µ2

)−ǫ
[

M2 − p2x(1 − x)
]

dx . (8)

Finally, expanding about ǫ = 0,

−iΣ(p2) = −3ig2R
4π2

(

1

ǫ
− γ + ln(4π)

)

(

1 +
ǫ

3

)

[

1 + ǫ ln

(

µ2

M2

)]

×
∫ 1

0

[

M2 − p2x(1− x)
]

[

1− ǫ ln

(

1− p2x(1− x)

M2

)]

dx+O(ǫ) . (9)

Separating out the terms proportional to M2 and p2 yields,

−iΣ(p2) = − ig2R
4π2

{

3M2

[

1

ǫ
− γ + ln(4π) + ln

(

µ2

M2

)

+
1

3
−
∫ 1

0

ln

(

1− p2x(1− x)

M2

)

dx

]

−p
2

2

[

1

ǫ
− γ + ln(4π) + ln

(

µ2

M2

)

+
1

3
− 6

∫ 1

0

x(1− x) ln

(

1− p2x(1− x)

M2

)

dx

]

}

. (10)

Consequently, adding the result of eq. (10) to eq. (1) yields,

iΓ
(2)
R (p2) = i

{

p2
[

Zφ +
g2R
8π2

(

1

ǫ
− γ + ln(4π)

)]

−m2
R

[

ZmZφ −
(

λR
32π2

− 3g2RM
2

4π2m2
R

)(

1

ǫ
− γ + ln(4π)

)]

}

+ finite terms . (11)

Writing Zφ = 1 + δZφ, MS renormalization consists of completely absorbing the term pro-
portional to ǫ−1 − γ + ln(4π) into δZφ. Hence, we conclude that

Zφ = 1− g2R
8π2

(

1

ǫ
− γ + ln(4π)

)

. (12)

One can also determine ZmZφ in a similar manner, which then yields an expression for Zm
after employing the result of eq. (12). This computation is left as an exercise for the student.

(b) The renormalized spectral function is defined by σR(m
2) ≡ Z−1

φ σ(m2). Then, the
Källén-Lehmann representation for the renormalized two-point function reads:

G
(2)
R (p2) =

i

p2 −m2
R + iε

+

∫ ∞

4M2

dm2 σR(m
2)

i

p2 −m2 + iε
. (13)

Assuming that mR < 2M , compute the contribution to the spectral function, σR, of the
scalar two-point function due to a fermion loop in the one-loop approximation. Note that in
this approximation, the lower limit of integration of 4M2 is appropriate (why?). What is the
behavior of σR(m

2) as m2 → ∞?
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The two-point 1PI scalar Green function has the form,

iΓ
(2)
R (p2) = i

(

p2 −m2
R + iε− ΣR(p

2)
)

, (14)

where−iΣR(p2) is the sum of scalar self-energy graphs (i.e., 1PI self-energy diagrams involving
at least one loop). One can then construct the corresponding connected two-point Green
function by summing up the geometric series,

G
(2)
R (p2) =

i

p2 −m2
R + iε

+
i

p2 −m2
R + iε

(

−iΣR(p2)
) i

p2 −m2
R + iε

+ · · ·

=
i

p2 −m2
R − ΣR(p2) + iε

=
[

iΓ
(2)
R (p2)

]−1
. (15)

Hence, it follows that

i
[

G
(2)
R (p2)

]−1
= p2 −m2

R − ΣR(p
2) =

[

1

p2 −m2
R + iε

+

∫ ∞

4M2

dm2 σR(m
2)

1

p2 −m2 + iε

]−1

.

(16)
In the one loop approximation in which only the fermion loop contribution is taken into
account, ΣR(p

2) is of O(g2R). It follows that σR(m
2) is also of O(g2R). Thus, we can expand

the inverse on the right hand side of eq. (16) and keep only the first two terms of the series.
Denoting the integral on the right hand side of eq. (16) by J , it then follows that

[

1

p2 −m2
R + iε

+ J

]−1

= p2 −m2
R + iε− (p2 −m2

R + iε)2J +O(g4R) . (17)

Since one can always safely take ε→ 0 in factors of p2−m2
R+iε that appear in the numerator,

eqs. (16) and (17) yield,

ΣR(p
2) = (p2 −m2

R)
2

∫ ∞

4M2

dm2 σR(m
2)

1

p2 −m2 + iε
+O(g4R) . (18)

To determine σR(m
2), we shall employ the Sokhotski-Plemelj formula [see the class handout

entitled Generalized Functions for Physics ],

1

p2 −m2 + iε
= P

1

p2 −m2
− iπδ(p2 −m2

R) . (19)

Inserting this result into eq. (18) and taking the imaginary part of both sides of the equation,
the end result is,2

σR(p
2)Θ(p2 − 4M2) = − 1

π(p2 −m2
R)

2
ImΣR(p

2) . (20)

One can now make use of the results of part (a) to evaluate σR(p
2). However, it is

instructive to repeat the computation of part (a) using the on-shell renormalization scheme.

In this scheme, the square of the physical mass, m2
R corresponds to pole of G

(2)
R (p2) with

residue equal to 1. Hence, it is convenient to expand ΣR(p
2) around p2 = m2

R,

ΣR(p
2) = ΣR(m

2
R) + (p2 −m2

R)Σ
′
R(m

2
R) + (p2 −m2

R)
2R(p2) , (21)

2Note that we have inserted the step function in eq. (20), since the integration over the delta function
yields a nonzero result only if the value of p2 lies within the integration range 4M2 ≤ m2 < ∞.

4



where Σ′
R(m

2
R) ≡ (dΣ/dp2)p2=m2

R

and the last term above is the remainder term. Given that

m2
R is a pole of G

(2)
R (p2), it follows that

ΣR(m
2
R) = 0 , (22)

Hence, eq. (15) takes the form,

G
(2)
R (p2) =

i

(p2 −m2
R + iε)

[

1− Σ′
R(m

2
R)− (p2 −m2

R)R(p
2)
] . (23)

Moreover, since the residue at the pole of the renormalized two-point function is equal to 1,
it follows that

Σ′
R(m

2
R) = 0 . (24)

Consequently, eqs. (21), (22) and (24) yield,

ΣR(p
2) = (p2 −m2

R)
2R(p2) , (25)

and eq. (20) simplifies to,

σR(p
2)Θ(p2 − 4M2) = −1

π
ImR(p2) . (26)

Using the results of part (a), the fermion loop contribution to iΓ
(2)
R (p2) is given by

[cf. eqs. (10) and (11)],

iΓ
(2)
R (p2) = i

{

p2
[

Zφ +
g2R
8π2

(

1

ǫ
− γ + ln(4π) + f1(p

2)

)]

−m2
R

[

ZmZφ +
3g2RM

2

4π2m2
R

(

1

ǫ
− γ + ln(4π) + f2(p

2)

)]

}

, (27)

where

f1(p
2) ≡ ln

(

µ2

M2

)

+
1

3
− 6

∫ 1

0

x(1 − x) ln

(

1− p2x(1 − x)

M2

)

dx , (28)

f2(p
2) ≡ ln

(

µ2

M2

)

+
1

3
−
∫ 1

0

ln

(

1− p2x(1− x)

M2

)

dx . (29)

Using eq. (14), it follows that

−iΣ(2)
R (p2) = i

{

p2
[

δZφ +
g2R
8π2

(

1

ǫ
− γ + ln(4π) + f1(p

2)

)]

−m2
R

[

δZm + δZφ +
3g2RM

2

4π2m2
R

(

1

ǫ
− γ + ln(4π) + f2(p

2)

)]

}

, (30)

after writing,
δZφ ≡ Zφ − 1 , δZm ≡ Zm − 1 , (31)

and dropping the term proportional to δZφδZm, which is of O(g4R).
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One can now determine δZφ and δZm in the on-shell renormalization scheme by imposing
the conditions given in eqs. (22) and (24),

0 = ΣR(m
2
R) = m2

R

[

δZm +
g2R
8π

(

6M2

m2
R

− 1

)(

1

ǫ
− γ + ln(4π)

)

+
g2R
8π

(

6M2

m2
R

f2(m
2
R)− f1(m

2
R)

)]

,

0 = Σ′
R(m

2
R) =

g2m2
R

8π2

[

6M2

m2
R

f ′
2(m

2
R)− f ′

1(m
2
R)

]

− δZφ −
g2R
8π2

(

1

ǫ
− γ + ln(4π) + f1(m

2
R)

)

, (32)

where f ′(m2
R) ≡ (df/dp2)p2=m2

R
. Thus, we can conclude that

δZm = −g
2
R

8π

(

6M2

m2
R

− 1

)(

1

ǫ
− γ + ln(4π)

)

− g2R
8π

(

6M2

m2
R

f2(m
2
R)− f1(m

2
R)

)

,

δZφ =
g2m2

R

8π2

[

6M2

m2
R

f ′
2(m

2
R)− f ′

1(m
2
R)

]

− g2R
8π2

(

1

ǫ
− γ + ln(4π) + f1(m

2
R)

)

. (33)

Plugging these results back into eq. (30) yields,

Σ
(2)
R (p2) =

g2R
8π2

{

(p2 −m2
R)
[

m2
Rf

′
1(m

2
R)− 6M2f ′

2(m
2
R)
]

− p2
[

f1(p
2)− f1(m

2
R)
]

+6M2
[

f2(p
2)− f2(m

2
R)
]

}

. (34)

As a check of eq. (34), note that if we expand,

f1(p
2)− f1(m

2
R) ≃ (p2 −m2

R)f
′
1(m

2
R) , f2(p

2)− f2(m
2
R) ≃ (p2 −m2

R)f
′
2(m

2
R) , (35)

and plug these expressions back into eq. (34), we obtain

Σ
(2)
R (p2) ≃ − g2R

8π2
(p2 −m2

R)
2f ′

1(m
2
R) . (36)

which shows that Σ
(2)
R (p2) does have the expected form of eq. (25).

Using eqs. (28) and (29), we can write an explicit integral representation for Σ
(2)
R (p2).

Note that

−p2
[

f1(p
2)− f1(m

2
R)
]

+ 6M2
[

f2(p
2)− f2(m

2
R)
]

= −6

∫ 1

0

[

M2 − p2x(1 − x)
]

ln

(

M2 − p2x(1− x)

M2 −m2
Rx(1− x)

)

dx , (37)

and

m2
Rf

′
1(m

2
R)− 6M2f ′

2(m
2
R) = 6m2

R

∫ 1

0

x2(1− x)2

M2 −m2
Rx(1− x)

− 6M2

∫ 1

0

x(1− x)

M2 −m2
Rx(1− x)

= −6

∫ 1

0

x(1 − x)dx = −1 . (38)
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Hence,

Σ
(2)
R (p2) = −3g2

4π2

[
∫ 1

0

[

M2 − p2x(1− x)
]

ln

(

M2 − p2x(1 − x)

M2 −m2
Rx(1− x)

)

+ 1
6
(p2 −m2

R)

]

, (39)

and eq. (25) yields,

R(p2) = − 3g2R
4π2(p2 −m2

R)
2

[
∫ 1

0

[

M2 − p2x(1− x)
]

ln

(

M2 − p2x(1− x)

M2 −m2
Rx(1 − x)

)

dx+ 1
6
(p2 −m2

R)

]

.

