Eur. Phys. J. C (2013) 73:2522
DOI 10.1140/epjc/s10052-013-2522-7

THE EUROPEAN
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Decoupling of the right-handed neutrino contribution to the Higgs

mass in supersymmetric models

Patrick Draper®, Howard E. Haber

Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064, USA

Received: 26 April 2013 / Revised: 23 July 2013 / Published online: 23 August 2013

© Springer-Verlag Berlin Heidelberg and Societa Italiana di Fisica 2013

Abstract Recently, it has been argued that in the supersym-
metric extension of the seesaw-extended Standard Model,
heavy right-handed neutrinos and sneutrinos may give cor-
rections as large as a few GeV to the mass of the lightest neu-
tral CP-even Higgs boson, even if the soft supersymmetry-
breaking parameters are of order the electroweak scale.
The presence of such large corrections would render pre-
cise Higgs masses incalculable from measurable low-energy
parameters. We show that this is not the case: decou-
pling is preserved in the appropriate sense and right-handed
(s)neutrinos, if they exist, have negligible impact on the
physical Higgs masses.

1 Introduction

The discovery of a new boson near 126 GeV [1, 2] that re-
sembles the Higgs boson of the Standard Model has stim-
ulated considerable theoretical interpretation. In supersym-
metric models, the observed mass is particularly interest-
ing. Whereas 126 GeV is compatible with expectations for
the mass (my,) of the lightest neutral CP-even Higgs boson
of the Minimal Supersymmetric Standard Model (MSSM),
large quantum corrections are indicated in order to raise my,
to a value 40 % above myz [3-5]. In the next-to-minimal
model (NMSSM), an additional tree-level contribution may
also boost the value of m,, but radiative effects are still nec-
essary unless the tri-linear coupling of the singlet and dou-
blet Higgs fields in the superpotential is large [6, 7]. Thus
the measured Higgs mass provides an important clue to the
parameters of the supersymmetric model.

The program of precision calculations of the lightest
Higgs boson mass in the MSSM began with one-loop re-
sults, given in [8—10], followed by two-loop contributions
given in [11-22]. Partial three-loop results are now avail-
able [23-25]. In cases with a large hierarchy between the
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weak scale and the scale of the stop squarks, resummation
has been used to obtain precise results, now at the level of
three-loop B-functions in some cases [26]. Residual theo-
retical uncertainty estimates vary depending on the type of
calculation performed, but in the fixed-order case are per-
haps of the order 1 GeV for light spectra below a TeV, and
2-3 GeV for heavier spectra [23-25].

The utility of the computations described above rely
on decoupling—very heavy states that do not receive their
masses from electroweak symmetry breaking are expected
to give negligible contribution to the lightest Higgs mass.
Only a limited set of model parameters, which are in princi-
ple accessible at future collider experiments, are thought to
be required for an accurate calculation of mj. On the other
hand, if an inaccessible heavy sector could provide a signif-
icant contribution to my, then only the size of this contri-
bution could be constrained by comparing the measured m;,
to the calculation in terms of observable parameters. This
would clearly be a much weaker position.

Recently, it has been suggested in Ref. [27] that in the
seesaw-extended MSSM [28-37], a right-handed neutrino
and sneutrino provides an example of such a non-decoupling
heavy sector, potentially shifting the MSSM prediction for
my, by as much as a few GeV at one-loop order, even if the
soft supersymmetry (SUSY) breaking parameters remain at
the TeV scale. It was further argued that the large terms ap-
pear at order p? in the relevant two-point functions, which
are invisible to effective potential estimates that are based
on calculations performed at zero external momenta. !

In light of its importance for the interpretation of the ob-
served Higgs boson with mj, ~ 126 GeV, we have performed
a reanalysis of the right-handed neutrino and sneutrino con-
tributions to mj, in the seesaw-extended MSSM. We find
that the corrections to mj; due to physics at the seesaw

I These contributions to my, are therefore quite distinct from corrections
that have been found in certain parameter ranges of the NMSSM with
TeV-scale right-handed neutrinos [38].
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scale are always minuscule, of the order of a billionth of an
eV. This decoupling behavior is manifest in renormalization
schemes in which the tan 8 counterterm is completely insen-
sitive to phenomena at scales well above the SUSY-breaking
scale. One class of decoupling schemes includes physical
schemes, where the tan 8 counterterm is controlled, for ex-
ample, by the radiative corrections to the mass of the heavy
Higgs boson, or by corrections to the decays of the heavy
Higgs bosons to down-type fermions. Another class of de-
coupling schemes subtracts non-decoupling terms by hand,
mocking up the behavior of minimal subtraction schemes
where heavy particles are fully integrated out at their thresh-
olds and are absent from the low-energy theory. If a non-
decoupling renormalization scheme is employed in the def-
inition of tan B, then the decoupling of high-scale physics
phenomena in the radiatively corrected Higgs mass is re-
covered once tan 8 is directly related to a low-energy ob-
servable. That is, tan 8 should be regarded as an interme-
diary quantity, which one is free to define in any scheme.
Independently of how one defines tan 8, the MSSM Higgs
mass ultimately depends solely on parameters that can be
fixed by experimental measurements at energy scales of or-
der the SUSY-breaking scale and below. Contributions to
the Higgs mass from energy scales significantly above the
SUSY-breaking scale must be negligible.

This paper is organized as follows. In Sect. 2 we review
the computation of the physical masses of the neutral CP-
even Higgs bosons in the MSSM at one-loop order. We pro-
vide compact formulas and discuss the role of tan 8 renor-
malization in the results. In Sect. 3 we calculate the leading
contributions to the lightest Higgs boson mass from the left
and right handed neutrino/sneutrino sectors. We reduce the
full diagrammatic result of Ref. [27] to simple, approximate
analytic formulas in two different renormalization schemes,
and find that in both cases the right-handed neutrino sector
exhibits appropriate decoupling. We provide an interpreta-
tion of our approximate formulas in the more natural setting
of effective field theory. Finally, we study the full one-loop
results numerically, finding again that contributions from the
right-handed neutrino sector are negligible. Our conclusions
are presented in Sect. 4. Explicit expressions for self-energy
functions, tadpoles and the tan 8 counterterm, which can
provide potential non-decoupling contributions in the com-
putation of the Higgs mass, are exhibited in Appendix. Us-
ing these approximate forms, one can check that the non-
decoupling terms cancel exactly in the expressions for the
one-loop radiatively corrected Higgs mass when a suitable
definition of the tan 8 counterterm is employed.

2 Physical Higgs masses at one loop in the MSSM

We begin our discussion with a review of the one-loop phys-
ical Higgs masses in the MSSM with the minimally required
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two-Higgs doublet Higgs sector. The neutral field content is

¢r + l¢l
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+ Vu,d
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where v2 + vd = (174 GeV)2 Here v, [v4] are the
vacuum expectatlon values (vevs) of the neutral Higgs fields
that couple exclusively to the up-type [down-type] quark and
lepton fields.

