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Abstract Recently, it has been argued that in the supersym-
metric extension of the seesaw-extended Standard Model,
heavy right-handed neutrinos and sneutrinos may give cor-
rections as large as a few GeV to the mass of the lightest neu-
tral CP-even Higgs boson, even if the soft supersymmetry-
breaking parameters are of order the electroweak scale.
The presence of such large corrections would render pre-
cise Higgs masses incalculable from measurable low-energy
parameters. We show that this is not the case: decou-
pling is preserved in the appropriate sense and right-handed
(s)neutrinos, if they exist, have negligible impact on the
physical Higgs masses.

1 Introduction

The discovery of a new boson near 126 GeV [1, 2] that re-
sembles the Higgs boson of the Standard Model has stim-
ulated considerable theoretical interpretation. In supersym-
metric models, the observed mass is particularly interest-
ing. Whereas 126 GeV is compatible with expectations for
the mass (mh) of the lightest neutral CP-even Higgs boson
of the Minimal Supersymmetric Standard Model (MSSM),
large quantum corrections are indicated in order to raise mh

to a value 40 % above mZ [3–5]. In the next-to-minimal
model (NMSSM), an additional tree-level contribution may
also boost the value of mh, but radiative effects are still nec-
essary unless the tri-linear coupling of the singlet and dou-
blet Higgs fields in the superpotential is large [6, 7]. Thus
the measured Higgs mass provides an important clue to the
parameters of the supersymmetric model.

The program of precision calculations of the lightest
Higgs boson mass in the MSSM began with one-loop re-
sults, given in [8–10], followed by two-loop contributions
given in [11–22]. Partial three-loop results are now avail-
able [23–25]. In cases with a large hierarchy between the
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weak scale and the scale of the stop squarks, resummation
has been used to obtain precise results, now at the level of
three-loop β-functions in some cases [26]. Residual theo-
retical uncertainty estimates vary depending on the type of
calculation performed, but in the fixed-order case are per-
haps of the order 1 GeV for light spectra below a TeV, and
2–3 GeV for heavier spectra [23–25].

The utility of the computations described above rely
on decoupling—very heavy states that do not receive their
masses from electroweak symmetry breaking are expected
to give negligible contribution to the lightest Higgs mass.
Only a limited set of model parameters, which are in princi-
ple accessible at future collider experiments, are thought to
be required for an accurate calculation of mh. On the other
hand, if an inaccessible heavy sector could provide a signif-
icant contribution to mh, then only the size of this contri-
bution could be constrained by comparing the measured mh

to the calculation in terms of observable parameters. This
would clearly be a much weaker position.

Recently, it has been suggested in Ref. [27] that in the
seesaw-extended MSSM [28–37], a right-handed neutrino
and sneutrino provides an example of such a non-decoupling
heavy sector, potentially shifting the MSSM prediction for
mh by as much as a few GeV at one-loop order, even if the
soft supersymmetry (SUSY) breaking parameters remain at
the TeV scale. It was further argued that the large terms ap-
pear at order p2 in the relevant two-point functions, which
are invisible to effective potential estimates that are based
on calculations performed at zero external momenta.1

In light of its importance for the interpretation of the ob-
served Higgs boson with mh � 126 GeV, we have performed
a reanalysis of the right-handed neutrino and sneutrino con-
tributions to mh in the seesaw-extended MSSM. We find
that the corrections to mh due to physics at the seesaw

1These contributions to mh are therefore quite distinct from corrections
that have been found in certain parameter ranges of the NMSSM with
TeV-scale right-handed neutrinos [38].
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scale are always minuscule, of the order of a billionth of an
eV. This decoupling behavior is manifest in renormalization
schemes in which the tanβ counterterm is completely insen-
sitive to phenomena at scales well above the SUSY-breaking
scale. One class of decoupling schemes includes physical
schemes, where the tanβ counterterm is controlled, for ex-
ample, by the radiative corrections to the mass of the heavy
Higgs boson, or by corrections to the decays of the heavy
Higgs bosons to down-type fermions. Another class of de-
coupling schemes subtracts non-decoupling terms by hand,
mocking up the behavior of minimal subtraction schemes
where heavy particles are fully integrated out at their thresh-
olds and are absent from the low-energy theory. If a non-
decoupling renormalization scheme is employed in the def-
inition of tanβ , then the decoupling of high-scale physics
phenomena in the radiatively corrected Higgs mass is re-
covered once tanβ is directly related to a low-energy ob-
servable. That is, tanβ should be regarded as an interme-
diary quantity, which one is free to define in any scheme.
Independently of how one defines tanβ , the MSSM Higgs
mass ultimately depends solely on parameters that can be
fixed by experimental measurements at energy scales of or-
der the SUSY-breaking scale and below. Contributions to
the Higgs mass from energy scales significantly above the
SUSY-breaking scale must be negligible.