(40)
To complete our calculation, we must compute ImR(p2). Thus, we focus our attention on

Im ln
(

M2 − p2x(1 − x)− iε
)

= −πΘ
(

p2x(1− x)−M2
)

, (41)

where we have restored the correct iε factor by replacing M2 → M2 − iε (where ε is a
positive infinitesimal). By doing so, we can identify the correct sign of the imaginary part
of the logarithm of a negative number. The argument of the logarithm is negative when
p2 > 4M2 and 0 < x− < x < x+ < 1, where x± are the roots of the quadratic polynomial,
M2 − p2x(1 − x) = 0. Explicitly,

x± =
1

2

[

1±
√

1− 4M2

p2

]

. (42)

Moreover, m2
R < 4M2 by assumption of the statement of part (b) of this problem. Conse-

quently, M2 −m2
Rx(1− x) > 0 for 0 ≤ x ≤ 1. It then follows that for p2 > 4M2,

Im

∫ 1

0

[

M2 − p2x(1− x)
]

ln

(

M2 − p2x(1− x)− iε

M2 −m2
Rx(1 − x)

)

= −π
∫ x+

x
−

[

M2 − p2x(1− x)
]

dx

−π
{

M2(x+ − x−)− p2
[

1
2
(x2+ − x2−)− 1

3
(x3+ − x3−)

]

}

= −π
√

1− 4M2

p2
[

2
3
M2 − 1

6
p2
]

= 1
6
πp2

(

1− 4M2

p2

)3/2

. (43)

In obtaining the above result, we noted that

x2+ − x2− = (x+ + x−)(x+ − x−) =

√

1− 4M2

p2
, (44)

x3+ − x3− = (x+ − x−)
[

(x+ + x−)
2 − x+x−

]

=

√

1− 4M2

p2

(

1− M2

p2

)

, (45)

and employed the relations,

x+ + x1 = 1 , x+x− =
M2

p2
, x+ − x− =

√

1− 4M2

p2
. (46)
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Hence, eq. (40) yields,

ImR(p2) = −g
2
R

8π

p2

(p2 −m2
R)

2

(

1− 4M2

p2

)3/2

Θ(p2 − 4M2) . (47)

Inserting this result back into eq. (26) yields,

σR(m
2) =

g2R
8π2

m2

(m2 −m2
R)

2

(

1− 4M2

m2

)3/2

, for m2
R < 4M2. (48)

It follows from eq. (48) that σR(m
2) ∼ 1/m2 as m2 → ∞. An alternative derivation of

eq. (48) is given in the Appendix below.

REMARKS:

1. The significance of the m2 → ∞ behavior of σR(m
2) can be understood as follows.

Recall that in class we derived the relation,

Zφ = 1−
∫ ∞

0

σ(m2) dm2 . (49)

In terms of the renormalized spectral function, σR(m
2) = Z−1

φ σ(m2), one can multiply eq. (49)

by Z−1
φ to obtain,

Z−1
φ = 1 +

∫ ∞

0

σR(m
2) dm2 . (50)

If σR(m
2) ∼ 1/m2 as m2 → ∞, then the integral in eq. (50) diverges logarithmically at the

upper end of the integration range, which implies that Z−1
φ diverges. It would then follow

that Zφ = 0 if the one-loop asymptotic behavior of σR(m
2) were reliable. In fact, based on a

fixed-order perturbative computation, one should really reinterpret eq. (50) as,

Zφ =
1

1 +
∫∞

0
σR(m2) dm2

≃ 1−
∫ ∞

0

σR(m
2) dm2 , (51)

which demonstrates that in the context of the one-loop analysis, Zφ diverges logarithmically,
which is of course is the actual behavior of Zφ in the one-loop approximation. Thus, we
see that even though a nonperturbative treatment yields 0 ≤ Zφ ≤ 1, this constraint is not
necessarily in contradiction to a perturbative analysis that yields a logarithmically divergent
wave function renormalization constant.

2. One may be curious why the condition m2
R < 4M2 was imposed in part (b) of this

problem. In the case of m2
R ≥ 4M2, the decay of the scalar to a fermion-antifermion pair is

kinematically allowed. Consequently, the scalar is unstable and the physical squared-mass
parameter is shifted away from the real axis. In particular, the imaginary part of ΣR(p

2) is
related to the decay width of the unstable scalar. Moreover, in such a case, one must reassess
the derivation of the Källen-Lehmann representation of the propagator, since an unstable
scalar is not an asymptotic state of the theory. To avoid this complexity, we imposed the
condition m2

R < 4M2 to ensure that the scalar particle is stable.
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3. Since the ultraviolet divergences appear in the real part of the Green functions, one
can solve part (b) of this problem by considering the imaginary part of the unrenormalized
1PI Green function, expressed in terms of the bare parameters of the theory. Moreover, one
does not need to specify the renormalization scheme for the mass and couplings. Starting
from the spectral representation of the unrenormalized two-point function,

G(2)(p2) =
iZφ

p2 −m2
P + iε

+

∫ ∞

4M2

dm2 σ(m2)
i

p2 −m2 + iε
, (52)

where m2
P = m2

B + Σ(m2
B) is the physical (renormalized) squared-mass of the scalar and

Z−1
φ = 1 + Σ′(m2

B), expressed in terms of the bare squared-mass parameter m2
B. We use

the notation m2
P to denote the square of the so-called pole mass, which differs from the

renormalized squared mass parameter m2
R defined in a renormalization scheme other than

the on-shell scheme. A calculation analogous to the one presented in eqs. (16)–(20) yields,

σ(p2)Θ(p2 − 4M2) = − 1

π(p2 −m2
P )

2
ImΣ(p2) , (53)

where −iΣ(p2) is the unrenormalized one-loop contribution to the self-energy of the scalar.
Since ImΣ(p2) is already of O(g2), one can consistently replace bare parameters with renor-
malized parameters and Zφ with 1 in the one-loop approximation, since the difference between
employing bare and renormalized parameters in eq. (53) is formally of higher order in per-
turbation theory.

The contribution of the fermion loop to −iΣ(p2) was given in eq. (10). Thus, in light of
eqs. (52) and (53),

σ(p2)Θ(p2 − 4M2) = − 3g2R
4π2(p2 −m2

P )
2
Im

∫ 1

0

[

M2 − p2x(1 − x)
]

ln

(

M2 − p2x(1 − x)− iε

M2

)

dx

=
3g2R

4π(p2 −m2
P )

2
Im

∫ x+

x
−

[

M2 − p2x(1− x)
]

=
g2R
8π2

p2

(p2 −m2
P )

2

(

1− 4M2

m2

)3/2

, (54)

after making use of eqs. (42) and (43). Since σR(p
2) ≡ Z−1

φ σ(p2) = σ(p2) +O(g4R), it follows
that in the one-loop approximation, one can also replace σ(p2) with σR(p

2). Hence, we have
recovered the result of eq. (48) without specifying the renormalization scheme for the mass
and coupling and without determining the one-loop expression for Zφ.

APPENDIX: An alternative derivation of σR(m
2)

In this Appendix, we shall find a way to massage the expression for R(p2) given in eq. (40)
so that it exhibits the form given by [cf. eqs. (18) and (25)],

R(p2) =

∫ ∞

4M2

dm2 σR(m
2)

i

p2 −m2 + iε
. (55)

The method presented below is inspired by Chapter 8 of K. Nishijima, Fields and Parti-

cles: Field Theory and Dispersion Relations (W.A. Benjamin, Inc., Reading, MA, 1974).
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We begin with eq. (40) under the assumption that m2
R ≤ 4M2, which we reproduce below,

R(p2) = − 3g2R
4π2(p2 −m2

R)
2

[
∫ 1

0

[

M2 − p2x(1− x)
]

ln

(

M2 − p2x(1− x)− iε

M2 −m2
Rx(1 − x)

)

dx+ 1
6
(p2 −m2

R)

]

,

(56)
where the −iε factor (viaM2 →M2−iε) has been restored in the numerator of the argument
of the logarithm, as it is needed to obtain the correct imaginary part of the logarithm for
values of p2 and x where M2 − p2x(1− x) is negative.3 Next, we note the following identify,

ln

(

M2 − p2x(1 − x)− iε

M2 −m2
Rx(1− x)

)

=

∫ ∞

M2

(

1

κ2 −m2
Rx(1 − x)

− 1

κ2 − p2x(1− x)− iε

)

dκ2 . (57)

We now consider the following identities,

1

a + b
=

1

b
− a

b(a+ b)
=

1

b
− a

b2
+

a2

b2(a + b)
(58)

It is convenient to make the following choices for a and b,

a ≡ −(p2 −m2
R)x(1− x)− iε , b ≡ κ2 −m2

Rx(1− x) , (59)

which implies that a+ b = κ2 − p2x(1 − x)− iε. Then, as a consequence of eq. (58),

1

κ2 − p2x(1 − x)− iε
− 1

κ2 −m2
Rx(1 − x)

=
(p2 −m2

R)x(1 − x)
[

κ2 −m2
Rx(1− x)

][

κ2 − p2x(1− x)− iε
]

=
(p2 −m2

R)x(1− x)
[

κ2 −m2
Rx(1 − x)

]2 +
(p2 −m2

R)
2x2(1− x)2

[

κ2 −m2
Rx(1− x)

]2[
κ2 − p2x(1− x)− iε

]
, (60)

where it is safe to take ε → 0 in any numerator factor. In light of eqs. (57) and (60), and
noting that the left hand side of eq. (60) is the negative of the integrand of eq. (57), it follows
that
[

M2 − p2x(1− x)
]

ln

(

M2 − p2x(1 − x)− iε

M2 −m2
Rx(1− x)

)

=
[

M2 −m2
Rx(1− x)

]

∫ ∞

M2

(

1

κ2 −m2
Rx(1− x)

− 1

κ2 − p2x(1− x)− iε

)

dκ2

−(p2 −m2
R)x(1− x)

∫ ∞

M2

(

1

κ2 −m2
Rx(1− x)

− 1

κ2 − p2x(1− x)− iε

)

dκ2

= −
[

M2 −m2
Rx(1 − x)

]

(p2 −m2
R)x(1− x)

∫ ∞

M2

dκ2
[

κ2 −m2
Rx(1− x)

]2

−
[

M2 −m2
Rx(1− x)

]

(p2 −m2
R)

2x2(1− x)2
∫ ∞

M2

dκ2
[

κ2 −m2
Rx(1 − x)

]2[
κ2 − p2x(1− x)− iε

]

+ (p2 −m2
R)

2x2(1− x)2
∫ ∞

M2

dκ2
[

κ2 −m2
Rx(1 − x)

][

κ2 − p2x(1− x)− iε
] . (61)

3In contrast, M2 −m2
Rx(1− x) > 0 for 0 < x < 1 since m2

R < 4M2. Hence, it is safe to take ε → 0 in the
denominator of the argument of the logarithm (as well as in the prefactor that multiplies the logarithm).
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Note that the last line of eq. (61) was obtained by making use of the first line of eq. (60),
whereas the previous two lines of eq. (61) made use of the second line of eq. (60).