The MSSM Higgs scalar potential is given by

V =m}H) Hy +m3H] H, — b(HgHy +h.c.)

1
v Lo (i, - )+ 58 2.2)

8
Whererzg1 +g2,m1 _md—i—|u|2 mz—m +|,u|2 uis
the supersymmetric Higgs mass parameter, and m? o m? - and
b are soft SUSY-breaking squared-mass parameters. The lin-
ear terms in the potential are given by

v Uy ( 2 L oo vd)
= | ="L(omd+-G*(v2-v})-2b-2),
u a(p; =0 \/§ 2 2 ( u d) v,
2.3)
aV V, 1 vy
T = =—<2m2+—62 V2 —v? —2b—>.
a¢2 d)—o ﬁ 1 2 ( d u) Ud

2.4)

The quadratic terms yield 2 x 2 scalar and pseudoscalar
squared-mass matrices [in the (¢4, ¢,,) basis],

32V
= ,/\/lz
d¢; 09,
m +4G2(3vd—v2) —%szuvd—b
G vy vg —b m% + %G2(3v3 — vﬁ)
2.5)
32V
— = Mg
A, 09,
_ m% + %Gz(vg —v2) b
b m% + %Gz(vﬁ - vfl) '
(2.6)

All parameters appearing in the above formulas should be
interpreted as bare parameters.

It is convenient to require that v, 4 are stationary points
of the full one-loop effective potential, which is achieved via
the tadpole cancellation conditions,
Tya+ Aua=0. 2.7

The functions A, 4 are the one-loop tadpole diagrams at
zero external momentum, and the 7, , are functions of
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the bare parameters given in Egs. (2.3) and (2.4). Using
Eq. (2.7), the pseudoscalar mass matrix simplifies to

pln _ Ad

va N 2ug
Vd Ay
b b— —
Uy \/ivu

Diagonalizing this matrix and expanding to leading order in
Ay 4, the bare masses for the pseudoscalar A and the Gold-
stone boson G are found:

b

M? = (2.8)

2 2 2
v vs Ay v; A
m? = — 2 -4 (2.9)
Uy Vd V7205 VT A 2v,
1
2
mg = — Nt (Agvg + A vy). (2.10)
A4 A
2.2 2.2 4 u 22
) mysg —+—mzc/3 + «/zvdsﬂ «/Evu sgcg
M = A, Ay
2 2 3 3
—(m% +m%)sgcg — ﬁ—vcﬂsﬂ — ﬁvdsﬂcﬁ
u

Solving Egs. (2.7) and (2.9) for b, m% and m% yields

4 4
A A
b= <@)mi i (”_M> Ad <”_d) A
v v/ V2, v /) V2,

2 (Uu>2 2+<vu>4 Ag +<Udvu>2 Ay
mi=|— | m —
! v 4 v \/zvd v? \/Evu
G2
+ S @), e
2 2 4
2 V4 5 vuvd) A4 <vd) Ay
my=|—|mu+|\—) —+|— ) —
: <v) 4 < v ) 2u, v /) 2u,
G? 2 2
- T(Uu —vg)-
Inserting these results into ./\/l? we obtain
—(m2 +m2)s cg — cpSg — s3C
A Z/)3BCB \/Evu BB ﬁvd BEB o1
A4 A ’ ’
2.2 2.2 2.2 u 4
ms5cy +mos; + §2C5 + s
AB z°B ﬁvd B*B ﬁvu B

where m2Z = %szz, sg = sinB, and cg = cosB. The
squared-mass matrix Mg can be diagonalized to obtain the
bare masses m%  Tor the light neutral CP-even Higgs boson
h and the heavy neutral CP-even Higgs boson H.

At this stage, it is convenient to replace the bare masses
by physical masses:

2 _ .2
My z AH=Myp zP AP, HP

2
- Ehh,zz,AA,HH(mhp,zp’Ap,HP), (2.13)

where the subscript P indicates the corresponding physical
parameter. The X functions are the real parts of the corre-
sponding self-energy functions® through which parameters
from other sectors of the theory affect the Higgs masses.
At one-loop order, the arguments of X, gg can be con-
sistently replaced with the corresponding tree-level expres-
sions for the physical masses,

1
2 2 2
My He = E(mz +my

= (3 — m2)? + dmAm sin? 28). @14

2In our notation, the sum of all one-loop Feynman graphs contribut-
ing to the ¢p¢p (¢ = h, A, H) and ZZ self-energy functions are denoted
by —iCy¢ (pYHandiAzy (pz)g,w +iBzz (pz)pw , respectively, where
p is the four-momentum of the incoming boson. Only Ezz(pz) =
ReAzz(p?) and Zps(p?) = ReCpp(p?) are needed to define the
physical on-shell boson masses. Note that the opposite sign choice in
the definition of X' (p?) is sometimes employed in the literature.

The replacements of Eq. (2.13) largely sidestep the need
to introduce renormalized mass parameters and countert-
erms in the calculation of mj; and mpyg. The only explicit
counterterms required are associated with the parameters v,
and vy, which are divergent because they are fixed to the
vevs of the bare fields H, 4. Rescaling the fields by wave
function renormalizations renders the vevs finite,

u

—1/2 1
vy —> Zg vy =y 1+562Hu ,
(2.15)

—1/2 1
Vg — ZHd Vg = vd<1 + ESZHd>.
At one-loop order the renormalization of the vevs affects
the Higgs masses only through the parameter tan 8 = v,, /vy,
which can be replaced by a renormalized parameter and a
counterterm that is fixed by Eq. (2.15):

tan 8 — tan 8 — S tan 3, (2.16)
where

1
StanﬂEE(SZHd—SZHM)tanﬂ. 2.17)

Making the substitutions of Egs. (2.13) and (2.16) and
expanding to leading order in the one-loop functions, we ob-
tain
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2 2 :
mj, =mj, —sin(f — a)

" sin? (B + @) Tzz(m%)

+ Xun (m%”) - cosz(,B —a) XA (mi)
+sin?(B — @) X5 (0)
—2m% cos® Bsin(2(B + «))é tan B, (2.18)

and

V2Ay

v
+ Zyn(myy,) —sin? (B — ) Zaa(m})

+ cos?(B — a) X6 (0)

m3, =m%, —cos(f —a)

—cos(B+ cx)Z‘zz(mzz)

+2m% cos® Bsin(2(B + @) tan B, (2.19)

where my; g; are the tree-level masses of the neutral CP-
even Higgs bosons [cf. Eq. (2.14)], m 4 and m z are the phys-
ical masses> (i.e., input parameters taken from experimental
measurements), the angle « is the tree-level mixing angle
obtained in the diagonalization of M2, and

Ap=A,cosa — Agsina, Ag=A,sina + Agzcosa,

are the tadpoles with respect to the neutral CP-even Higgs
mass basis.

