
Physics 5B Winter 2009

How to add sine functions of different amplitude and phase

In these notes, I will show you how to add two sinusoidal waves, each of different amplitude and
phase, to get a third sinusoidal wave. That is, we wish to show that given

E1 = E10 sin ωt , (1)

E2 = E20 sin(ωt + δ) , (2)

the sum Eθ ≡ E1 + E2 can be written in the form:

Eθ = E10 sin ωt + E20 sin(ωt + δ) = Eθ0 sin(ωt + φ) (3)

where the amplitude Eθ0 and phase φ are determined in terms of E10, E20 and δ. In these notes,
we shall derive that the amplitude Eθ0 is given by

Eθ0 =
√

E2
10 + E2

20 + 2E10E20 cos δ

and the phase φ is determined modulo 2π by1

sinφ =
E20 sin δ

Eθ0
, cosφ =

E10 + E20 cos δ

Eθ0
.

By definition, the amplitudes E10 and E20 are positive numbers. If we divide the last two equations,
then φ can be determined modulo π from:

tan φ =
E20 sin δ

E10 + E20 cos δ
.

To determine φ modulo 2π, we need to supplement the result for tanφ with

sign(sin φ) = sign(sin δ) , sin δ 6= 0 ,

where sign(sin φ) literally means the sign (i.e. either +1 or −1) of the quantity sinφ. Finally, if
sin δ = 0 then cos δ = ±1, and φ can be fixed modulo 2π by

cosφ =











1 , cos δ = 1 ,

1 , cos δ = −1 , and E10 > E20 ,

−1 , cos δ = −1 , and E10 < E20 .

Note that in the case of cos δ = −1 and E10 = E20, we have Eθ = 0 in which case Eθ0 = 0 and φ is
no longer meaningful. In fact, this is the only circumstance in which Eθ0 can vanish.

I shall provide two different derivations of the above formulae. Finally, in an appendix, I will
provide a mathematically more advanced derivation that makes use of complex numbers. If you
are unfamiliar with complex numbers, you can skip the appendix for now and return to this last
derivation later after you take Physics 116A or an equivalent course. This last method also provides
the real motivation for the method of phasors introduced in Section 2 below.

1The phrase, “φ is determined modulo 2π,” means that φ is determined up to an additive integer multiple of 2π.
This is all that is needed, since adding a multiple of 2π to the phase angle φ does not change the value of sin(ωt + φ).
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1. Algebraic method

First, set t = 0 in eq. (3) to obtain E20 sin δ = Eθ0 sin φ. Solving for sinφ yields:

sin φ =
E20 sin δ

Eθ0
.

Next, set ωt = π/2 in eq.(3). Noting that sin(δ + π/2) = cos δ, it follows that E10 + E20 cos δ =
Eθ0 cosφ. Solving for cosφ yields:

cosφ =
E10 + E20 cos δ

Eθ0
.

Finally, using cos2 φ+sin2 φ = 1, and inserting the expressions for cosφ and sinφ just obtained, one
finds:

E2
θ0 = (E10 + E20 cos δ)2 + E2

20 sin2 δ

= E2
10 + 2E10E20 cos δ + E2

20(cos2 δ + sin2 δ)

= E2
10 + E2

20 + 2E10E20 cos δ .

By definition, Eθ0 is a non-negative number.2 Thus, we take the positive square root to obtain

Eθ0 =
√

E2
10 + E2

20 + 2E10E20 cos δ .

This completes our derivation.

2. Geometric method—the method of phasors

Consider a fictitious vector in a two-dimensional space, whose length is E0, which makes an angle
θ with respect to the x-axis as shown below:

x

y

θ

E0 sin θ
E0

If we project this vector onto the y-axis, then its projected length is E0 sin θ as shown above. This
vector is called a phasor and represents a quantity with an amplitude E0 and an angle θ.

The utility of such a representation is that we can perform the sum of eq. (3) by considering
the phasors corresponding to each sine term in the sum, and then adding the phasors vectorially!
The projection of the vector sum of the two phasors onto the y-axis is just the sum of the two sine
functions that we wish to compute. This vector sum can be carried out geometrically, and provides
a second method for evaluating Eθ0 and φ.

2Warning! This is a matter of convention, which Giancoli chooses not to follow (without warning you).
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To see how this works, consider the computation of eq. (3) by the method of phasors. We
represent E1 and E2 [cf. eqs. (1) and (2)] as shown in the figure below.

Then, the phasor representation of Eθ is just the vector sum shown above. We identify E10, E20

and Eθ0, as the lengths of the phasors representing E1, E2 and Eθ, respectively. To evaluate Eθ0

and φ, we focus on the triangle in the figure above. First, using the law of cosines,

E2
θ0 = E2

10 + E2
20 − 2E10E20 cos(π − δ) ,

since π − δ is the angle between the phasors representing E1 and E2. Using cos(π− δ) = − cos δ, we
end up with

Eθ0 =
√

E2
10 + E2

20 + 2E10E20 cos δ ,

as before. Next, using the law of sines,

sin φ

E20
=

sin(π − δ)

Eθ0
.

Using sin(π − δ) = sin δ, we can solve for sin φ. We find that

sin φ =
E20 sin δ

Eθ0
,

which again agrees with our previous result. This equation only fixes φ modulo π. In order to fix
φ modulo 2π, we employ the law of sines again (noting that the angle in the triangle between the
phasors representing E2 and Eθ is given by δ − φ):

sin φ

E20
=

sin(δ − φ)

E10
.