One integral can be carried out immediately,
∫ ∞

M2

dκ2
[

κ2 −m2
Rx(1− x)

]2 =
1

M2 −m2
Rx(1− x)

. (62)

Hence,

−
∫ 1

0

dx
[

M2−m2
Rx(1−x)

]

(p2−m2
R)x(1−x)

∫ ∞

M2

dκ2
[

κ2 −m2
Rx(1− x)

]2 = −1
6
(p2−m2

R) , (63)

which exactly cancels the factor of 1
6
(p2 −m2

R) in eq. (56). Hence, we are left with

R(p2) =
3g2R
4π2

∫ 1

0

x2(1−x)2dx
∫ ∞

M2

dκ2
[

κ2 −m2
Rx(1 − x)

][

κ2 − p2x(1 − x)− iε
]

[

M2 −m2
Rx(1− x)

κ2 −m2
Rx(1− x)

− 1

]

=
3g2R
4π2

∫ 1

0

x2(1− x)2dx

∫ ∞

M2

(M2 − κ2) dκ2
[

κ2 −m2
Rx(1− x)

]2[
κ2 − p2x(1− x)− iε

]

= −3g2R
4π2

∫ 1

0

x(1− x)dx

∫ ∞

M2

(M2 − κ2) dκ2
[

κ2 −m2
Rx(1− x)

]2[
p2 − κ2

x(1−x)
+ iε

]
(64)

One more trick suffices to write R(p2) in the form given by eq. (55). An equivalent form
of eq. (64) is

R(p2) = −3g2R
4π2

∫ 1

0

dx

x(1 − x)

∫ ∞

M2

dκ2
∫ ∞

4M2

M2 − κ2

(m2 −m2
R)

2(p2 −m2 + iε)
δ

(

m2 − κ2

x(1− x)

)

dm2 ,

(65)
where the limits of the integration over m2 ensure that κ2 = m2x(1 − x) for some choice of
M2 ≤ κ <∞ and 0 ≤ x ≤ 1. Using

δ

(

m2 − κ2

x(1 − x)

)

= x(1 − x)δ
(

κ2 −m2x(1 − x)
)

, (66)

and interchanging the order of integration,

R(p2) = −3g2R
4π2

∫ ∞

4M2

dm2

(m2 −m2
R)

2(p2 −m2 + iε)

∫ ∞

M2

(M2 − κ2) dκ2
∫ 1

0

δ
(

κ2 −m2x(1− x)
)

dx .

(67)
Thus, comparing with eq. (55), it follows that

σR(m
2) = − 3g2R

4π2(m2 −m2
R)

2

∫ ∞

M2

(M2 − κ2) dκ2
∫ 1

0

δ
(

κ2 −m2x(1− x)
)

dx . (68)

The argument of the delta function vanishes when κ2−m2x(1−x) = 0. The roots of this
equation are

x± =
1

2

[

1±
√

1− 4κ2

m2

]

. (69)
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We demand that 0 ≤ x± ≤ 1; otherwise the argument of the delta function does not vanish
over the range of integration over x. This condition is satisfied if 0 ≤ κ2 ≤ 1

4
m2. Hence, we

can write,

δ
(

κ2 −m2x(1− x)
)

=
1

m2(x+ − x−)

[

δ(x− x+) + δ(x− x−)
]

=
1

m2

(

1− 4κ2

m2

)−1/2
[

δ(x− x+) + δ(x− x−)
]

. (70)

After integrating eq. (68) over x,

σR(m
2) = − 3g2R

2π2m2(m2 −m2
R)

2

∫ m2/4

M2

(

1− 4κ2

m2

)−1/2

(M2 − κ2) dκ2 . (71)

The remaining integral is elementary. Defining u = 1− 4κ2/m2, it follows that

σR(m
2) = − 3g2R

32π2(m2 −m2
R)

2

∫ 1−4M2/m2

0

du√
u

[

4M2 −m2 +m2u
]

=
g2R
8π2

m2

(m2 −m2
R)

2

(

1− 4M2

m2

)3/2

, (72)

in agreement with eq. (48).

2. Consider the function of a real parameter z

F (z) ≡
∫ 1

0

dx ln
[

1− zx(1 − x)− iǫ
]

, (73)

where ǫ is a positive infinitesimal quantity. The function F (z) appears in the computation
of the one-loop correction to the 4-point Green function in scalar field theory.

(a) Evaluate ImF (z). For what values of z does ImF vanish?

We shall denote the argument of the logarithm in eq. (73) by the function,

f(x) ≡ zx2 − zx+ 1 ≥ 0 .

First, we note that f(0) = f(1) = 1. Next, we compute the first and second derivatives,

f ′(x) = z(2x− 1) , f ′′(x) = 2z ,

Thus, f(x) has an extremum at x = 1
2
. Since f ′′(1

2
) = 2z, it follows that x = 1

2
is a maximum

if z < 0 and x = 1
2
is a minimum if z > 0. At z = 0, we have f(x) = 1 for all x. Moreover, for

z > 0, the minimum value of f(x) is equal to f(1
2
) = 1− 1

4
z. That is, for values of 0 ≤ z ≤ 4,

the minimum value of f(x) is nonnegative for all 0 ≤ x ≤ 1. Moreover, for values of z ≤ 0,
we have f(x) ≥ 1 in the region where 0 ≤ x ≤ 1.
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Observe that ImF (z) = 0 if f(x) > 0 for 0 ≤ x ≤ 1, which implies that ImF (z) = 0 if
z < 4. When z > 4, the minimum value of f(x) at x = 1

2
is negative. Since f(0) = f(1) = 1,

it follows that f(x) < 0 for values of x− < x < x+, where x± are the roots of f(x),

x± = 1
2

[

1±
√

1− 4

z

]

. (74)

Thus,

ImF (z) = Θ(z − 4)

∫ x+

x
−

dx Im ln
[

1− zx(1 − x)− iǫ
]

, (75)

where we have explicitly included the step function to enforce the condition that ImF (z) = 0
if z < 4. To evaluate the imaginary part of the logarithm, we employ the principal value
of the complex-valued logarithm, with the branch cut taken along the negative real axis. In
particular, assuming that x is a non-zero real number and ǫ is a positive infinitesimal,

ln(x− iǫ) = ln |x| − iπΘ(−x) . (76)

It follows that Im ln(x− iǫ) = −πΘ(−x) . Employing this result in eq. (75),

ImF (z) = −Θ(z − 4)π

∫ x+

x
−

dx = −Θ(z − 4)π
(

x+ − x−
)

= −Θ(z − 4)π

√

1− 4

z
, (77)

after using the explicit form for x± given in eq. (74). Note that ImF (z = 4) = 0 at the
boundary between the regions where ImF (z) is nonzero and where it vanishes.

(b) Evaluate ReF (z). Consider separately the cases of 0 ≤ z < 4 and z > 4.

Assume first that 0 ≤ z < 4. In this case, the argument of the logarithm in eq. (73) is
positive, in which case we can drop the −iǫ term and write

F (z) ≡
∫ 1

0

dx ln
[

1− zx(1 − x)
]

, for 0 ≤ z < 4. (78)

Let us set x = 1
2
(1− y). Then, 1− x = 1

2
(1 + y) and x(1 − x) = 1

4
(1− y2). Thus,

F (z) = 1
2

∫ 1

−1

ln
[

1− 1
4
z(1− y2)

]

dy =

∫ 1

0

ln
[

1− 1
4
z(1− y2)

]

dy , for 0 ≤ z < 4, (79)

after noting that the integrand is an even function of y. Integrating by parts, we take
u = ln

[

1− 1
4
z(1 − y2)

]

and dv = dy, which yields,

F (z) = y ln
[

1− 1
4
z(1 − y2)

]

∣

∣

∣

∣

1

0

−
∫ 1

0

1
2
zy2 dy

1− 1
4
z + 1

4
zy2

= −2

∫ 1

0

y2 dy
4
z
− 1 + y2

= −2

[

1−
(

4

z
− 1

)
∫ 1

0

dy
4
z
− 1 + y2

]

. (80)

The remaining integral is elementary, and we end up with,

F (z) = −2 + 2

(

4

z
− 1

)1/2

arctan





1
√

4
z
− 1



 , for 0 ≤ z ≤ 4. (81)
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One can rewrite eq. (81) in a slightly different form. In light of the relation,

arcsin x = arctan

(

x√
1− x2

)

, for x2 < 1, (82)

it follows that

F (z) = 2

{

(

4

z
− 1

)1/2

arcsin
(

1
2

√
z
)

− 1

}

, for 0 ≤ z ≤ 4. (83)

As indicated in eqs. (81) and (83), the above results are also applicable at z = 4, since
eq. (79) yields

F (z = 4) =

∫ 1

0

ln(y2) dy = −2 , (84)

in agreement with eqs. (81) and (83) in the limit of z → 4.
Second, we assume that z > 4. In this case, ImF (z) 6= 0 and is given explicitly in eq. (77).

In light of eq. (76) it follows that

ReF (z) =

∫ 1

0

dx ln
∣

∣1− zx(1 − x)
∣

∣ . (85)

We can again employ eq. (79), which yields

ReF (z) =

∫ 1

0

ln
∣

∣1− 1
4
z(1 − y2)

∣

∣ dy , for z > 4 . (86)

Integrating by parts, we take u = ln
∣

∣1− 1
4
z(1− y2)

∣

∣ and dv = dy. In the computation of du,
we shall use the relation given in eq. (2) of the class handout entitled Generalized Functions

for Physics,
d

dx
ln |x| = P

1

x
, (87)

where P indicates the principal value prescription. Hence, the integration by parts yields

ReF (z) = y ln
∣

∣1− 1
4
z(1 − y2)

∣

∣

∣

∣

∣

∣

1

0

−P

∫ 1

0

1
2
zy2 dy

1− 1
4
z + 1

4
zy2

= −2 P

∫ 1

0

y2 dy
4
z
− 1 + y2

= −2

[

1−
(

4

z
− 1

)

P

∫ 1

0

dy
4
z
− 1 + y2

]

, (88)

Using the definition of the principal value prescription, it follows that for 0 < a < 1,

P

∫ 1

0

dy

y2 − a2
= − 1

2a
P

∫ 1

0

(

1

y + a
− 1

y − a

)

dy = − 1

2a

[

ln

(

1 + a

a

)

− P

∫ 1

0

dy

y − a

]

= − 1

2a

[

ln

(

1 + a

a

)

− lim
δ→0+

{
∫ a−δ

0

dy

y − a
+

∫ 1

a+δ

dy

y − a

}]

= − 1

2a

[

ln

(

1 + a

a

)

− lim
δ→0+

{

ln

(

δ

a

)

+ ln

(

1− a

δ

)}]

= − 1

2a
ln

(

1 + a

1− a

)

. (89)
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Hence, after setting a = (1− 4/z)1/2, eqs. (77), (88) and (89) yield,

F (z) = −2 +

√

1− 4

z



ln





1 +
√

1− 4
z

1−
√

1− 4
z



− iπ



 , for z ≥ 4. (90)

In light of eq. (84), we see that eq. (90) is also valid at the boundary where z = 4. One can
also rewrite eq. (90) in a slightly different form. Employing the relation,

arccosh x = ln
(

x+
√
x2 − 1

)

= 1
2
ln

(

x+
√
x2 − 1

x−
√
x2 − 1

)

= 1
2
ln





1 +
√

1− 1
x2

1−
√

1− 1
x2



 , for x ≥ 1,

(91)
it follows that

F (z) = 2

{

(

1− 4

z

)1/2
[

arccosh
(

1
2

√
z
)

− 1
2
iπ
]

− 1

}

, for z ≥ 4. (92)

As a final check, we can compute the asymptotic form of F (z) in the limit of z → ∞.
Starting from eq. (73), the leading behavior as z → ∞ can be obtained simply by ignoring
the 1 inside the argument of the logarithm. Hence,

F (z) ∼ ln(−z − iǫ) +

∫ 1

0

ln
[

x(1− x)
]

dx = ln z − iπ − 2 , as z → ∞. (93)

Indeed, in the limit of z → ∞, it is straightforward to use eq. (90) to obtain,

F (z) = −2 + ln z − iπ +O
(

1

z

)

, as z → ∞, (94)

in agreement with eq. (93).