In obtaining the formulas in Eqgs. (2.18) and (2.19) we
have used the tree-level relation that relates « to the param-
eters B and m 4 (cf. Eq. (A.20) of Ref. [39]),

5 sin(2(B + a))

Zsin2(B — @)’ (220)

m124 =—m
as well as the relation between the tadpoles and the Gold-
stone self-energy imposed by the requirement that the one-
loop Goldstone boson mass vanishes,

V2uE56(0) =cos(B — a)Ay +sin(B — a)Ay.  (2.21)

As a check of our calculation, we note that in the limit of
B= %n and my > myz we have my, =myz, my, =my, and
sin(B — o) =1 at tree level. In this case, Egs. (2.18) and
(2.19) reduce to

2

A
m} =m% + S (m%) — Szz(m%) — -

Vv (2.22)

m%{ =mi + EHH(m%) — Z’AA(mi),

which reproduces the result for m, obtained in Refs. [§-10].
From Eqgs. (2.18) and (2.19), we see that the only coun-

terterm appearing explicitly in the Higgs masses is é tan 8. If

3To simplify the typography, we remove all P subscripts. However, all
masses in the subsequent formulas should now be interpreted as (finite)
physical masses.
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only a prediction for my, is desired, then § tan 8 can be elim-
inated in favor of m g, and all instances of the renormalized
tan B parameter appearing in the self-energies may be con-
sistently replaced at one-loop order by solving the tree-level
formula Eq. (2.14) for tan 8 as a function of mpg. The end
result,

=y =y D (02) + e )

— Xz2(m%) — Zaa(my) — Zc6(0), (2.23)

coincides with a sum rule derived first in Ref. [42].

In the MSSM, the prediction for mj; and myg depends
on tan B and other MSSM mass parameters (such as m 4
and the top squark mass and mixing parameters). In par-
ticular, since tan 8 appears in the expressions for mj, and
mp; [cf. Eq. (2.14)], one must define § tan 8 by specifying
a subtraction scheme. In principle any scheme to define the
parameter tan § is allowed. In practice, it is preferable to em-
ploy a scheme that satisfies decoupling, in which case tan 8
can be determined solely from physical measurements that
can be carried out in collider experiments. In contrast, if a
non-decoupling scheme is used, then the definition of tan 8
depends on unknown contributions from inaccessible heavy
sectors, in which case the value of tan § (which is needed to
predict my, and m ) cannot be determined from low-energy
experimental measurements.

Of course, in the context of a specific model of high-
scale physics, one can employ a non-decoupling scheme to
define tan 8 and then compute the relation of tan 8 so de-
fined to some specific low-energy observable. In this case,
one can formally eliminate tan 8 and re-express the MSSM
prediction for mj; and mpy in terms of the corresponding
low-energy observable. This would then provide a predic-
tion for my and mpy in terms of parameters that can be de-
termined solely from low-energy measurements. Following
such a procedure, one finds that the predicted values for m,
and m y are completely insensitive to high-scale physics, as
expected from the decoupling properties of quantum field
theory (e.g., see Refs. [40, 41]). By employing a definition
of tan § that respects decoupling, the insensitivity of the pre-
dicted values for my, and m g to high-scale physics is mani-
fest.

Suppose that there are no schemes in which tan 8 can
be determined from a low-scale measurement. As a simple
example, consider the case of high-scale SUSY in the de-
coupling limit, where all the superpartner masses and m 4
are taken very large, of order msysy > mz. In this case de-
coupling schemes for tan 8 are not particularly favored over
non-decoupling schemes. On the other hand, the observed
Higgs mass is no longer a testable prediction, but rather a
scheme-dependent constraint on the two unmeasurable pa-
rameters mgsysy and tan 8. Scheme-dependence is not very
important in this case as it can simply be absorbed in an un-
observable shift of tan 8. Furthermore, it does not affect the
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upper bound on my, for fixed msysy, which is obtained in
the large tan 8 limit where scheme-dependent terms vanish.
For the rest of this work, we will focus on the case in which
the MSSM Higgs mass prediction is testable at colliders.

The standard DR scheme [43, 44] will not automati-
cally yield decoupling. However, it can be modified slightly
(mDR, in the notation of Ref. [27]) to remove large loga-
rithms by hand. This subtraction reproduces the result one
would obtain at leading-log order with effective field the-
ory, in which heavy sectors are integrated out by hand
at their thresholds. Hence, at leading-log order the mDR
scheme respects decoupling. However, beyond leading log,
one should also remove non-decoupling non-logarithmic fi-
nite terms that are still present in the mDR scheme. This can
be achieved in an extension of the mDR scheme in which all
contributions from the heavy sector are subtracted.

A scheme that possesses similar properties, denoted by
“DEC” (for decoupling) below, fixes the Higgs wave func-

tion counterterms as follows:*
dZuu(p?)
(8ZH,)DEC = 7217 ;
dp a=0,p2=0
s (2.24)
dXpn(p?)
(6ZH,)DEC = — 5 — .
dp =0, p2=0

In this scheme, the tan 8 counterterm is given by Eq. (2.17),

(8 tan B)pEC
N 2
_ ltanﬁ{d[EHH(P ) . Znn(p )]} (2.25)
2 dp a:O,p2=0

Indeed, the DEC scheme manifestly removes large loga-
rithms and finite terms from heavy sectors (as we exhibit
explicitly in Sect. 3.1). This subtraction scheme also re-
moves additional contributions that depend on the low-
energy sectors (without affecting the decoupling behavior
of the scheme). In fact, this is reminiscent of the on-shell
scheme (the definition of which does not involve the limit
o — 0) which was observed in Ref. [27] to respect decou-
pling, but was discarded in favor of the mDR scheme, as the
latter was deemed to be more numerically stable. We em-
phasize that even with a scheme (such as the DEC scheme)
that is not directly related to any particular physical mea-
surement, decoupling is preserved if the effects of the heavy
sector that do not vanish in the large mass limit are fully
removed by hand. In particular this is how effective field

4The choice of evaluating the p>-derivatives of the self-energies at
p* =0 is one of many possible choices. Employing a different value
of p? would simply yield a tan 8 definition that differs at the one-loop
level. In the approximations used in this paper, the difference in the
two definitions of tan 8 is subdominant and can thus be neglected.

theory analysis should be performed in mass-independent
schemes [45].

Another possibility is to demand that some physical
(measurable) quantity is given at one-loop order by its tree-
level formula. Two such quantities are the mass m gy and the
decay rate I'(A — t7). In the former case [denoted as the
“HiggsMass” (HM) scheme], the tan 8 counterterm is ob-
tained by setting m%l = m%{t in Eq. (2.19), which defines
tan B in terms of the low-energy physical parameters mz,
mp and m 4, so that all one-loop pieces cancel:

(6 tan B)pum
V2Ay

v

I
~ 2 cos? Bsin(2(f + @) (Cos(ﬁ —)

+cos’ (B + ) T2z (m7) = Tun(miy,)

+sin*(B — o) Zpa(m?)

