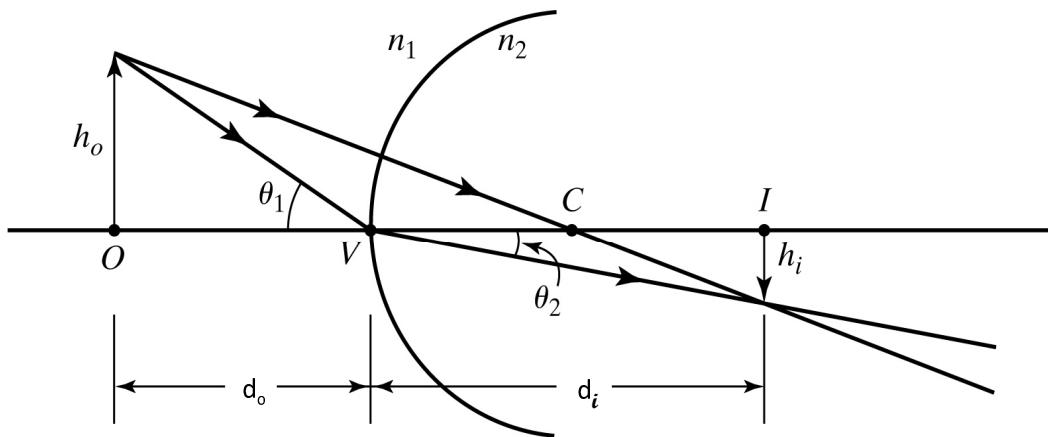


Lateral magnification of an image formed by refraction at a spherical surface

Although Giancoli provides a formula for determining the location of an image formed by refraction at a spherical surface [cf. Eq. 32-8], he does not compute the lateral magnification of the image. In fact, the computation is quite simple.



Referring to the figure above, the object is denoted by O , the image is denoted by I , the center of curvature of the spherical surface is denoted by C and the symmetry axis from O to I crosses the spherical surface at V .

For paraxial rays, we can assume that the angles $\theta_1 \ll 1$ and $\theta_2 \ll 1$. Hence, in the small angle approximation,

$$\theta_1 \simeq \frac{h_o}{d_o}, \quad \theta_2 \simeq \frac{-h_i}{d_i},$$

where h_o is the height of the object, h_i is the height of the image, and d_o and d_i are the object and image distances, respectively. We have inserted a minus sign in h_i , since $h_i < 0$ if the image is inverted as depicted in the figure, whereas θ_2 is a positive angle as shown. Using Snell's law, $n_1 \sin \theta_1 = n_2 \sin \theta_2$, which in the small angle approximation reads $n_1 \theta_1 \simeq n_2 \theta_2$. Thus, using the results above for θ_1 and θ_2 ,

$$\frac{n_1 h_o}{d_o} \simeq -\frac{n_2 h_i}{d_i}.$$

Hence, the lateral magnification, which is defined by $m \equiv h_i/h_o$ is given by:

$$m = \frac{h_i}{h_o} = -\frac{n_1 d_i}{n_2 d_o}.$$