REMARKS:

One can easily verify that eqs. (83) and (92) are analytic continuations of each other by
keeping track of the iǫ factors. In particular, note that F (z) ≡ limǫ→0+ F (z + iǫ). Thus, for
real values of z > 4,

lim
ǫ→0+

√

4

z + iǫ
− 1 = lim

ǫ→0+

√

4

z
− 1− iǫ = −i

√

1− 4

z
, (95)

since we are evaluating the square root of a number that lies just below the branch cut of the
complex square root function that runs along the negative real axis. Hence, if we analytically
continue the expression given by eq. (83) into the parameter regime where z > 4,4 we recover
the result previously obtained in eq. (92),

4The principal value of the complex arccosine function, arccos(x+ iy), is defined in the cut complex plane,
where the cuts comprise the real intervals (−∞,−1] ∪ [1,∞). For example, for values of x + iǫ where x ≥ 1
and ǫ is a positive infinitesimal, limǫ→0+ arccos(x+ iǫ) = −i arccoshx, which has been employed in obtaining
the final result of eq. (96) [cf. eqs. (4.23.24) and (4.37.19) of F.W.J. Olver, D.W. Lozier, R.F. Boisvert and
C.W. Clark, editors, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge,
UK, 2010)].
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lim
ǫ→0+

F (z + iǫ) = lim
ǫ→0+

−2 + 2

(

4

z + iǫ
− 1

)1/2

arcsin
(

1
2

√
z + iǫ

)

= −2− 2i

(

1− 4

z

)1/2

lim
ǫ→0+

[

1
2
π − arccos

(

1
2

√
z + iǫ

)]

= −2 + 2

(

1− 4

z

)1/2
[

−1
2
iπ + arccosh

(

1
2

√
z
)]

. (96)

For completeness, we provide an evaluation F (z) in the region of z < 0. Note that eqs. (78)
and (80) are valid if z < 0. Hence, if we denote a2 ≡ 1− 4/z with a > 1 then

F (z) = −2− 2a2
∫ 1

0

dy

y2 − a2
= −2+ a

∫ 1

0

(

1

y + a
− 1

y − a

)

dy = −2+ a ln

(

a + 1

a− 1

)

. (97)

Hence, we end up with

F (z) = −2 +

√

1− 4

z
ln





√

1− 4
z
+ 1

√

1− 4
z
− 1



 , for z < 0. (98)

One can check that limz→0 F (z) = 0 which implies that F (z) is continuous at z = 0. Moreover,

F (z) = −2 + ln(−z) +O
(

1

z

)

, as z → −∞. (99)

Eq. (99) also applies in the case of z → +∞ after restoring the iε factor [cf. eq. (93)] via
z → z + iε in the case of large positive z. This observation is not surprising given that
eqs. (90) and (98) are analytic continuations of each other.

(c) Consider the unrenormalized 1PI 4-point Green function, Γ(4)(p1, . . . p4), where all
four-momenta pi are on mass shell, in a field theory of a real scalar field with mass m and
an interaction Lagrangian density, LI = −λφ4/4!. Using the Feynman rules for this theory,
write down an integral expression for the full O(λ2) contribution to Γ(4). From the integral
expression, evaluate ImΓ(4), up to order λ2 by making use of the Cutkosky cutting rules.5

The Feynman rules for the scalar propagator and the 4-point scalar interaction are

−iλ

p
i

p2 −m2 + iǫ

5See, e.g. Section 24.1.2 [pp. 456–459] of Matthew Schwartz, Quantum Field Theory and the Standard

Model (Cambridge University Press, 2014).
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The Feynman rules are used to compute iΓ(4), where Γ(4) is the 1PI 4-point Green function.
At tree level, iΓ(4) = −iλ. The one-loop contributions to iΓ(4) are obtained by using the
Feynman rules to evaluate the one-loop diagrams that are exhibited below.

p1

p2

p3

p4

q

q − p1 − p2

p1 p3

p2 p4

p1 p4

p2 p3

s-channel t-channel u-channel

Thus, employing the Feynman rules (and recalling the symmetry factor of 1
2
for each of

the diagrams above), it follows that including all terms up to O(λ2),

iΓ(4) = −iλ+1
2
(−iλ)2

∫

d4q

(2π)4

{

i

q2 −m2 + iǫ

i

(q − p1 − p2)2 −m2 + iǫ
+(p2 → p3)+(p2 → p4)

}

,

where the second and third terms above in the integrand are given by the first term with the
momentum substitutions indicated. That is, the three terms exhibited in iΓ(4) correspond to
the s-channel, t-channel and u-channel diagrams, respectively. Thus,

Γ(4) = −λ− 1
2
iλ2
∫

d4q

(2π)4

{

1

q2 −m2 + iǫ

1

(q − p1 − p2)2 −m2 + iǫ
+(p2 → p3)+ (p2 → p4)

}

.

We shall focus first on the s-channel diagram. We expect that the singularity structure in
the complex s plane to have a branch point at the threshold for the 2 → 2 scattering process
at threshold, s = 4m2, and a branch cut extending to ∞ along the positive real axis.6

By definition, the discontinuity of Γ(4)(s) across the branch cut is

Disc Γ(4)(s) ≡ Γ(4)(s+ iǫ)− Γ(4)(s− iǫ) ,

where ǫ is a positive infinitesimal. The cutting rules state that Disc Γ(4)(s) is obtained by
cutting the Feynman diagram

p1

p2

p3

p4

q

p1 + p2 − q

6Note that s = (p1 + p2)
2 = 2(m2 + p1 ·p2) = 2(m2 + E1E2 − ~p1 ·~p2). At threshold, ~p1 = ~p2 = 0 and

E1 = E2 = m, which implies that s = 4m2 at threshold.
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and replacing the “cut” propagators by:

1

q2 −m2 + iǫ
−→ −2πiδ(q2 −m2)Θ(q0) .

The discontinuity Disc Γ(4)(s) is related to ImΓ(4)(s) as follows. First, we observe that
the reflection principle of complex analysis implies that7

Γ(4)(s− iǫ) = Γ(4)(s+ iǫ)∗ . (100)

It then follows that

Disc Γ(4)(s) ≡ Γ(4)(s+ iǫ)− Γ(4)(s+ iǫ)∗ = 2i ImΓ(4)(s) ,

where Γ(4)(s) ≡ limǫ→0 Γ
(4)(s + iǫ). Applying the cutting rules to the s-channel one-loop

diagram (shown above),

2i ImΓ(4)(s) = −1
2
iλ2(−2πi)2

∫

d4q

(2π)4
δ(q2−m2)Θ(q0)δ

(

(q−p1−p2)2−m2
)

Θ(p10+p20−q0) .
(101)

It should be noted that the form of the Θ-function corresponds to placing a cut propagator
line on mass shell. To evaluate the integral in eq. (101), note that
∫

d4q δ(q2 −m2)Θ(q0) =

∫

d3q dq0 δ(q
2
0 − |~q|2 −m2)Θ(q0)

=

∫

d3q dq0
1

2
√

|~q|2 +m2

[

δ
(

q0 −
√

|~q|2 +m2 + δ
(

q0 +
√

|~q|2 +m2

]

Θ(q0)

=

∫

d3q

2
√

|~q|2 +m2
.

It follows that
∫

d4q

(2π)4
δ(q2 −m2)Θ(q0)δ

(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

=
1

(2π)4

∫

d3q

2
√

|~q|2 +m2
δ
(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

∣

∣

∣

∣

q0=
√

|~q|2+m2

,

which can be rewritten as
∫

d4q

(2π)4
δ(q2 −m2)Θ(q0)δ

(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

=
1

(2π)4

∫

d3q

2
√

|~q|2 +m2
δ
(

s− 2q ·(p1 + p2)
)

Θ(p10 + p20 − q0)

∣

∣

∣

∣

q0=
√

|~q|2+m2

, (102)

after using s ≡ (p1 + p2)
2 and noting that q2 −m2 = 0 is equivalent to q0 =

√

|~q|2 +m2.
7See the Appendix at the end of this solution. In addition, a very nice discussion can be found in Paul

Roman, Introduction to Quantum Field Theory (John Wiley & Sons, Inc., New York, NY, 1969) pp. 440–441.
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The simplest way to evaluate the integral above is to work in the center-of-mass frame of
the system, where p1+ p2 =

(√
s ; ~0

)

, where
√
s is defined to be the positive square root of s.

In this case, 2q ·(p1 + p2) = 2q0
√
s = 2

√
s
√

|~q|2 +m2, and eq. (102) reduces to
∫

d4q

(2π)4
δ(q2 −m2)Θ(q0)δ

(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

=
1

(2π)4

∫

d3q

2
√

|~q|2 +m2
δ
(

s− 2
√
s
√

|~q|2 +m2
)

Θ
(√

s−
√

|~q|2 +m2
)

. (103)

The delta function enforces
√
s = 2

√

|~q|2 +m2, which means that the argument of the step

function is positive so that Θ
(√

s−
√

|~q|2 +m2
)

= 1. Hence,

∫

d4q

(2π)4
δ(q2 −m2)Θ(q0)δ

(

(q − p1 − p2)
2 −m2

)

Θ(p10 + p20 − q0)

=
1

(2π)4
√
s

∫

d3q δ
(

s− 2
√
s
√

|~q|2 +m2
)

. (104)

To evaluate the above integral, use spherical coordinates, d3q = |~q|2d|~q| dΩ = 4π|~q|2d|~q|,
since there is no dependence on the direction of ~q in the integrand above. It is convenient to
change the integration variable to E ≡

√

|~q|2 +m2, in which case |~q|d|~q| = EdE. Hence,
∫

d3q δ
(

s− 2
√
s
√

|~q|2 +m2
)

= 4π

∫ ∞

m

|~q|E dE δ
(

s− 2
√
sE
)

=
2π√
s

∫ ∞

m

E(E2 −m2)1/2δ
(

E − 1
2

√
s
)

dE

=
π
√
s

2

(

1− 4m2

s

)1/2

Θ
(√

s− 2m
)

. (105)

The presence of the Θ-function in eq. (105) is due to the observation that if
√
s < 2m,

then the argument of the delta function is never zero over the range of integration from
m ≤ E < ∞, in which case the delta function must be set to zero. Moreover, since

√
s is

positive by definition, one can rewrite Θ
(√

s− 2m
)

as follows,

Θ(
√
s− 2m) = Θ

(

(
√
s− 2m)(

√
s+ 2m)

)

= Θ(s− 4m2) , (106)

Indeed, the δ function and Θ function conditions in eq. (105) are satisfied if and only if
s ≥ 4m2. In light of eqs. (104)–(106), we end up with

∫

d4q

(2π)4
δ(q2−m2)Θ(q0)δ

(

(q−p1−p2)2−m2
)

Θ(p10+p20−q0) =
1

32π3

(

1− 4m2

s

)1/2

Θ
(

s−4m2
)

.