— cos?( — a)Egg(O)). (2.26)

A detailed and complementary discussion of tan 8 renor-
malization appears in Ref. [46]. In this reference, the au-
thors do not emphasize decoupling properties, but exhibit
other flaws among all available schemes. For example, DR
is gauge-dependent at one loop, the HM scheme can lead to
large perturbative corrections and numerical instability, and
using I"(A — t71) is both technically complicated and in-
troduces flavor dependence into tan 8. For our purposes of
exhibiting decoupling in the next section, we will use the
DEC and HM schemes as examples.

Regardless of the scheme used to define § tan 8, measur-
ing I'(A — 771) is a good way to experimentally determine
the numerical value of renormalized parameter tan 8 in the
given scheme. Once tan 8, m 4, and the soft parameters are
fixed (either by hand or from experimental determinations),
my, and m g become predictions of the theory.

3 Right-handed sneutrino contributions to m,

Right-handed neutrinos and sneutrinos obtain supersymmet-
ric masses and couple to the Higgs sector through the fol-
lowing superpotential interactions [28-37]:

1
W=uHaHy,+y LHN =y LHaR+ Zmy NN, (3.1)

where N and R represent the right-handed neutrino and
lepton multiplets, respectively, and mj; is the Majorana
mass. There are also new soft SUSY-breaking couplings and
masses given by the potential

Vioft :m%]\?*](’ + (yvAngf)LN* —I—mMBUI\?]\? +hC)
3.2)
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In general all masses and couplings are 3 x 3 matrices in
flavor space, but for simplicity we consider only a single
flavor. The resulting neutrino mass matrix is given by

where m p = y, v,. The CP-even/odd (+4/—) sneutrino mass
matrices are given by [28]:

MU=< 0 ’"D), (3.3)
mp mpy
2 2 1.2
M2, mi+mD+§mZCOSZ,B mp(A, — ucotB £myr) (3.4)
£ mp(A, —ucotB my) m%+m2D+m12W:|:2B,,mM ’

where m% is the usual soft-breaking mass for the left-handed
sneutrinos present in the MSSM.

In the analysis presented in this paper, we consider only a
single flavor of right-handed neutrinos and sneutrinos as de-
scribed above. Nevertheless, our conclusions should not be
affected by the presence of additional generations of right-
handed neutrinos and sneutrinos.

3.1 Approximate diagrammatic result

We expect that the right-handed neutrino and sneutrino con-
tributions to the physical Higgs masses should decouple as
the Majorana mass scale becomes much larger than the soft
supersymmetry-breaking scales, if all other parameters are
held fixed. This expectation is based on the fact that the
Majorana mass term my, that appears in the superpoten-
tial [cf. Eq. (3.1)] is a supersymmetry-preserving parame-
ter. Indeed it is well known that the corrections to the tree-
level Higgs mass relations in the MSSM are due entirely
to SUSY-breaking effects. In contrast, we do not expect de-
coupling if the SUSY-breaking parameters associated with
the right-handed sneutrino sector are taken very large. In the
calculations presented in this section, we shall initially as-
sume that all SUSY-breaking masses are no larger than O
(1 TeV). The consequences of large SUSY breaking in the
right-handed sector will be briefly considered in Sect. 3.4.
The relevant one-loop tadpoles and self-energy functions
are given in the appendix of Ref. [27]. We have indepen-
dently computed X zz and Ay, in the cot 8 — 0 limit and
found agreement except for the minus signs in front of the
mZZ terms in the last and third-to-last lines of Eq. (81) of
Ref. [27]. Inserting the formulas for the one-loop tadpoles
and self-energy functions into Egs. (2.18) and (2.19), we
obtain the full results for m% - To avoid a proliferation
of scales tangential to the queétion of decoupling, we turn
off A, — pcotB and the B, parameter, and fix a common
scale mg, where myj =mp = mg.> We expand to first or-
der in m2/m/2w, where m € {mz,mg,mp}, and to leading

The case where m 7 and/or By, are parametrically larger than the elec-
troweak scale will be briefly considered in Sect. 3.4.

@ Springer

order in powers of mz, which is the smallest mass scale
when the superpartner masses, the CP-odd Higgs mass m 4,
and the Dirac mass are large. Note that keeping only the
leading order in mz is equivalent to taking « ~ 8 — w /2
(since the vev v aligns with the light state 4 in this limit).
At leading-logarithmic order, we find that the lightest Higgs
mass squared is shifted relative to its tree-level value in the
two renormalization schemes by an amount

2.2
2 . &Mz 2 ms
T

2. 4 2
g mpmyg muy
~Toa .2 3 leg—,
dmw=cymymy mg
) (3.5)
2 L 8my ms
(Amp) iy = 2.2
48w =cyy mgz
2 4 2
g mpmyg my

- 0
472c,m3,m% sin® B ms

k]

where cy =cosOw =my/mz.

The first terms on the right-hand side of Eq. (3.5) are
contributions from left-handed sneutrino loops and are in-
sensitive to the heavy right-handed neutrino scale. These
terms also appear in the ordinary MSSM without neutrino
masses. For TeV-scale superpartners, these terms shift the
Higgs mass by 100-200 MeV. The second terms are leading
corrections from the Majorana sector and decouple rapidly
as logmys/ m%,,, giving shifts that are generically less than
a billionth of an eV. Including corrections of O(m2z / m/zq)
is equivalent to keeping the tree-level mixing parameter o
as a free parameter. In this case, the expressions given in
Eq. (3.5) are somewhat more complicated (with non-trivial
a-dependence), but the structure of these results are main-
tained. Contributions that would be sensitive to the physics
of the right-handed neutrino sector would yield additional
terms in Eq. (3.5) of (’)(m%)). However, using the explicit
expressions given in Appendix, it is straightforward to ver-
ify that such terms exactly cancel in both the HM and DEC
schemes, independently of the value of «.

The decoupling behavior exhibited in Eq. (3.5) depends
on how the light neutrino masses are allowed to change as
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myy is taken large. Since the overall scale of the light neu-
trino masses is not known, m p can be held fixed while m
is increased, in which case both the light neutrino masses
and the second terms in Eq. (3.5) strictly decrease. On the
other hand, one could also hold the light neutrino mass scale
fixed. In this case, because of the seesaw mechanism present
in Eq. (3.3), the second terms in Eq. (3.5) are proportional to
m‘zj and lose their m;,z decoupling behavior. Of course, this
loss of decoupling is illusory, as the m;,lz behavior is hidden
inside m% via the seesaw relation m, ~ m%) /m . Under the
assumption that y, < O(1), it follows that mp cannot be
larger than the electroweak scale, in which case m, is at
most of order 1 eV for a suitably chosen right-handed neu-
trino mass scale. Hence, the magnitude of the corrections to
my, due to the right-handed neutrino sector are always mi-
nuscule.

