Physics 5B Winter 2009

How to add sine functions of different amplitude and phase

In these notes, I will show you how to add two sinusoidal waves, each of different amplitude and
phase, to get a third sinusoidal wave. That is, we wish to show that given

El = E10 sinwt, (1)
FEs = Ey sin(wt + 6) R (2)

the sum Ey = F; + E5 can be written in the form:

Ey = Eypsinwt + FEyg sin(wt + §) = Eygo sin(wt + ¢) ‘ (3)

where the amplitude Fyo and phase ¢ are determined in terms of Eig, Foy and §. In these notes,
we shall derive that the amplitude Ejyo is given by

E@Q = \/E120 + E%O + 2E10E20 cos 0

and the phase ¢ is determined modulo 27 by!

Faosin o Fi9 + Eacosd
- Cosp = —— |

sin¢ = ,
¢ Eyo Eyo

By definition, the amplitudes F1g and FEsy are positive numbers. If we divide the last two equations,
then ¢ can be determined modulo 7 from:

EQO sin §

t ==
an¢ Fi9 + Eagcosd

To determine ¢ modulo 27, we need to supplement the result for tan ¢ with
sign(sin ¢) = sign(sind), sind # 0,

where sign(sin ¢) literally means the sign (i.e. either +1 or —1) of the quantity sin¢. Finally, if
sind = 0 then cosd = £1, and ¢ can be fixed modulo 27 by

1, cosd=1,
cos ¢ = 1, cosd=-1, and FEig9> FEy,
—1, cosd=—-1, and Fj9< FEo.

Note that in the case of cosd = —1 and Fy¢g = E, we have Ey = 0 in which case Egy = 0 and ¢ is
no longer meaningful. In fact, this is the only circumstance in which Ejyy can vanish.

I shall provide two different derivations of the above formulae. Finally, in an appendix, I will
provide a mathematically more advanced derivation that makes use of complex numbers. If you
are unfamiliar with complex numbers, you can skip the appendix for now and return to this last
derivation later after you take Physics 116A or an equivalent course. This last method also provides
the real motivation for the method of phasors introduced in Section 2 below.

1The phrase, “¢ is determined modulo 27,” means that ¢ is determined up to an additive integer multiple of 27.
This is all that is needed, since adding a multiple of 27 to the phase angle ¢ does not change the value of sin(wt + ¢).



1. Algebraic method

First, set t = 0 in eq. (3) to obtain Fagsind = Ejygsin ¢. Solving for sin ¢ yields:

E20 sin §

sin ¢ =
¢ Ego

Next, set wt = 7/2 in eq.(3). Noting that sin(é + 7/2) = cosd, it follows that F1g + Eagcosd =
Ego cos ¢. Solving for cos ¢ yields:

Fio + Escosd

cos p =
¢ Eyo

Finally, using cos® ¢+ sin® ¢ = 1, and inserting the expressions for cos ¢ and sin ¢ just obtained, one
finds:

Ejy = (E1o + Es cos6)® + E3ysin®§
= E120 + 2E10E20 COS 5 + E220 (COS2 5 —+ sin2 5)
= E) + E3 + 2F10F2 cos 6 .

By definition, Fyo is a non-negative number.? Thus, we take the positive square root to obtain

E@Q = \/E120 + E%O + 2E10E20 cosd |.

This completes our derivation.

2. Geometric method—the method of phasors

Consider a fictitious vector in a two-dimensional space, whose length is Fy, which makes an angle
0 with respect to the z-axis as shown below:

Y

FEysin6

If we project this vector onto the y-axis, then its projected length is Fjsinf as shown above. This
vector is called a phasor and represents a quantity with an amplitude Ey and an angle 6.

The utility of such a representation is that we can perform the sum of eq. (3) by considering
the phasors corresponding to each sine term in the sum, and then adding the phasors vectorially!
The projection of the vector sum of the two phasors onto the y-axis is just the sum of the two sine
functions that we wish to compute. This vector sum can be carried out geometrically, and provides
a second method for evaluating Ego and ¢.

2Warning! This is a matter of convention, which Giancoli chooses not to follow (without warning you).



To see how this works, consider the computation of eq. (3) by the method of phasors. We
represent £7 and Es [cf. egs. (1) and (2)] as shown in the figure below.

Then, the phasor representation of Ejy is just the vector sum shown above. We identify E1g, Faq
and Fyg, as the lengths of the phasors representing Eq, E> and Ejy, respectively. To evaluate Eyq
and ¢, we focus on the triangle in the figure above. First, using the law of cosines,

E920 = E120 + E220 — 2F10FE9 COS(T( — 5) ,

since ™ — ¢ is the angle between the phasors representing Fq and Fs. Using cos(m —d) = — cosd, we
end up with

FEyo = \/E%O + ESO + 2FE19F>q cosd ,
as before. Next, using the law of sines,

sing  sin(m —9)
Ex Eoo

Using sin(m — §) = sin d, we can solve for sin ¢. We find that

. ¢ E20 sin 6
sin¢p = ———,
Ego
which again agrees with our previous result. This equation only fixes ¢ modulo 7. In order to fix
¢ modulo 27, we employ the law of sines again (noting that the angle in the triangle between the
phasors representing Fs and Fy is given by 0 — ¢):

sing  sin(d — ¢)
E3o By

This equation can be rearranged in the following form:
ElO SiIl((S — (]5)
Es Eqo

sin § cos ¢ — cos d sin ¢

sin ¢
sin 6
= — cosd.

tan ¢




One can solve this equation easily for tan ¢ to obtain

EQO sin §
fan ¢ = — 2080
F19 + Eagcosd

in agreement with our previous result. Finally, we can use our results above for sin ¢ and tan ¢ to
compute cos ¢ as follows

sin ¢ - EQO sin § ElO + EQO cosd - E10 + E20 cosd
tan ¢ - FEyo Fapsind - FEyo ’

cos ¢ =

which completes the derivation.