(107)
Inserting the above expression into eq. (101) yields our final result,

ImΓ(4)(s) =
λ2

32π

(

1− 4m2

s

)1/2

Θ
(

s− 4m2
)

. (108)
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So far, we have only examined the s-channel piece of the above expression. If we now
include the t-channel and u-channel diagrams, it is clear that the only change in our analysis
is to replace s with t and u, respectively. Thus,

ImΓ(4)(p1, p2, p3, p4) =
λ2

32π

[

(

1− 4m2

s

)1/2

Θ
(

s− 4m2
)

+

(

1− 4m2

t

)1/2

Θ
(

t− 4m2
)

+

(

1− 4m2

u

)1/2

Θ
(

u− 4m2
)

]

. (109)

The physical region of scattering corresponds to s ≥ 4m2, t < 0 and u < 0. Thus, the last two
terms on the right hand side of eq. (109) do not survive in the physical scattering amplitude,
in which case

ImΓ(4)(p1, p2, p3, p4) =
λ2

32π

√

1− 4m2

s
. (110)

(d) An explicit one-loop computation of Γ(4) yields

Γ(4)(p1, p2, p3, p4) = −λ− λ2

32π2

[

F
( s

m2

)

+ F

(

t

m2

)

+ F
( u

m2

)

+G(m2)

]

, (111)

where all momenta point into the vertex, s ≡ (p1 + p2)
2, t ≡ (p1 + p3)

2, u ≡ (p1 + p4)
2 are

Lorentz-invariant kinematic variables, the function F is defined in part (a), and the function
G(m2) is a real function.8 Using eq. (111) and the results of part (a), compute ImΓ(4) and
check that your calculation in part (b) is correct.

Using eq. (77) with z = s/m2 yields

ImF
( s

m2

)

= −θ(s− 4m2)π

√

1− 4m2

s
.

In eq. (111), only F (s/m2) has an imaginary part in the physical region corresponding to
s ≥ 4m2, t < 0 and u < 0. Taking the imaginary part of eq. (111) therefore yields

ImΓ(4)(p1, p2, p3, p4) = − λ2

32π2
ImF

( s

m2

)

=
λ2

32π

√

1− 4m2

s
.

Indeed, we have reproduced the result of the cutting rules given by eq. (110).

APPENDIX: The reflection principle of complex analysis and its implications

If f(z) is an analytic function in some region of the complex plane, then so is f ∗(z∗). If
f(z) is a real valued function in a region of the complex plane that includes part of the real
axis, then f(z) = f ∗(z∗) along that part of the real axis (since z = z∗ on the real axis). Thus,

8In fact, the function G is infinite, but this infinity can be removed by renormalization. Since we are only
interested here in ImΓ(4), we can safely ignore any details associated with the renormalization procedure.
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f ∗(z∗) and f(z) are analytic continuations of one another. As long as no singularities are
encountered, it follows that f(z) = f ∗(z∗), which implies that f ∗(z) = f(z∗). That is, we
have proven the reflection principle of complex analysis,

Theorem (Reflection principle): If f(z) is real and analytic on a continuous part of the real
axis, then f ∗(z) = f(z∗) at all points in the complex plane where f(z) is analytic.

That is, the reflection principle is a consequence of the principle of analytic continuation.
As an application of the reflection principle, we can show that Disc Γ(4)(s) is related to
ImΓ(4)(s). In particular, applying the reflection principle to Γ(4)(s+ iǫ) yields

Γ(4)(s− iǫ) = Γ(4)(s+ iǫ)∗ , (112)

which was quoted in eq. (100). We can therefore conclude that

Disc Γ(4)(s) ≡ Γ(4)(s+ iǫ)− Γ(4)(s+ iǫ)∗ = 2i ImΓ(4)(s) ,

where we have defined
Γ(4)(s) ≡ lim

ǫ→0
Γ(4)(s + iǫ) .

The upshot of this discussion is that the cutting rules can be employed to compute ImΓ(4)(s).

3. The photon vacuum polarization function is defined to be:

Πµν(q) = (qµqν − gµνq2)Π(q2) .

In class, we evaluated this function at one-loop in the MS scheme. Consider a second scheme,
called the on-shell scheme, in which we define Π(q2 = 0) ≡ 0.

(a) Evaluate Z3 in this scheme.

In class, we used the method of counterterms to derive the renormalized vacuum polar-
ization in terms of the renormalized coupling eR and mass mR. To simplify the typography,
we shall henceforth drop the subscripts R. The end result obtained in class was,

Π(q2) =
2α

π
(4π)ǫΓ(ǫ)

∫ 1

0

dx x(1− x)

[

m2 − q2x(1− x)

µ2

]−ǫ

+ Z3 − 1

=
α

3π

(

1

ǫ
− γ + ln 4π

)

− 2α

π

∫ 1

0

dx x(1− x) ln

[

m2 − q2x(1− x)

µ2

]

+ Z3 − 1, (113)

after dropping terms of O(ǫ) and higher. In the on-shell scheme, Π(q2 = 0) = 0. That is,

α

3π

[

1

ǫ
− γ + ln 4π − ln

(

m2

µ2

)]

+ Z3 − 1 = 0 .

Solving for Z3, we find

Z3 = 1− α

3π

[

1

ǫ
− γ + ln 4π − ln

(

m2

µ2

)]

. (114)
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(b) Obtain asymptotic forms for Π(q2) in two limiting cases: (i) q2 → 0, and (ii) q2 → ∞.

Inserting the expression for Z3 given in eq. (114) back into eq. (113) yields

Π(q2) = −2α

π

∫ 1

0

dx x(1− x) ln

[

m2 − q2x(1− x)

m2

]

,

in the on-shell scheme. Consider first the q2 → 0 limit. Expanding the logarithm,

ln

[

m2 − q2x(1 − x)

m2

]

≃ − q2

m2
x(1− x) .

Thus,

Π(q2)

∣

∣

∣

∣

q2→0

≃ 2αq2

πm2

∫ 1

0

x2(1− x)2 dx =
αq2

15πm2
. (115)

Next, we consider the q2 → ∞ limit. In this case, we need to restore the positive infinites-
imal ε back into the argument of the logarithm using m2 → m2 − iε. In the q2 → ∞ limit,
we can drop the m2 in the numerator of the argument of the logarithm, in which case,

Π(q2)

∣

∣

∣

∣

q2→∞

= −2α

π

∫ 1

0

dx x(1− x)

{

ln

(

− q2

m2
− iε

)

+ ln
[

x(1 − x)
]

}

.

Performing the elementary integrations yields,

Π(q2)

∣

∣

∣

∣

q2→∞

= − α

3π
ln

(

− q2

m2
− iε

)

+
5α

9π
. (116)

JUST FOR FUN:

One can compute Π(q2) exactly (in the one-loop approximation) by evaluating the integral,

G(z) =

∫ 1

0

x(1 − x) ln
[

1− zx(1 − x)− iε
]

dx . (117)

Following the steps of the derivation of F (z) in part (b) of problem 2, we first consider the
case of 0 ≤ z < 4. After changing the integration variable from x to y and integrating by
parts as in eqs. (79) and (81), we obtain

G(z) = −1

2

∫ 1

0

y2
(

1− 1
3
y2
)

dy
4
z
− 1 + y2

. (118)

Defining a2 ≡ −1 + 4/z with a > 0, we evaluate the following integrals,

∫ 1

0

y2 dy

y2 + a2
= 1− a2

∫ 1

0

dy

y2 + a2
= 1− a arctan

(

1

a

)

,

∫ 1

0

y4 dy

y2 + a2
=

∫ 1

0

y2 dy − a2
∫ 1

0

y2 dy

y2 + a2
=

1

3
− a2 + a3 arctan

(

1

a

)

. (119)
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Hence,

G(z) = −4
9
− 1

6
a2 + 1

6
a(a2 + 3) arctan

(

1

a

)

. (120)

Finally, after employing eq. (82),

G(z) = − 5

18
− 2

3z
+

1

3

(

2

z
+ 1

)(

4

z
− 1

)1/2

arcsin
(

1
2

√
z
)

, for 0 ≤ z ≤ 4. (121)

We can check eq. (121) in the limits as z → 0 and z → 4. The behavior of G(z) as z → 0
requires employing the expansion of the arcsine function,

arcsin x = x+ 1
6
x3 + 3

40
x5 +O(x7) . (122)

A straightforward but tedious exercise (which I have worked out by hand) yields,

G(z) = − z

30
+O(z2) . (123)

Indeed G(0) = 0 is a consequence of setting z = 0 in eq. (117). The behavior of G(z) as
z → 0 was obtained in eq. (115) and is consistent with the result shown in eq. (123). Finally,
G(4) can be immediately deduced from eq. (118),

G(4) = −1
2

∫ 1

0

(

1− 1
3
y2
)

= −4
9
, (124)

in agreement with eq. (121).
The case of z > 4 can be obtained from eq. (121) by analytic continuation using the

results given in eqs. (91), (95) and (96). The end result is,

G(z) = −4

9
+

1

6

(

1− 4

z

)

+
1

6

(

1 +
2

z

)(

1− 4

z

)1/2


ln





1 +
√

1− 4
z

1−
√

1− 4
z



− iπ



 , for z ≥ 4.

(125)
One can easily confirm the result for ImG(z) following the method presented in part (a) of
problem 2. The behavior of G(z) as z → ∞ was obtained in eq. (116) and is consistent with
the result,

G(z) ∼ − 5
18

+ 1
6
[ln z − iπ] , as z → ∞ , (126)

obtained from eq. (125).
Finally, the case of z < 0 is easily treated starting from eq. (118), and results in

G(z) = −4

9
+

1

6

(

1− 4

z

)

+
1

6

(

1 +
2

z

)(

1− 4

z

)1/2

ln





√

1− 4
z
+ 1

√

1− 4
z
− 1



 , for z < 0. (127)

It is straightforward to check that eq. (127) yields limz→0G(z) = 0, which implies that G(z)
is continuous at z = 0. Moreover, eq. (123) is valid for both signs of z. Finally,

G(z) = − 5
18

+ 1
6
ln(−z) +O

(

1

z

)

, as z → −∞. (128)

Eq. (128) also applies in the case of z → +∞ after restoring the iε factor via z → z + iε in
the case of large positive z. This observation is not surprising given that eqs. (125) and (127)
are analytic continuations of each other.
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In summary, in the on-shell renormalization scheme in the one-loop approximation,

Π(q2) = −2α

π
G(q2/m2) , (129)

where the function G(q2/m2) is given by eq. (127) [for q2 < 0], eq. (121) [for 0 ≤ q2 ≤ 4m2]
and eq. (125) [for q2 ≥ 4m2]. The case of q2 < 0 will be treated further in part (c) below.