For the calculation of Am% in the HM scheme, we
avoided the direct computation of § tan 8 by taking advan-
tage of the sum rule, substituting everywhere the tree-level
expression for m%_l Therefore, as a check of Eq. (3.5), we
can compute the relation between tan 8 in the two schemes
and see if it is consistent with the difference in the two com-
putations of Am%.

The relation between the renormalized tan § parameters
is determined by the counterterms,
tan Bgm = tan Bpgc + 8 tan Bum — d tan Bpec, (3.6)
where §tan Bpgc is given by Eq. (2.25) and §tan gy is
given by Eq. (2.26). Hence, the shift in the one-loop pre-
diction for m% incurred by changing schemes is given by
inserting Eq. (3.6) into the tree-level formula for m%:

2 2
(Amh)DEC - (Amh)HM
~ —2m% cos® Bsin4B[S tan fum — Stan fpecl.  (3.7)
We find, in the approximations used above for Am%,
d tan Bym — 6 tan BpEC
tan 8 g2 ms
o~ log —
cos2fB 96712c2 myz
2
mm
g DS log m—M> (3.8)
32 chMmZ sin* B ms

It is straightforward to check that inserting Eq. (3.8) into
Eq. (3.7), the scheme difference obtained in Eq. (3.5) is re-
covered.

In non-decoupling subtraction schemes such as DR,
the non-decoupling contributions to the one-loop corrected
Higgs mass given in Eq. (2.18) enter via the tan 8 coun-
terterm. Using the results of Egs. (A.7) and (A.8) given in

Appendix,

d tan Bpgc — 6 tan Bpg

- g°mp, (1 log "M my )
3272c},m% sin2p 02

where Q is the renormalization scale. As noted in Ref. [27],
the partial decoupling-by-hand of the mDR scheme can be
achieved in the DR scheme by taking Q% = mﬁ,[ However,
a finite non-logarithmic term remains that also must be sub-
tracted by hand if tan 8 is to be a genuine low-energy pa-
rameter that can be determined from experimental measure-
ments far below the seesaw scale. Indeed, one could sim-
ply extend the mDR scheme by performing this extra sub-
traction. The end result is equivalent to the DEC scheme at
leading order in our expansions.

To make further contact with the results of Ref. [27], we
first note that Eq. (2.18) can be rewritten as

(3.9)

mi = mht Ehh (mit) (3.10)
where fhh (p2) is defined in Eq. (3.7a) of Ref. [27].0 If the
two-loop contributions generated by products of self-energy
functions are neglected in Eq. (3.2) of Ref. [27], then the
pole in the matrix propagator corresponding to the light CP-
even Higgs mass is given by

mi—mht Ehh(mi) 3.11)
where m%l appearing on the right-hand side above is the one-
loop corrected nggs mass. Note that the fact that the argu-
ment of Z‘hh is m? , rather than m%” means that partial two-
loop information is being included in the expression for the
one-loop corrected Higgs mass. In this case, Eq. (3.7a) of
Ref. [27] implies that the loop-corrected Higgs mass given
by Eq. (3.11) is equivalent to Eq. (2.18) with the following
replacement:

[Znn (p?) — 82w (p*

Zpn(m3,) — — m,%t)]|p2:mi, (3.12)

where [cf. Eq. (3.10a) of Ref. [27]],

8 Zpn =sin’a 82y, + cos’a 82y, (3.13)

We now examine in more detail how decoupling occurs in
the expression for the loop-corrected Higgs mass. It is con-
venient to define a momentum-dependent Higgs squared-
mass,

SNote that the self-energy and tadpole functions in the conventions of
Ref. [27] differ by an overall sign from those defined in this paper. This
is the origin of the minus sign in Eq. (3.10).
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mj (p*) =mjp, — Zun(p?)
= mj,(my,) + Zwn(p*) —
— 82w (p* —mj,)

=m;, (p*) = 8Zm(p* — mj,),

Shn(mi,)

(3.14)

where ﬁi (p? corresponds to the result of Eq. (2.18) af-
ter replacing X, (m%t) with X, (p?). By choosing either
p? = mﬁt or p? = mﬁ we recover either Eq. (3.10) or
Eq. (3.11), respectively. The potential non-decoupling be-
havior lies in the O(m%)) contributions to the loop-corrected
Higgs mass. In Appendix, we give the leading terms con-
tributing at O(sz) in the individual self-energy functions,
tadpoles, and the tan 8 counterterm. None of the individual
terms that appear in the expression for the loop-corrected
Higgs mass vanish in the large mj; limit. However, given
a decoupling scheme for §tan 8 [and § 2y, if Eq. (3.12) is
used], then the non-decoupling terms cancel exactly in the
Higgs mass prediction, leaving only mﬁ,[—suppressed terms
at O(m?,).

It is instructive to evaluate the O(m%) contributions to
m% (p?) in the DEC scheme. Using the results of Appendix,
we readily find that

2.2
g§mp

647rchmZ sin’ B

mh( )|(9(mD)

! y +logdmr +1 -1 zM
x| -- og4m —log —-
€ s gQ2

x [p? —m +miy, —m
+ cos2p (m% - m%)

2

+cos2a(p* — m3;,)], (3.15)

where the pole at € = 0 indicates that the ultraviolet diver-
gences have not yet canceled [cf. Eq. (A.2) of Appendix].
We can simplify Eq. (3.15) by using the tree-level sum rule

m%t = mi — m%ﬂ + mzz and the tree-level mixing angle re-
lation
cos 2a(m;, —mj,) = cos2p(m% —m?). (3.16)

The end result is

2.2
g>m3 cos® a 5 5
mh( )|O(mD) 3271 :mzzsm ﬂ(l’ —mm)

| 2
X (——y+10g4n+1—log Q2>
3.17)

To complete the computation of m% (p?), we make use of
Egs. (2.24) and (3.13) and the O(m%)) expressions given in

@ Springer

Egs. (A.3) and (A.4),

gzm% cos’ a

8 Znn
|O(m%7) 3n chZZ sin? B

1 )4 1 TT 1 1 )
X — — + e} 4 + — log — ).

Using Eq. (3.14), it follows that the O(m%)) contributions
to m%l( p?) exactly cancel in the DEC scheme. This decou-
pling has already been demonstrated for the one-loop cor-
rected Higgs mass defined by Eq. (2.18) in the DEC scheme
[cf. Eq. (3.5)].