This equation can be rearranged in the following form:

E10

E20
=

sin(δ − φ)

E10

=
sin δ cosφ − cos δ sin φ

sinφ

=
sin δ

tan φ
− cos δ .
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One can solve this equation easily for tanφ to obtain

tan φ =
E20 sin δ

E10 + E20 cos δ
,

in agreement with our previous result. Finally, we can use our results above for sinφ and tanφ to
compute cosφ as follows

cosφ =
sinφ

tanφ
=

(

E20 sin δ

Eθ0

) (

E10 + E20 cos δ

E20 sin δ

)

=
E10 + E20 cos δ

Eθ0
,

which completes the derivation.

3. The limit of equal amplitudes

As a check, consider the case of equal amplitudes, E10 = E20 ≡ E0. Then, using the above
results,

Eθ0 =
√

2E0(1 + cos δ) .

Recalling the trigonometric identity, cos2(δ/2) = 1
2 (1 + cos δ), we end up with:

Eθ0 = 2E0| cos(δ/2)| .

Note the absolute value sign, since by definition the amplitude Eθ0 is defined to be non-negative,
which means we must take the positive square root:

√

cos2(δ/2) = | cos(δ/2)|. If cos δ = −1, then
Eθ0 = 0 and the angle φ is undefined. Otherwise, we may use the results derived above for sinφ and
cosφ to obtain.

sin φ =
sin δ

2| cos(δ/2)|
=

2 sin(δ/2) cos(δ/2)

2| cos(δ/2)|
=







sin(δ/2) , if cos(δ/2) > 0 ,

− sin(δ/2) , if cos(δ/2) < 0 ,

cosφ =
1 + cos δ

2| cos(δ/2)|
=

cos2(δ/2)

| cos(δ/2)|
= | cos(δ/2)| ,

after using the trigonometric identity sin δ = 2 sin(δ/2) cos(δ/2). Note that

cos(δ/2) = 1
2 (1 + cos δ) 6= 0 , for cos δ 6= −1 ,

which must hold if Eθ0 6= 0. The results above for sinφ and cosφ imply that:

φ =

{

δ/2 , if cos(δ/2) > 0 ,

π + δ/2 , if cos(δ/2) < 0 .

In Section 34-4 of Giancoli, a convention is chosen in which Eθ0 can be of either sign, so in
order to compare Giancoli’s results with ours, one must be careful if cos(δ/2) < 0. Nevertheless,
independently of this convention, we can write:

Eθ = Eθ0 sin(ωt + φ) = 2E0| cos(δ/2)| sin(ωt + φ)

= 2E0| cos(δ/2)|(sin ωt cosφ + cosωt sinφ)

= 2E0| cos(δ/2)|

(

sin ωt
cos2(δ/2)

| cos(δ/2)|
+ cosωt

sin(δ/2) cos(δ/2)

| cos(δ/2)|

)

= 2E0 cos(δ/2) (sinωt cos(δ/2) + cosωt sin(δ/2))

= 2E0 cos(δ/2) sin(ωt + δ/2) ,

which agrees with Eq. 34-5c of Giancoli (on page 907).
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Appendix: Adding two sine functions of different amplitude and phase using complex

numbers

To perform the sum:

Eθ = E10 sin ωt + E20 sin(ωt + δ) = Eθ0 sin(ωt + φ) , (4)

we note the famous Euler formula:
eiθ = cos θ + i sin θ .

In particular, sin θ is the imaginary part of eiθ. Thus, if we consider the equation:

E10e
iωt + E20e

i(ωt+δ) = Eθ0e
i(ωt+φ) , (5)

then the imaginary part of this equation coincides with eq. (4). By the way, I can view a complex
number x + iy as a vector in a two-dimensional space (called the complex plane) that points from
the origin to the point (x, y). This vector is precisely the phasor that we employed in Section 2
of these notes. In particular, in this language, eq. (5) describes the sum of two complex numbers,
which is depicted by the sum of the phasors in the figure shown in Section 2. The projected lengths
of the phasors on the y-axis simply correspond to the imaginary parts of the corresponding complex
numbers.

Thus, to solve for Eθ0 and φ, we can simply start from eq. (5). If I multiply this equation by
e−iωt, I obtain:

E10 + E20e
iδ = Eθ0e

iφ (6)

where E10, E20 and Eθ0 are non-negative (and real) by definition. To compute Eθ0, I simply take
the complex absolute value of both sides of this equation. For any complex number z = x + iy, the
complex absolute value is given by |z| =

√

x2 + y2. Hence,

E2
θ0 = |E10 + E20e

iδ|2 = |E10 + E20 cos δ + iE20 sin δ|2

= (E10 + E20 cos δ)2 + E2
20 sin2 δ

= E2
10 + 2E10E20 cos δ + E2

20 ,

after using sin2 δ + cos2 δ = 1. Taking the positive square roots yields

Eθ0 =
√

E2
10 + E2

20 + 2E10E20 cos δ .

To determine φ, I simply take the real and imaginary parts of eq. (6):

Eθ0 cosφ = E10 + E20 cos δ , Eθ0 sinφ = E20 sin δ ,

Solving for cosφ and sinφ, respectively, we immediately find:

cosφ =
E10 + E20 cos δ

Eθ0
,

sin φ =
E20 sin δ

Eθ0
.

Thus, we have successfully reproduced the main results obtained previously in these notes. I think
you must agree that this last approach is by far the simplest from a computational point of view.
Once you learn how use and manipulate complex numbers, many tasks in mathematical physics
become much simpler!
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