(c) Using the q2 → 0 limit of part (b), compute the O(α) correction to the Coulomb
potential. OPTIONAL: Compute the O(α) correction to the Coulomb potential without
making the approximation of small q2. Examine explicitly the limiting cases mer ≫ 1 and
mer ≪ 1.

To find the correction to the Coulomb potential, consider the potential felt by an electron
due to an infinitely heavy source of charge Ze. In this limit, if p is the initial four-momentum
and p′ is the final four-momentum, then the three-momentum is conserved but there is no
energy transfer. Diagrammatically, we can represent this process by the interaction of an
electron with a classical external source (denoted by × in the diagram below),

p′

p

q

× Ze

The kinematics of this process are:

q = p′ − p , q0 = 0 , q2 = (q0)
2 − |~q|2 = −|~q|2 .

At tree-level, the matrix element is proportional to the propagator,

M ∼ −Ze
2

|~q|2 . (130)

Recalling the first-order Born approximation of non-relativistic quantum mechanics, the non-
relativistic potential is given by the Fourier transform of the matrix element given in eq. (130),

V (r) = −Ze2
∫

d3q

(2π)3
ei~q ·~r

|~q|2 . (131)

Here is a quick and dirty way to evaluate the above integral. Employing the identity,

∇
21

r
= −4πδ3(~r) ,

it follows that
1

r
= −4π

1

∇
2

∫

d3q

(2π)3
ei~q ·~r = 4π

∫

d3q

(2π)3
ei~q ·~r

|~q|2 ,

where we have employed the integral representation of the three-dimensional delta function.
We conclude that

V (r) = −Ze
2

4πr
,

which is the well-known Coulomb potential.
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We next examine the effects of vacuum polarization at one-loop. As shown in class, the
photon propagator is modified as follows

Dµν(q
2) =

−i
q2
[

1 + Π(q2)
]

(

gµν −
qµqν
q2

)

− ia
qµqν
q4

. (132)

It is convenient to work in the Feynman gauge with a = 1, in which case,

Dµν(q
2) =

−igµν
q2
[

1 + Π(q2)
] .

In the static limit (corresponding to the q2 → 0 limit of part (b), we make use of eq. (115)
to obtain

M ∼ −Ze
2

|~q|2
(

1 +
α|~q|2
15πm2

)−1

,

after putting q2 = −|~q|2. In the static approximation, |~q| → 0, and we can expand to first
order in |~q|,

M ∼ −Ze
2

|~q|2
(

1− α|~q|2
15πm2

)

.

Thus, eq. (131) is modified,

V (r) = −Ze2
∫

d3q

(2π)3
ei~q ·~r

|~q|2
(

1− α|~q|2
15πm2

)

= −Ze
2

4πr
− Ze2α

15πm2
δ3(~r) .

This is the famous Uehling potential—the correction to the Coulomb potential of a heavy
nucleus due to vacuum polarization.

Suppose we do not use the |~q| → 0 limit of Π(q2). Then, in the static approximation,

M ∼ −Ze
2

|~q|2
{

1 +
2α

π

∫ 1

0

dx x(1− x) ln

[

m2 + |~q|2x(1− x)

m2

]}

.

To simplify the notation, for the rest of this calculation I shall denote q ≡ |~q|. Following our
previous analysis,

V (r) = −Ze2
∫

d3q

(2π)3
ei~q ·~r

q2

{

1 +
2α

π

∫ 1

0

dx x(1− x) ln

[

m2 + q2x(1− x)

m2

]}

. (133)

Thus, we need to examine,

∫

d3q

(2π)3
ei~q ·~r

q2
ln

[

1 +
q2

m2
x(1− x)

]

=
1

(2π)2

∫ ∞

0

dq ln

[

1 +
q2

m2
x(1− x)

]
∫ 1

−1

d cos θ eikr cos θ

=
1

2π2r

∫ ∞

0

dq

q
sin qr ln

[

1 +
q2

m2
x(1− x)

]

.
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Inserting the above result into eq. (133),

V (r) = − Ze2

2π2r

∫ ∞

0

dq

q
sin qr

{

1 +
2α

π

∫ 1

0

dx x(1− x) ln

[

1 +
q2

m2
x(1− x)

]}

. (134)

It will prove useful to change of variables, x = 1
2
(1−y). Then, the resulting y-integration,

which now goes from y = −1 to 1, is over an even function of y. Hence, we can take the
limits of integration to go from y = 0 to 1 and multiply by 2. Thus,

∫ 1

0

dx x(1− x) ln

[

1 +
q2

m2
x(1 − x)

]

= 1
4

∫ 1

0

dy (1− y2) ln

[

1 +
q2(1− y2)

4m2

]

= 1
2
q2
∫ 1

0

y2
(

1− 1
3
y3
)

dy

4m2 + q2(1− y2)
.

To achieve the last step, we integrated by parts by taking u = ln
[

1 + q2(1− y2)/(4m2)
]

and
dv = (1− y2)dy. Using the above result in eq. (134),

V (r) = − Ze2

2π2r

∫ ∞

0

dq

q
sin qr

{

1 +
αq2

π

∫ 1

0

y2
(

1− 1
3
y3
)

dy

4m2 + q2(1− y2)

}

.

We can perform the integration over q using
∫ ∞

0

q sin qr

q2 + a2
dq = 1

2
πe−ar ,

either using the calculus of residues or by consulting a good table of integrals.
We end up with

V (r) = −Ze
2

4πr

{

1 +
α

π

∫ 1

0

dy
y2
(

1− 1
3
y3)

1− y2
exp

[

− 2mr
√

1− y2

]}

.

We can rewrite the integral over y with another change of variables:

u =
1

√

1− y2
, du =

ydy

(1− y2)3/2
= u2

√
u2 − 1 du .

Then y =
√
u2 − 1/u and we obtain

V (r) = −Ze
2

4πr

{

1 +
2α

3π

∫ ∞

1

du e−2mru

(

1 +
1

2u2

)
√
u2 − 1

u2

}

.

The analysis of the limiting cases for mr ≪ 1 and mr ≫ 1 is described in V.B. Berestetskii,
E.M. Lifshitz and L.P. Pitaevskii, Quantum Electrodynamics (Pergamon Press, Oxford, UK,
1980) pp. 504–508. In the two limiting cases,

V (r) = −Ze
2

4πr
×















1− 2α

3π

[

ln(mr) + γ + 5
6
+ · · ·

]

, for mr ≪ 1 ,

1 +
α

4
√
π(mr)3/2

e−2mr + · · · , for mr ≫ 1 .
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(d) Show that the quantity:

αeff(q
2) ≡ α

1 + Π(q2)
(135)

is independent of whether you evaluate this expression using bare or renormalized quantities.
As a result, argue that αeff(q

2) is independent of renormalization scheme. Find the relation
between the couplings defined in the MS and on-shell schemes (αMS and αOS, respectively), in
the one loop approximation. Sketch a graph of αeff(−q2) at one-loop, in the on-shell scheme,
i.e. for negative values of the argument.

NOTE: In the on-shell scheme, αeff(0) is the fine structure constant, which is approximately
equal to 1/137.

Consider the quantity defined in eq. (135), where α and Π(q2) are the bare coupling and
vacuum polarization, respectively. Note that in part (a), the method of counterterms was used
to obtain the renormalized vacuum polarization in terms of the renormalized coupling. For
typographical simplicity, we omitted the subscript R on all relevant quantities. To distinguish
between bare and renormalized quantities, we shall instead include a subscript B on bare
quantities. Thus, αB will denote the bare coupling, αB = e2B/(4π), and ΠB(q

2) will be the
vacuum polarization as computed with the original Lagrangian expressed in terms of bare
fields, couplings and masses.

We therefore define
αeff(q

2) ≡ αB
1 + ΠB(q2)

.

The relation between bare and renormalized quantities were obtained in class. In particular,

AµB = Z
1/2
3 Aµ , eB = Z1Z

−1
2 Z

−1/2
3 µǫe , aB = Zaa . (136)

Using of the Ward-Takahashi identity for gauge invariance to deduce that Z1 = Z2, it follows
that eB = Z

−1/2
3 µǫe, or in terms of α ≡ e2/(4π),

αB = Z−1
3 µ2ǫα . (137)

The connected 2-point Green function is

D
µν
B (x, y) = 〈Ω|AµB(x)AνB(y)|Ω〉conn = Z3〈Ω|Aµ(x)Aν(y)|Ω〉conn = Z3D

µν(x, y) . (138)

Eq. (132) applies to both the bare and the renormalized connected 2-point Green functions.
Hence, it follows that

D
µν
B (q2) =

−i
q2
[

1 + ΠB(q2)
]

(

gµν − qµqν

q2

)

− iaB
qµqν

q4
,

D
µν(q2) =

−i
q2
[

1 + Π(q2)
]

(

gµν − qµqν

q2

)

− ia
qµqν

q4
,

In light of eq. (138), it follows that Z3 = Za, which was a result previously noted in class. In
addition, we conclude that

1

1 + ΠB(q2)
=

Z3

1 + Π(q2)
. (139)
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In the limit of ǫ→ 0, eq. (137) yields Z3 = α/αB, from which it follows that
αB

1 + ΠB(q2)
=

α

1 + Π(q2)
. (140)

That is, the definition of αeff in eq. (135) does not depend on whether it is computed us-
ing bare quantities or renormalized quantities. Moreover, in deriving eq. (140), no specific
renormalization scheme was imposed. Thus, αeff is renormalization scheme independent!

Thus, if we denote the minimal subtraction scheme by MS and the on-shell scheme by
OS, then

αeff(q
2) =

αMS

1 + ΠMS(q
2)

=
αOS

1 + ΠOS(q2)
. (141)

In class, we derived

Π(q2) = −2αMS

π

∫ 1

0

dx x(1 − x) ln

[

m2 − q2x(1 − x)

µ2

]

,

which should be compared with the one-loop vacuum polarization obtained in part (b),

Π(q2) = −2αOS

π

∫ 1

0

dx x(1− x) ln

[

m2 − q2x(1 − x)

m2

]

,

Employing eq. (141) to one-loop order, we can expand the denominators,

αMS

[

1− ΠMS(q
2)
]

= αOS

[

1− ΠOS(q
2)
]

,

which then yields

αMS

{

1 +
2αMS

π

∫ 1

0

dx x(1− x) ln

[

m2 − q2x(1 − x)

µ2

]

}

= αOS

{

1 +
2αOS

π

∫ 1

0

dx x(1− x) ln

[

m2 − q2x(1− x)

m2

]

}

. (142)

We can express αOS as a power series in αMS,

αOS = αMS +O
(

α2
MS

)

.

Then, eq. (142) yields

αOS = αMS

{

1 +
2αMS

π

∫ 1

0

dx x(1− x) ln

[

m2 − q2x(1− x)

µ2

]

}

+O
(

α3
MS

)

= αMS

{

1 +
αMS

3π
ln

(

m2

µ2

)

}

+O
(

α3
MS

)

.