One can repeat the above calculation in the HM scheme,
where M% (p?) is most easily obtained using Eq. (2.23),
which yields

Zzz(m3)

(3.19)

=mjy, + Zun (p?) + S (miy) -

— Zaa(m}) — Zs(0).

m;, (p°)

Evaluating the self-energy functions using the results of
Appendix, we again recover the result of Eq. (3.15). For
p?= m%t, the O(m%)) terms vanish exactly and the decou-
pling behavior is established, as previously demonstrated.
In the case of p? # m%t, we need a separate definition
of the Higgs wave function counterterms. Here, the natu-
ral choice is an on-shell scheme, which fixes the residues
of the corresponding pole masses to unity. In this scheme,
the O(m%) contributions to 5Zhh|@(sz ) are the same as

those of the DEC scheme, since the (’)(m%) contributions
to d Xy, (p?)/dp? and d Xy (p*)/dp? are independent of
p?. Thus, it again follows that the O(m%)) contributions to
mi( p?) exactly cancel in the HM scheme.

In contrast, consider the computation of m%l(pz) in the
DR scheme. Due to the modification of the tan 8 countert-
erm [cf. Eq. (3.9)], an extra term is obtained in the evalua-
tion of m3(m3,) [cf. Eq. (2.18)]. It follows that in the DR
scheme,

g2m2
ﬁ% (pZ) |O(m%)) - W {COtﬁ Sln(Z(IB i a))

<1 log mfw) B cos’a <p2 —m%t>
0? sin? B m?,

—1— +logdmr + 1 — 1 —2
X ogam ) .
P 14 g gQZ

(3.20)

To obtain the corresponding DR expression for § 2y, |O(m§) )

we retain € ~! — y + log4x in Eq. (3.18) and discard the
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remaining terms. Thus in the DR scheme, Eq. (3.14) yields

2.2
&Mp

2.2
327 Cy

. cosza(pz—mitﬂ(l _logﬁ)
sin B mzz 0?

(3.21)

STTREE - Y S

In the mDR scheme of Ref. [27], one sets Q2 = m3, to
remove the logarithm, but the constant term remains and
decoupling is not satisfied. The loop-corrected Higgs mass
advocated in Ref. [27] corresponds to setting p? = m% in
m% ( pz) [cf. Eq. (3.11)]. In this case, there are two separate
contributions to the non-decoupling behavior, correspond-
ing to the two terms obtained in Eq. (3.21). In the mDR
scheme, the second term of Eq. (3.21) is negative and pro-
vides the dominant source of the Higgs mass shift at large
tan 8. Indeed, it is of the correct order of magnitude to ex-
plain the decrement in m;, obtained in the numerical analysis
of Ref. [27].

Thus, we have located the sources of the non-decoupling
behavior found in Ref. [27]. However, we note that even in
a consistent one-loop truncation where p? = mit is taken to
evaluate the loop-corrected Higgs mass, there is still a resid-
ual non-decoupling behavior in the mDR scheme, which en-
ters via the tan 8 counterterm (which fixes the definition of
tan 8). In contrast, by employing a decoupling scheme to fix
the tan 8 counterterm (and the Higgs wave function coun-
terterms if separately needed), one is guaranteed a loop-
corrected Higgs mass that is completely insensitive to the
physics at the right-handed neutrino scale (assuming this
scale lies significantly above the SUSY-breaking scale).

3.2 Effective field theory estimates of the Higgs mass shift

In Ref. [27] it was argued that large corrections to mj, could
be traced to terms proportional to the external momenta in
the self-energy functions. Such terms would not appear in
the usual effective potential calculation. However, we have
found that in a consistent one-loop truncation, such large
corrections do not appear in the full expression for the phys-
ical Higgs mass when expressed in terms of parameters that
can be measured directly in the low-energy effective the-
ory. Therefore, it should be possible to derive the parametric
properties of the leading terms presented in Sect. 3.1 directly
from corrections to the Higgs quartic coupling in the effec-
tive potential, as computed in effective field theory (EFT)—
the natural framework for dealing with large mass hierar-
chies. For simplicity, we will work primarily in the small-
mz limit, where the vev v aligns with the light state 4 such
thata — B — /2.

The mZZ term we found in Ami is just the usual contribu-
tion at low scales from the D-term coupling | H,, |2|Z2, and is

insensitive to the m, threshold. What about the subleading
term? Imagine that we integrate out the right-handed neu-
trino and sneutrino at the right-handed neutrino mass thresh-
old. Above this scale, the running of A (the coefficient of the
quartic self-coupling %h“ in the effective Lagrangian) is su-
persymmetric, but the TeV-scale soft mass splits the scalar
and fermion states, leading to a logarithmic correction to A
from the right-handed sneutrino bubble diagram:

4 m2 4 2
2 _ 2 ™MDy, N _™MDMs
Ami =2(AM)v = log — 25, (3.22)

mN venty,

This term is certainly present in the corrections, but it is
mpr-suppressed and has no log enhancement, so it is not
the source of the second terms in Eq. (3.5). In addition to
direct contributions to A, we also generate an approximately
supersymmetric higher-dimensional coupling,

2
Vv
mm

AW =

LH,LH,. (3.23)

This coupling affects the running of A when supersymmetry
is broken via the diagrams in Fig. 1. The dominant contribu-
tion comes from the sneutrino diagram,

oA yl‘}m% sin* B
dlog 02 872m3,

(3.24)

Running the quartic coupling down from m s to mg and re-
calling that v = v/2my /g, we obtain at leading-logarithmic
order,

4 2
mpmyg my

Amj = , (3.25)

2n2v2m?, o8 ms
matching the terms in Eq. (3.5) in the DEC scheme.

To understand why we obtained the DEC scheme result
instead of the HM scheme result, and how the latter can
be reproduced, we have to consider the definition of tan
in the effective theory. Up to threshold corrections that are
subleading (not log-enhanced), tan Bppr = tan fBg at the
matching scale Q = mys. Therefore, the tree-level bound-
ary condition for the Higgs self-coupling A takes the usual
form,

1
A= (g} + £3) cos? 2Bpr, (3.26)

4

at the matching scale. To obtain the m s-dependent correc-
tions to a low-energy prediction for mj, we should include
not only the shift of Eq. (3.25), but also contributions ob-
tained by rewriting cos> 28 in the EFT at Q = m; in terms
of cos2 2 in the EFT at Q = ms.

Below my, the dimension-5 operator contributes to the
running of tan B in a scheme-dependent way. It is straight-
forward to check that the beta-function for tan 8 does not
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Fig. 1 Diagrams contributing

to the running of the Higgs

quartic below the right-handed Hy
neutrino mass scale \

contain terms proportional to m% / m/2w in the DEC scheme
or any minimal subtraction scheme, where the field-strength
renormalization counterterms are set by derivatives of self-
energies with respect to p”. The relevant diagrams are ob-
tained by setting two external legs to v, in Fig. 1, which
makes it clear that the sneutrino loop is independent of p2.
Therefore, in the DEC scheme, the corrections to m% from
the running of tan 8 are higher order in the mz expansion,
and are not required to reproduce Eq. (3.5).