3. The limit of equal amplitudes

As a check, consider the case of equal amplitudes, E19 = Foy = Ey. Then, using the above

results,
Eoo = \/2Ep(1 4 cos?).

Recalling the trigonometric identity, cos?(6/2) = (1 + cos ), we end up with:
Eypo = 2Ep| cos(6/2)] .

Note the absolute value sign, since by definition the amplitude Ejyq is defined to be non-negative,
which means we must take the positive square root: y/cos?(6/2) = |cos(6/2)|. If cosd = —1, then
FEyp = 0 and the angle ¢ is undefined. Otherwise, we may use the results derived above for sin ¢ and
cos ¢ to obtain.

sing = S0 _ 26in(6/2) cos(d/2) _ sin(6/2), if cos(§/2) > 0,
© 2feos(0/2)]  2feos(6/2)] | —sin(8/2), if cos(d/2) <0,

~ 1+cosd  cos?(6/2) cos
€SO = S0/~ Teos(a/2) o0/

after using the trigonometric identity sind = 2sin(d/2) cos(d/2). Note that
cos(6/2) = 4 (14 cosd) #0, for cosd # —1,
which must hold if Egg # 0. The results above for sin ¢ and cos ¢ imply that:

6= 5/2, if cos(6/2) >0,
| w446/2, if cos(6/2) <0.

In Section 34-4 of Giancoli, a convention is chosen in which Ejyy can be of either sign, so in
order to compare Giancoli’s results with ours, one must be careful if cos(6/2) < 0. Nevertheless,
independently of this convention, we can write:

Ey = Eyosin(wt + ¢) = 2Ep| cos(6/2)|sin(wt + ¢)
= 2Fy| cos(d/2)|(sinwt cos ¢ + coswt sin ¢)
cos?(6/2) sin(6/2) cos(6/2)
= 2L 0/2 inwt ———— t
les(8/2) (st 5Ty + onat =)
= 2F( cos(0/2) (sinwt cos(d/2) + coswt sin(d/2))
= 2Fcos(0/2) sin(wt +6/2),

which agrees with Eq. 34-5¢ of Giancoli (on page 907).



Appendix: Adding two sine functions of different amplitude and phase using complex
numbers

To perform the sum:
Ey = Eypsinwt + FEyg sin(wt + §) = Eygo sin(wt + ¢), (4)

we note the famous Euler formula: _
e = cos® + isind.

In particular, sin @ is the imaginary part of . Thus, if we consider the equation:
Eloeiwt 4 Ezoei(Wt+6) — Eeoei(thrqb) , (5)

then the imaginary part of this equation coincides with eq. (4). By the way, I can view a complex
number z + iy as a vector in a two-dimensional space (called the complex plane) that points from
the origin to the point (z,y). This vector is precisely the phasor that we employed in Section 2
of these notes. In particular, in this language, eq. (5) describes the sum of two complex numbers,
which is depicted by the sum of the phasors in the figure shown in Section 2. The projected lengths
of the phasors on the y-axis simply correspond to the imaginary parts of the corresponding complex
numbers.

Thus, to solve for Eyy and ¢, we can simply start from eq. (5). If T multiply this equation by
e~ T obtain:

‘ Eyo + Eyge’ = Egoe'® ‘ (6)

where Eyg, Fay and Fyo are non-negative (and real) by definition. To compute Ego, I simply take
the complex absolute value of both sides of this equation. For any complex number z = x + iy, the
complex absolute value is given by |z| = /22 4+ y2. Hence,

EgO = |E10 + E206i6|2 = |E10 + Esq cos 6 + iFag sin 5|2
= (B0 + By cos6)* + E3ysin? 6
= E%O + 2F10FE50 cosd + E220 R

after using sin? § + cos? § = 1. Taking the positive square roots yields

E@Q = \/Elzo + E%O + 2E10E20 cosd .
To determine ¢, I simply take the real and imaginary parts of eq. (6):
Ego COS (b = E10 + E20 cos o y Ego sin(b = EQO sin § y

Solving for cos ¢ and sin ¢, respectively, we immediately find:

E10 + E20 cos o

cosp= ————————
Eyo
. Faosind
singg = ————.
¢ Eyo

Thus, we have successfully reproduced the main results obtained previously in these notes. I think
you must agree that this last approach is by far the simplest from a computational point of view.
Once you learn how use and manipulate complex numbers, many tasks in mathematical physics
become much simpler!