In particular, in the one-loop approximation, we have

αOS = αMS(µ = m) . (143)

Note that for q2 > 4m2, ΠOS(q
2) acquires an imaginary part due to the on-shell production

of intermediate state e+e− pairs. Thus, to avoid this region, we shall sketch a graph of
αeff(−q2) = αOS/

[

1+ΠOS(−q2)
]

, which is a real function for positive values of q2 [cf. eq. (141)].
Although the exact expression for ΠOS(−q2) was given by eqs. (127) and (129), it suffices to

28



employ the limiting cases obtained in part (b),

as q2 → 0, ΠOS(−q2) → − αOSq
2

15πm2
, (144)

as q2 → ∞, ΠOS(−q2) → −αOS

3π
ln

(

q2

m2

)

. (145)

Indeed, the quantity, −ΠOS(−q2), monotonically increases with increasing q2, but its value
is small compared to 1 until q2/m2 becomes exponentially large (for more details, see the
Remark following part (e) below). Thus, αeff(−q2)/αOS = [1 + ΠOS(−q2)]−1 diverges in a
regime where ln(q2/m2) ≫ 1. In light of eq. (145), it follows that αeff(−q2) blows up when

1− αOS

3π
ln

(

q2

m2

)

≃ 0 ,

that is, when q2 ≃ m2 exp
(

3π/αOS

)

. In particular,

αeff(−q2)
α

≃ 1− 3π

α ln(q2/Λ2)
, (146)

where α ≡ αOS = αeff(0) and Λ2 ≡ m2 exp
(

3π/α
)

. A sketch of αeff(−q2)/α vs. q2/Λ2 is
shown below, Note that αeff(0) = α ≃ 1/137 is the standard definition of the QED coupling
constant based on the Thomson limit.

0.0 0.2 0.4 0.6 0.8 1.0

q2

2

2.×10
4

4.×10
4

6.×10
4

8.×10
4

1.×10
5

eff(-q
2) /

(e) Calculate the numerical value of the momentum scale (in GeV units) where αeff(−q2)
blows up.

As is evident from the above plot, αeff(−q2) blows up at q2 = Λ2 = m2 exp
(

3π/αOS

)

.
Using αOS = 1/137 and m = me = 0.511× 10−3 GeV, we obtain9

Λ = (0.511× 10−3 GeV)e3π ·137/2 ≃ 10277 GeV , (147)

9Note that e3π ·137/2 = 10[3π ·137/2]/ ln 10 = 2.4× 10280.
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which is an incredibly large number (well beyond the Planck scale, MPL = 1019 GeV, at
which quantum gravitational effects become significant and QED surely must break down).

REMARK:

In order to justify in more detail the statement that −ΠOS(−q2) monotonically increases
with increasing q2, but its value is small compared to 1 until q2/m2 becomes exponentially
large, the following plot exhibited below may be illuminating. Recall that [cf. eq. (129)],

Π(−q2) = −2α

π
G(−q2/m2) , (148)

where G(z) is the function whose exact form was given in eq. (127). Mathematica provides
the following expansion for |z| ≪ 1,

G(−z) = z

30
− z2

280
+

z3

1890
− z4

11088
+

z5

60060
+O(z6) . (149)

For values of |z| ≫ 1 [cf. eq. (128)],

G(−z) = − 5

18
+

1

6
ln z +

1

z
+O

(

ln z

z2

)

, as z → −∞. (150)

In the plot below, I compare the exact expression for G(−z) [blue curve] with the linear
approximation, G(−z) ≃ z/30 [orange curve], the small |z| expression given by eq. (149)
[red curve], and the large |z| expression given by eq. (150) [magenta curve]. I also added the
dashed magenta curve which corresponds to the first two terms of the large |z| expansion.

10 20 30 40 50
z

0.1

0.2

0.3

0.4

G(-z)

It should now be clear that −Π(−q2) = (2α/π)G(−z) is a monotonically increasing func-
tion of z ≡ q2/m2, but the quantity (2α/π)G(−z) attains the value of 1 only for exponentially
large values of z where G(−z) is dominated by its logarithmic behavior in z.
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4. Consider QED coupled to a neutral scalar field:

L = LQED + 1
2
∂µφ∂

µφ− 1
2
m2φ2 − λ

4!
φ4 − gψψφ . (151)

(a) Compute the amplitude for the decay φ → γγ, as a function of me, m, g, and
α ≡ e2/(4π), using perturbation theory at one-loop. Simplify your answer by invoking the
kinematics of the problem, i.e. momentum conservation and the on-shell conditions for the
external particles. Take care to consider two diagrams which differ only in the direction of
flow of electric charge in the loop. Do you need to add a counterterm in order to remove an
infinity? Explain.

Because there is no coupling of φ to two photons in the bare Lagrangian [cf. eq. (151)],
there is no counterterm for the φγγ vertex. Thus, the renormalizability of the theory implies
that the sum of all loop diagrams that contribute to φ→ γγ must be finite.10

There are two Feynman diagrams contributing to φγγ at one loop:

q

q − p

k1, µ

k2, ν

p q − k1

(a)

q

q − p k1, µ

k2, ν

p q − k2

(b)

Diagrams (a) and (b) differ in that the outgoing photons are interchanged. Equivalently, one
can say that in diagram (b) the flow of electric charge is opposite to that of diagram (a) [by
rotating the triangle by 180◦ out of the plane at the scalar–fermion vertex].

Applying the Feynman rules, and recalling the minus sign for the closed fermion loop,

iMa = −
∫

dnq

(2π)n
i3Tr

[

(−ig)(q/− /p+me)(ieγ
ν)(q/− /k1 +me)(ieγ

µ)(q/+me)
]

(q2 −m2
e + iε)

[

(q − p)2 −m2
e + iε

][

(q − k1)2 −m2
e + iε

] ǫ∗µ(k1, λ1)ǫ
∗
ν(k2, λ2) ,

(152)
where the factors of i arise from the three fermion propagators. Next, Mb is obtained from
Ma by interchanging k1 → k2 and µ→ ν,

iMb = −
∫

dnq

(2π)n
i3Tr

[

(−ig)(q/− /p+me)(ieγ
µ)(q/− /k2 +me)(ieγ

ν)(q/+me)
]

(q2 −m2
e + iε)

[

(q − p)2 −m2
e + iε

][

(q − k2)2 −m2
e + iε

] ǫ∗µ(k1, λ1)ǫ
∗
ν(k2, λ2) ,

(153)
We now evaluate the trace that appears in the numerator in eq. (152),

Tr
[

(q/− /p+me)γ
ν(q/− /k1 +me)γ

µ(q/+me)
]

= m3
e Tr(γ

µγν) +me

{

Tr
[

(q/− /p)γν(q/− /k1)γ
µ
]

+ Tr
[

(q/− /p)γνγµq/
]

+ Tr
[

γν(q/− /k1)γ
µq/
]

}

.

10Indeed, if a term φFµνF
µν , which has mass-dimension 5, did appear in eq. (151) [such a term would then

contribute at tree-level to φ → γγ], the resulting theory would be non-renormalizable.
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The computation is straightforward. The end result is,

Tr
[

(q/− /p+me)γ
ν(q/− /k1 +me)γ

µ(q/+me)
]

= 4m3
eg
µν + 4me

{

(q − p1)
µ(q − k1)

ν + (q − p1)
ν(q − k1)

µ − gµν(q − p)·(q − k1)

+(q − p)νqµ + gµνq ·(q − p)− (q − p)µqν + (q − k1)
νqµ + (q − k1)

µqν − gµνq ·(q − k1)

}

= 4me

{

gµν
[

m2
e − q2 + 2q ·k1 − p·k1

]

+ 4qµqν − 2qµ(k1 + p)ν − 2qνkµ1 + pµkν1 + pνkµ1

}

.

To perform the integral over q, we introduce Feynman parameters. Denoting the resulting
denominator factor in eq. (152) by D,

D = (1−x−y)(q2−m2
e)+
[

(q−p)2−m2
e

]

x+
[

(q−k1)2−m2
e

]

y = q2−2q ·(px+k1y)−m2
e+p

2x+k21y+iε .

For the physical φ → γγ decay, we have p2 = m2 and k21 = 0, where m is the mass of the
scalar particle. Then,

D = q2 − 2q ·(px+ k1y) +m2x−m2
e + iε .

Hence,

Ma = 8ie2gme ǫ
∗
µ(k1, λ1)ǫ

∗
ν(k2, λ2)

∫ 1

0

dx

∫ 1−x

0

dy

×
∫

dnq

(2π)n
gµν
[

m2
e − q2 + 2q ·k1 − p·k1

]

+ 4qµqν − 2qµ(k1 + p)ν − 2qνkµ1 + pµkν1 + pνkµ1
[

q2 − 2q ·(px+ k1y) +m2x−m2
e + iε

]3 .

It is convenient to isolate the numerator term that is quadratic in q, since this term yields a
potential divergence. Let us write

Ma =
(

M(1)µν
a +M(2)µν

a

)

ǫ∗µ(k1, λ1)ǫ
∗
ν(k2, λ2) ,

where

M(1)µν
a = 8ie2gme

∫ 1

0

dx

∫ 1−x

0

dy

∫

dnq

(2π)n
4qµqν − gµνq2

[

q2 − 2q ·(px+ k1y) +m2x−m2
e + iε

]3

M(2)µν
a = 8ie2gme

∫ 1

0

dx

∫ 1−x

0

dy

∫

dnq

(2π)n
gµν(m2

e + 2q ·k1 − p·k1)− 2qµ(k1 + p)ν − 2qνkµ1 + pµkν1 + pνkµ1
[

q2 − 2q ·(px+ k1y) +m2x−m2
e + iε

]3 .

Using the formulae given in the class handout entitled, Useful formulae for computing

one-loop integrals [cf. eq. (6)],

∫

dnq

(2π)n
4qµqν − gµνq2

[

q2 − 2q ·P −M2 + iε
]3 =

−iΓ(ǫ)(4π)ǫ
32π2

(P 2+M2−iε)−1−ǫ
[

4ǫP µP ν−ǫ(2P 2+M2)gµν
]

,
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where ǫ = 2− 1
2
n. Using ǫΓ(ǫ) = Γ(1 + ǫ), we see that the integral is finite as ǫ → 0. Hence

taking the n→ 4 limit,

lim
n→4

∫

dnq

(2π)n
4qµqν − gµνq2

[

q2 − 2q ·P −M2 + iε
]3 =

−i
[

4P µP ν − gµν(2P 2 +M2)
]

32π2(P 2 +M2 − iε)
.

In computing M(1)µν
a , we identify P = px+ k1y and M2 = m2

e −m2x. Hence,

P 2 +M2 = m2
e −m2x(1− x) + 2p·k1xy = m2

e −m2x(1 − x− y) .

At the final step above, we used the kinematic constraints of the φ → γγ decay11 to obtain
2p·k1 = m2. Hence,

M(1)µν
a =

e2gme

4π2

∫ 1

0

dx

∫ 1−x

0

dy

{

−2gµν +
4(px+ k1y)

µ(px+ k1y)
ν + gµν(m2

e −m2x)

m2
e −m2x(1− x− y)− iε

}

.