In contrast, the tan 8 counterterm in the HM scheme
is controlled by the self-energies themselves instead of
their p? derivatives. At leading order in the mz expansion,
Eq. (2.26) with @ = 8 — 7 /2 yields

1

a 2m% cos? Bsindp

< [Ean(md) ~ S ()]

(btan B)gm =

(3.27)

Therefore, the sneutrino contributions to X'y H(m%{) and
XA A(m%‘) can provide m% / m%w terms in the running of
tan 8. Explicitly,

d(tan Blum 1 yim%v2 cos® B 3.28)
dlog Q2 2m% cos? Bsindf 4n2m3, '
which at leading log yields
at
Am,% = ZmZZ cos? B sin4,3(an—'B)H2M g m_zs
dlog O my,
4 2
mpng mmy

=————F—F>"——log—. 3.29
272v2m3, tan? B & ms (3.29)

Adding Eq. (3.29) to Eq. (3.25), we recover the leading HM
scheme expression given by the full theory in Eq. (3.5).

A more complete effective field theory analysis of
the threshold corrections from the right-handed neutrino/
sneutrino sector is beyond the scope of this paper. However,
our full-theory calculation makes clear how decoupling will
manifest at the thresholds. Loop diagrams involving right-
handed neutrinos or sneutrinos will indeed provide non-
decoupling finite contributions to the low-energy effective
Higgs self-coupling A during matching, but these contribu-
tions will be absorbed by finite and unobservable shifts in
tan 8.

@ Springer
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3.3 Numerical results

The full one-loop analytic formulas for the Higgs mass shifts
in the decoupling schemes are too complicated to reproduce
here. On the other hand, the approximations used above do
not rule out the possibility of large corrections proportional
to m/2w or log m%w appearing at higher order in the mz ex-
pansion or in non-logarithmic terms. To demonstrate that
such terms are not present, we have numerically evaluated
the full one-loop (s)neutrino contribution to my as a func-
tion of |m,| and my, with the pure left-handed sneutrino
contribution subtracted out. For definiteness, we define

_ [.2 2
Amp Ry =\/my, + Amj gy — M,

which can be thought of as an upper bound on the contri-
bution to mj, from the right-handed (RH) sector. The results
are exhibited in Fig. 2.

If additional sectors are included to raise mj, from mj; ~
mz to 126 GeV, Amy gy will be further suppressed by
about 40 %, although this is clearly unimportant in light of
the overall scale of the corrections in Fig. 2. Other param-
eters in the figure are fixed to the values A, = B, =mg =
1 TeV, u =200 GeV, and tan 8 = 5. As m is increased for
fixed m p, we move towards the upper-left corner of the plot,
where the mass shift is minimal: this trend establishes de-
coupling in the fixed m p-sense. If we increase m s and mp
so that the light physical neutrino mass m, is fixed, we see
that the corrections are roughly constant, also as expected. In
either case the overall magnitude of the corrections is never
larger than about 10719 eV, which is consistent with our es-
timate from Eq. (3.5).

(3.30)

3.4 Large SUSY breaking in the right-handed sector

Consider the impact of choosing values for the SUSY-
breaking parameters m% and B, that are large compared to
the other SUSY-breaking parameters. If soft squared-mass

parameter m% becomes of order mﬁ,l, then the contribution

to the Higgs quartic coupling from the running between m%’

and m%\, no longer decouples with large m ;. The Higgs
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Fig.2 (Left panel) The shift in the Higgs mass due to right-handed (s)neutrinos in the decoupling (DEC) scheme at different points on the neutrino
mass plane, for values of the parameters given in the text. (Right panel) The same in the Higgs Mass (HM) scheme. Amy, gy is defined in Eq. (3.30)

mass receives a correction of order

4 m2, +m=
m
Am2 ~ v—f 1og<¥>, (3.31)
my

in complete analogy to the contribution from the top
squarks. However, m% also enters into the one-loop RGE

for the Higgs mass parameter m%iu, and therefore exacer-
bates the little hierarchy problem when m% > m2Z For this

reason it is preferable to keep m% of the same order as other
squark and slepton squared-mass parameters.

When the soft mass parameter B, dominates the SUSY-
breaking parameters, it splits the CP-even and CP-odd right-
handed sneutrinos according to m N my + B,,. It also al-
ters the running of the Higgs quartic coupling at high energy

scales and inhibits decoupling. Running between mi? and
+
m?\? yields a correction to the Higgs mass of order
2 Mp (TR
Amh ~ v_2 log T
N
4 2 2
m my, — B
~ —flog(%). (3.32)
v my,

The primary distinction from the case of large m?% is that
B, lowers the geometric mean of the right-handed sneu-
trino masses, making the logarithm negative and decreas-
ing the Higgs mass. However, as in the case of mZ, there
is a good reason to keep B, < my. In particular, a large
value of B, generates a large contribution to vy —Vg mixing,
which in turn generates a one-loop correction to the light
neutrino masses that swamps the tree-level seesaw contribu-
tion if B, > 10°my, [28].

In both the large m% and large B, scenarios, the con-
tribution to mj, from the left-handed sector diagrams of
Fig. 1 are subdominant. The large right-handed neutrino—
sneutrino mass splittings change the argument of the log-
arithm, but the contribution remains suppressed by the
left-handed neutrino—sneutrino mass splitting controlled by

2

m=.
L

4 Conclusions

A recent analysis [27] has argued that adding a right-handed
neutrino and sneutrino to the MSSM could generate a siz-
able radiative contribution to the lightest Higgs boson mass
in the case of a large right-handed neutrino mass scale, even
if all soft SUSY-breaking parameters remain at the TeV
scale. Such a non-decoupling effect would cast doubt on
the notion that the Higgs mass can be reliably calculated
in a weak-scale supersymmetric theory in terms of measur-
able TeV-scale parameters. In this paper we have reanalyzed
the radiative corrections to the Higgs mass from the right-
handed neutrino sector.

