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Rate of Energy Transfer by Sinusoidal Waves on a String

Consider a sinusoidal wave traveling along the x-axis on a stretched string. Focus on the in-
finitesimal segment depicted by the blackened part of the rope (and labeled dm) in the figure below.

I shall compute the kinetic energy and the potential energy of this string segment due to the passage
of a traveling wave. A nice reference to this topic, at a level slightly more advanced than Giancoli,
is a book by A.P. French, Vibrations and Waves (W.W. Norton and Company, New York, 1971).

First, we compute the kinetic energy of the infinitesimal string segment. We set up our coordinate
system in the usual way with the x-axis horizontal and the y-axis vertical. (In the notation of
Giancoli, the vertical displacement y is called D. In these notes, I shall use y instead.) The element
of string of mass dm oscillates in the y-direction, undergoing simple harmonic motion. The kinetic
energy of this string element is:

dK = 1

2
(dm)v2

y ,

where dK is the infinitesimal kinetic energy of the infinitesimal string segment (of mass dm) and vy

is the vertical velocity of the string segment transverse to the direction of propagation of the wave.
Before the wave passes through, the string is horizontal, and its mass is given by

dm = µdx ,

where µ is the mass per unit length of the string. When the wave passes, the string bends and
therefore stretches a little. But, we shall always work in the small angle approximation in which the
angle the bent string makes with the x-axis is small. Thus, the correction to dm = µdx is negligible
and we shall ignore it.1 Hence, combining the two equations above,

dK

dx
= 1

2
µv2

y .

The vertical displacement y is assumed to have a sinusoidal form:2

y(x, t) = A sin(kx − ωt) ,

where ω = 2πf and k = 2π/λ. Moreover,

vy ≡
∂y(x, t)

∂t
= −ωA cos(kx − ωt) .

Thus, the kinetic energy per unit length (sometimes called the kinetic energy density) is

dK

dx
= 1

2
µω2A2 cos2(kx − ωt) .

1The same approximation was made in deriving the one-dimensional wave equation.
2Again, remember that y(x, t) is identical to what Giancoli calls D(x, t).
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It is convenient to write dx = vdt, where v is the velocity of propagation of the wave (not to be
confused with vy introduced above). Then, the above equation can be rewritten as:

dK

dt
= 1

2
µvω2A2 cos2(kx − ωt) .

Typically, one is not interested in the instantaneous rate of change of kinetic energy. A more
practical quantity is the kinetic energy per unit time integrated over a cycle of the wave, which shall
be denoted by K:

K =

∫ T

0

dK

dt
dt = 1

2
µvω2A2

∫ T

0

cos2(kx − ωt)dt .

The integral over t is most easily performed by noting that one cycle of the function cos2(kx − ωt)
looks exactly like one cycle of the function sin2(kx − ωt) excepted shifted by 90◦. But clearly, the
areas under these two functions integrated over a complete cycle are identical. Thus, we can write:

∫ T

0

cos2(kx − ωt)dt =
1

2

∫ T

0

[

cos2(kx − ωt) + sin2(kx − ωt)
]

dt

=
1

2

∫ T

0

dt =
T

2
.

Hence,

K = 1

4
µvω2A2T .

We now examine the potential energy associated with the displacement of the string from equi-
librium. Initially, the infinitesimal string is horizontal with a length dx. However, when the wave
passes, the string is displaced vertically by an amount dy. As a result, the string is slightly stretched.
In a diagram previously shown, the infinitesimal string element is at an angle, which can be approx-
imated by a straight line whose length is

√

(dx)2 + (dy)2 as shown in the sketch below:

dx

dy

θ

√

(dx)2 + (dy)2

The string is stretched by an amount:

ds ≡

√

(dx)2 + (dy)2 − dx = dx





√

1 +

(

dy

dx

)2

− 1



 .

From the diagram above dy/dx = tan θ ≃ θ in the small-angle approximation. This means that
(dy/dx)2 ≪ 1, and therefore to a very good approximation,3

√

1 +

(

dy

dx

)2

≃ 1 +
1

2

(

dy

dx

)2

.

3To verify this approximation, square both sides of the equation and note that (dy/dx)4 is extremely small and
can be dropped. Better yet, try it on your calculator!
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Consequently, the string is stretched by an amount

ds ≃
1

2
dx

(

dy

dx

)2

.

The gain in potential energy U is given by the work done to stretch the string by an amount ds
against a constant tension force FT . That is,

dU = FT ds = 1

2
FT dx

(

dy

dx

)2

.

Using y(x, t) = A sin(kx − ωt), we easily compute dy/dx, and conclude that

dU

dx
= 1

2
FT k2A2 cos2(kx − ωt) .

Recalling that the velocity of the transverse waves in a string is given by v =
√

FT /µ, we put
FT = µv2 in the above equation. We also note that v = fλ = ω/k, which allows us to write:

FT k2 = µv2k2 = µω2 .

Hence,

dU

dx
= 1

2
µω2A2 cos2(kx − ωt) .

Remarkably, we see that

dK

dx
=

dU

dx
.

That is, the instantaneous kinetic energy density is equal to the instantaneous potential energy
density. Likewise, dK/dt = dU/dt and K = U . Defining the total energy by

E ≡ K + U ,

we end up with:

E = 1

2
µvω2A2T .

Finally, we define the power averaged over one cycle of the wave, P , as follows:

P ≡
1

T

∫ T

0

P (t)dt =
1

T

∫ T

0

[

dK

dt
+

dU

dt

]

=
K + U

T
=

E

T
,

where P (t) ≡ dE/dt is the instantaneous power and T is the period of the wave. Hence,

P = 1

2
µω2A2v .

To make contact with eqs. (15-6) and (15-7) of Giancoli, we note that if the density of the string
is ρ and its cross-sectional area is S, then µ = ρS. Writing ω = 2πf , we end up with

P = 2π2ρSvf2A2 ,

and the intensity of the wave, defined by I ≡ P/S, is given by

I = 2π2vρf2A2 .

However, the derivation of these last two results given by Giancoli is hand-waving at best. It does not
illustrate two important results obtained above: (i) the instantaneous kinetic and potential energy
densities are equal, and (ii) the instantaneous kinetic and potential energy densities are sinusoidal
in character (for a sinusoidal wave), and attain their maximum values when the displacement y is
minimal (and vice versa).4

4This is true, since when the displacement is minimal, both the transverse velocity of the string element vy and its
slope dy/dx are maximal. Likewise, when the displacement is maximal, the instantaneous transverse velocity is zero
and the slope of the string is zero.
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