(154)
Further simplification can be achieved by using the properties of the photon polarization
vectors,

kµ1 ǫµ(k1, λ1) = kν2ǫν(k2, λ2) = 0 . (155)

By writing p = k1 + k2 in the numerator of the integrand in eq. (154), we can then omit any
terms proportional to kµ1 and/or kν2 . The end result is,

M(1)µν
a =

e2gme

4π2

∫ 1

0

dx

∫ 1−x

0

dy
gµν
[

−m2
e +m2x(1− 2x− 2y)

]

+ 4x(x+ y)kµ2k
ν
1

m2
e −m2x(1− x− y)− iε

. (156)

To evaluate M(2)µν
a we can set ǫ → 0 immediately, since the loop integral is manifestly

finite. Using the formulae given previously in eqs. (4) and (5),

M(2)µν
a =

e2gme

4π2

∫ 1

0

dx

∫ 1−x

0

dy

×g
µν
[

m2
e − p·k1 + 2k1 ·(px+ k1y)

]

+ pµkν1 + pνkµ1 − 2(px+ k1y)
µ(k1 + p)ν − 2(px+ k1y)

ν(k1 + p)µ

m2
e −m2x(1− x− y)− iε

.

We can simplify this result by imposing the kinematical constraints [cf. footnote 11],

k21 = k22 = 0 , p2 = m2 = 2p·k1 .

In addition, we put p = k1+ k2 and drop terms proportional to kµ1 and/or kν2 , as noted below
eq. (155). The end result it,

M(2)µν
a =

e2gme

4π2

∫ 1

0

dx

∫ 1−x

0

dy
gµν
[

m2
e +m2(x− 1

2
)
]

+ (1− 4x)kµ2k
µ
1

m2
e −m2x(1 − x− y)− iε

. (157)

11Since momentum conservation implies that k2 = p− k1, we have

0 = k22 = (p− k1)
2 = p2 − 2p·k1 + k21 = m2 − 2p·k1 ,

after using k21 = k22 = 0 and p2 = m2. Hence, we conclude that m2 = 2p·k1.
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Adding up eqs. (156) and (157) yields,

Mµν
a =

e2gme

8π2

(

m2gµν − 2kµ2k
ν
1

)

∫ 1

0

dx

∫ 1−x

0

dy
4x(1− x− y)− 1

m2
e −m2x(1− x− y)− iε

.

We can immediately write down the result for Mµν
a by interchanging k1 ↔ k2 and µ↔ ν. It

immediately follows that Mµν
a = Mµν

b . Hence, the sum of the amplitudes resulting from the
two contributing one-loop Feynman diagrams is

M =
αgme

π

(

m2gµν − 2kµ2k
ν
1

)

ǫ∗µ(k1, λ1)ǫ
∗
ν(k2, λ2)

∫ 1

0

dx

∫ 1−x

0

dy
4x(1 − x− y)− 1

m2
e −m2x(1 − x− y)− iε

,

after writing α ≡ e2/(4π). As advertised, the amplitude is manifestly finite, and no countert-
erm is required.

(b) Denote the amplitude for the scalar decay by Mµν , where µ and ν are the photon
Lorentz indices. Gauge invariance implies that kµ1Mµν = kν2Mµν = 0, where k1 and k2 are
the respective photon momenta. Does your amplitude of part (a) respect this requirement?

The result from part (a) yields

Mµν =
αgme

π

(

m2gµν − 2k2µk1ν
)

∫ 1

0

dx

∫ 1−x

0

dy
4x(1− x− y)− 1

m2
e −m2x(1− x− y)− iε

. (158)

It is straightforward to verify that kµ1Mµν = kν2Mµν = 0. For example,

kµ1
(

m2gµν − 2k2µk1ν
)

= (m2 − 2k1 ·k2)k1ν = 0 ,

after noting that
2k1 ·k2 = (k1 + k2)

2 − k21 − k22 = p2 = m2 ,

where we have used p = k1 + k2 and k21 = k22 = 0. Likewise,

kν2
(

m2gµν − 2k2µk1ν
)

= (m2 − 2k1 ·k2)k2µ = 0 ,

(c) Work out all integrals explicitly and evaluate the imaginary part of Mµν . For what
range of me/m is the amplitude purely real? Explain the physical significance of the non-zero
imaginary part.

HINT: You may find the following integral useful:

∫ 1

0

dy

y
log
[

1− 4Ay(1− y)
]

= −2
(

sin−1
√
A
)2

, (159)

for 0 ≤ A ≤ 1. For values of A outside this region, you may analytically continue the above
result. The imaginary part of this integral is easily computed once the iε factor is restored
in the argument of the logarithm.
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We examine the integral,

I =

∫ 1

0

dx

∫ 1−x

0

dy
4x(1− x− y)− 1

1− Rx(1− x− y)− iε
, (160)

where R ≡ m2/m2
e. Rewrite the numerator as

4x(1− x− y)− 1 =
4
[

Rx(1− x− y)− 1
]

+ 4− R

R
.

Then,

I = − 4

R

∫ 1

0

dx

∫ 1−x

0

dy +
4− R

R

∫ 1

0

dx

∫ 1−x

0

dy
1

1−Rx(1 − x− y)− iε

= − 2

R
+
R − 4

R2

∫ 1

0

dx

x
ln
[

1− Rx(1− x)− iε
]

. (161)

Thus, we must now evaluate

J ≡
∫ 1

0

dx

x
ln
[

1− Rx(1− x)− iε
]

. (162)

In the case of 0 ≤ R ≤ 4, the argument of the logarithm is nonnegative, and we can safely
take the limit of ε → 0. Using eq. (159),

J = −2
[

sin−1
(

1
2

√
R
)]2

, for 0 ≤ R ≤ 4 . (163)

To analytically continue beyond R = 4, we first rewrite eq. (163) by employing an identity,

sin−1
(

1
2

√
R
)

= 1
2
π − cos−1

(

1
2

√
R
)

. (164)

Hence,

J = −2
[

1
2
π − cos−1

(

1
2

√
R
)]2

, for 0 ≤ R ≤ 4 . (165)

In the case of R > 4, one cannot neglect the iε factor in eq. (162). Consequently, we
replace R→ R + iε in eq. (165),

J = −2
[

1
2
π − cos−1

(

1
2

√
R + iε

)]2
. (166)

For R > 4, we must evaluate the value of the arccosine function just above the branch cut that
runs from 1

2

√
R = 1 to ∞ along the real axis. To accomplish this, we consult F.W.J. Olver,

D.W. Lozier, R.F. Boisvert and C.W. Clark, editors, NIST Handbook of Mathematical Func-

tions (Cambridge University Press, Cambridge, UK, 2010). In particular, eqs. (4.23.24) and
(4.37.19) of this reference state that for a positive infinitesimal ε,

lim
ε→0+

cos−1(x+ iε) = −i cosh−1 x = −i ln
(

x+
√
x2 − 1

)

, for 1 < x <∞. (167)
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Thus, eq. (166) yields,

J = −2

[

1
2
π + i ln

(

1
2

√
R +

√

1
4
R − 1

)]

2

, for R > 4. (168)

In order to check this result, we shall verify the sign of Im J following the procedure of
Problem 2. We examine,

Im J = Im

∫ 1

0

dx

x
ln
[

1−Rx(1 − x)− iǫ
]

. (169)

Following eqs. (74) and (77), the roots of the argument of the logarithm are given by

x± = 1
2

[

1±
√

1− 4

R

]

. (170)

Thus,

Im J = Θ(R− 4)

∫ x+

x
−

dx

x
Im ln

[

1−Rx(1 − x)− iǫ
]

= −Θ(R− 4)π

∫ x+

x
−

dx

x

= −π ln
(

x+
x−

)

Θ(R− 4) = −π ln





1 +
√

1− 4
R

1−
√

1− 4
R



Θ(R− 4)

= −π ln
[

(

1
2

√
R +

√

1
4
R − 1

)2
]

Θ(R− 4)

= −2π ln

(

1
2

√
R +

√

1
4
R− 1

)

Θ(R− 4) , (171)

in agreement with the Im J obtained from eq. (168).
It is common practice to rewrite the argument of the logarithm eq. (168) in a more

symmetrical form,

J =















−2
[

sin−1
(

1
2

√
R
)]2

, for 0 ≤ R ≤ 4,

−1
2

[

π + i ln

(

1+
√

1− 4

R

1−
√

1− 4

R

)]2

, for R > 4 .
(172)

Hence, if we introduce a function f(R) defined by

f(R) =











sin−1
(

1
2

√
R
)

, for 0 ≤ R ≤ 4,

1
2

[

π + i ln

(

1+
√

1− 4

R

1−
√

1− 4

R

)]

, for R > 4 ,
(173)

then J = −2[F (R)]2, and eq. (161) yields,

I = − 2

R

{

1 +

(

1− 4

R

)

[

f(R)
]2
}

.
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In light of eq. (160), we see that eq. (158) yields

Mµν = −2αme

πm2

(

m2gµν − 2k2µk1ν
)

{

1 +

(

1− 4

R

)

[

f(R)
]2
}

. (174)

In particular,

ImMµν = −αme

πm2

(

m2gµν − 2k2µk1ν
)

(

1− 4

R

)

ln





1 +
√

1− 4
R

1−
√

1− 4
R



Θ(R− 4) .

Thus, ImMµν 6= 0 when R = m2/m2
e > 4, which corresponds to m > 2me. In this case,

the kinematics allows the scalar particle to decay into an e+e− pair. Thus, we can cut the
triangle diagrams to reveal the on-shell electron and positron. By the Cutkosky cutting rules,
Disc ImMµν 6= 0, and we expect a non-zero imaginary part.

EXTRA CREDIT: Derive eq. (159).

See the class handout entitled, Evaluating the one-loop function arising in H → γγ.

(d) Evaluate the leading behavior of Mµν in the limit of me → ∞.

The limit of me → ∞ corresponds to R = m2/m2
e → 0. Using eq. (173), in the limit of

R → 0,

1 +

(

1− 4

R

)

[

f(R)
]2

= 1 +

(

1− 4

R

)

[

sin−1
(

1
2

√
R
)]2

≃ 1 +

(

1− 4

R

)





√
R

2
+

1

6

(√
R

2

)3




2

≃ 1 +

(

1− 4

R

)

R

4

(

1 +
R

24

)2

≃ 1 +

(

R

4
− 1

)(

1 +
R

12

)

≃ R

6
+O(R2) . (175)

Hence, eq. (174) yields

Mµν(φ → γγ)

∣

∣

∣

∣

me→∞

= − αg

3πme

(

m2gµν − 2k2µk1ν
)

.

This is an example of the decoupling theorem, which states that the effects of very massive
particles in internal loops of Feynman diagrams yield contributions to the corresponding am-
plitude that vanish in the infinite mass limit. The decoupling theorem relies on an assumption
that it is possible to take the infinite mass limit while holding all coupling constants of the
theory fixed. This assumption is valid in the present application, where it is possible to take
me → ∞ while holding e and g fixed.
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