In the analysis presented in this work, we began with a
review of the computation of one-loop corrections to the
physical masses of the neutral Higgs bosons of the MSSM,
streamlining the derivation, providing compact general for-
mulas for the spectrum, and reviewing the decoupling prop-
erties of various tan 8 renormalization schemes. In our con-
sideration of the relevance of decoupling, we distinguished
two cases. First, we commented briefly on the possibility
that tan 8 cannot be independently measured in any scheme.
For example, this could occur simply because all MSSM de-
grees of freedom are too heavy, in which case the decou-
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pling properties of the scheme used to define tan 8 are irrel-
evant. However, the corresponding MSSM Higgs mass pre-
diction cannot be tested, and the most that can be achieved
is a scheme-dependent constraint on the superpartner mass
scale and tan 8. Much more relevant for phenomenology
is the alternative case, where some MSSM particles with
tan B-sensitive couplings can be accessed in collider exper-
iments. In the latter case, one can predict the masses of
the MSSM Higgs bosons in terms of quantities that are di-
rectly accessible to experimental measurements. These pre-
dicted masses are completely insensitive to physics at mass
scales significantly larger than the scale of SUSY breaking
(such as the high-scale seesaw sector employed in a theory
of neutrino masses). Consequently, it is especially conve-
nient to define the parameter tan 8 using a renormalization
scheme that respects decoupling, since the expressions for
the MSSM Higgs masses (which depend explicitly on tan §)
will then manifestly exhibit the expected decoupling behav-
ior.

Applying the general mass formulas to the right-handed
neutrino sector, we derived expressions for the leading con-
tributions in two decoupling schemes, and found that the
magnitude of the corrections to the Higgs mass are utterly
negligible. The expected decoupling behavior is observed
if the right-handed neutrino mass scale is taken large while
other input parameters are held fixed. The structure of the
leading correction terms is easily recovered from effective
field theory arguments. Finally, to go beyond the approxi-
mate formulas, we performed a numerical analysis includ-
ing all contributing one-loop terms. We find that the cor-
rections remain negligible and are well-reproduced by the
leading terms. Since all the relevant couplings are weak, it is
sufficient to work to one-loop order. In particular, the effec-
tive field theory analysis gives us confidence that our results
will not change with the inclusion of two-loop and higher-
order effects. Thus, we conclude that the right-handed neu-
trino mass scale plays no significant role in the determina-
tion of the Higgs spectrum in weak-scale supersymmetric
models.
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Appendix: Approximate renormalized self-energies and
tadpoles

It is convenient to have analytic approximations for the self-
energy functions and tadpoles in order to see how the terms
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sensitive to the seesaw scale explicitly cancel in the expres-
sions for the Higgs masses [Eqgs. (2.18) and (2.19)]. Fol-
lowing Ref. [27], we perform a series expansion in pow-
ers of m%. At O(m%), the contributions are insensitive
to the seesaw scale. At (’)(m‘})), each self-energy scales
as m;,lz, exhibiting decoupling independently, in agreement
with Ref. [27]. In contrast, decoupling occurs in the (’)(mZD)
terms due to non-trivial cancellations among the various
terms in Egs. (2.18) and (2.19).

Below we give the O(m%) contributions to the real parts
of the self-energy functions and tadpoles’ in d-spacetime
dimensions using dimensional regularization, expanded to
leading order with respect to the mass hierarchy

{m%, p*,m%, m3) < m% < m,. (A1)
It is convenient to adopt the shorthand notation

N2 1 2
log Q- = it + log(47 07), (A.2)

where Q is the renormalization scale, € =2 — %d and y
is Euler’s constant. The (’)(m%)) contribution to X ( pz) at
leading order in the mass hierarchy [cf. Eq. (A.1)] is given
by

2.2 2 2
gmy, 2cos”a 5. My
Ehh 2 = { |:2m log ——

(»7) 6472ci,m? | sin’ B s 18 02

2
+ (m% - p2)<l —log %—A;)}
2 my 2 2
+m7 l—log? [cos” (4 — 3 cot” B)
(A3)

+ 2sin2a cot B — sin’ ]},

where p is the incoming four momentum. Likewise,
Yy (p?) is obtained by making the replacement o —
o — 7 inEq. (A.3),

2.2 - 2 2

m 2sin” o m
g2 2D 3 { — |:2m2510g —J;’

64m=cy,m7 | sin” B 0

2
+ (mzz — p2)<1 —log %—’;’)}

2
+m?, (1 —log né—g’) [sin® (4 — 3 cot B)

EHH(Pz) =

— 2sin2a cot B — cos” o] } (A.4)

"Note that the self-energy and tadpole functions in the conventions of
Ref. [27] differ by an overall sign from those defined in this paper.
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For completeness, we provide the O(m%)) contribution to
the real parts of all the other relevant self-energy functions
[at leading order in the mass hierarchy, Eq. (A.1)],

g%m?, m3,
72mz 1- log =
Q

> 2
“z (mZ) 6412 chZ

5 2
Saa(m?) = ng {cos ,8[ m

2m%log =M1
sin’ B s 708 02

2
— (m124 +m22)<1 —log %—’g)}

1 m2
+ ——|2m%log =& — m?
Sil’lzﬂ |: slog Q2 A

m2
(1)

2
m
+2cos2ﬂmzz<1 —1og§—"24>},

6472 chZ

2.2
g§mp

2¢ 2 .2
64 =cy,my

2
m
- 2c052,3m22(1 —log Q—Ag> },

m2
A ng Cf)sa 4m logTM
N 2 | sinp

642 chZ

m2
_mz<1_1°g 02 ﬂ

+m22(sinozcosﬁ 4 3cosasin )

m2
()

: m2
Ax g’m?, {sm(x [4 zlogTM
N 64m2c,m? | sin B

m2
—mz<1 — log == Q >i|

+m22(3sina sin 8 — cosa cos )
2
m
()]

Next, we compute the (’)(mZD) contributions [at leading

2
My

Se6(0) = {4m§ log 2t

(A5)

order in the mass hierarchy, Eq. (A.1)] to the counterterm
dtan B in the various renormalization schemes. In the HM
scheme, ¢ tan 8 is given by Eq. (2.26). Using the above ex-
pressions for the self-energy functions, along with Eq. (2.20)
and the following tree-level relations (cf. Eq. (A.20) of

Ref. [39]):
) mZZ cos2Bsin(B + o)
My, =— - >
sin( — o)
5 (A.6)
) m?, cos 2B cos(B + o)
my; = ’
cos(B — )

we obtain after considerable simplification,

d tan v = S tan ﬁm

2.2
ng

3271 chZ sin2f

1 m3
M
X (——y+10g4n—10g—2+1>- (A7)
€ 0

Note that the (’)(m%)) contributions to the counterterm
dtan B in the HM and DEC schemes are equivalent, in light
of the absence of non-decoupling terms in Eq. (3.8). In-
deed, the O(sz) contribution to §tan 8 is independent of
the tree-level Higgs mixing angle «. Although this result
is obvious in the DEC scheme (which is defined via Higgs
wave function counterterms that are evaluated at o« = 0), the
cancellation of the «-dependence in the O(m%)) contribution
to & tan By [defined in Eq. (2.26)] is highly non-trivial.

In contrast, in the DR scheme only the e ~! — y +log4mr
is retained, so that the corresponding O(m%,) contribution is
simply

2.2
ng

3272 chZ sin2f

8 tan ﬂﬁ

(l -y + log4n> (A.8)
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