This paper is organized as follows. In Sect. 2 we review
the computation of the physical masses of the neutral CP-
even Higgs bosons in the MSSM at one-loop order. We pro-
vide compact formulas and discuss the role of tanβ renor-
malization in the results. In Sect. 3 we calculate the leading
contributions to the lightest Higgs boson mass from the left
and right handed neutrino/sneutrino sectors. We reduce the
full diagrammatic result of Ref. [27] to simple, approximate
analytic formulas in two different renormalization schemes,
and find that in both cases the right-handed neutrino sector
exhibits appropriate decoupling. We provide an interpreta-
tion of our approximate formulas in the more natural setting
of effective field theory. Finally, we study the full one-loop
results numerically, finding again that contributions from the
right-handed neutrino sector are negligible. Our conclusions
are presented in Sect. 4. Explicit expressions for self-energy
functions, tadpoles and the tanβ counterterm, which can
provide potential non-decoupling contributions in the com-
putation of the Higgs mass, are exhibited in Appendix. Us-
ing these approximate forms, one can check that the non-
decoupling terms cancel exactly in the expressions for the
one-loop radiatively corrected Higgs mass when a suitable
definition of the tanβ counterterm is employed.

2 Physical Higgs masses at one loop in the MSSM

We begin our discussion with a review of the one-loop phys-
ical Higgs masses in the MSSM with the minimally required

two-Higgs doublet Higgs sector. The neutral field content is

H 0
u,d ≡ φr

u,d + iφi
u,d√

2
+ vu,d (2.1)

where v2 ≡ v2
u + v2

d = (174 GeV)2. Here vu [vd ] are the
vacuum expectation values (vevs) of the neutral Higgs fields
that couple exclusively to the up-type [down-type] quark and
lepton fields.

The MSSM Higgs scalar potential is given by

V = m2
1H

†
d Hd + m2
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†
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+ 1
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1 +g2

2 , m2
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the supersymmetric Higgs mass parameter, and m2
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d , and

b are soft SUSY-breaking squared-mass parameters. The lin-
ear terms in the potential are given by
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Td ≡ ∂V

∂φr
d

∣∣∣∣
φ=0

= vd√
2

(
2m2

1 + 1

2
G2(v2

d − v2
u
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)
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(2.4)

The quadratic terms yield 2 × 2 scalar and pseudoscalar
squared-mass matrices [in the (φd,φu) basis],

∂2V

∂φr
a∂φr

b

≡ M2
e

=
(

m2
1 + 1

4G2(3v2
d

− v2
u) − 1

2G2vuvd − b

− 1
2G2vuvd − b m2

2 + 1
4G2(3v2
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,

(2.5)

∂2V

∂φi
a∂φi

b

≡ M2
o

=
(

m2
1 + 1

4G2(v2
d − v2

u) b

b m2
2 + 1

4G2(v2
u − v2

d)

)
.

(2.6)

All parameters appearing in the above formulas should be
interpreted as bare parameters.

It is convenient to require that vu,d are stationary points
of the full one-loop effective potential, which is achieved via
the tadpole cancellation conditions,

Tu,d + Au,d = 0. (2.7)

The functions Au,d are the one-loop tadpole diagrams at
zero external momentum, and the Tu,d are functions of
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the bare parameters given in Eqs. (2.3) and (2.4). Using
Eq. (2.7), the pseudoscalar mass matrix simplifies to

M2
o =

⎛

⎜⎜
⎝

b
vu

vd

− Ad√
2vd

b

b b
vd

vu

− Au√
2vu

⎞

⎟⎟
⎠ . (2.8)

Diagonalizing this matrix and expanding to leading order in
Au,d , the bare masses for the pseudoscalar A and the Gold-
stone boson G are found:

m2
A = v2

vuvd

b − v2
u

v2

Ad√
2vd

− v2
d

v2

Au√
2vu

, (2.9)

m2
G = − 1√

2v2
(Advd + Auvu). (2.10)

Solving Eqs. (2.7) and (2.9) for b, m2
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)4
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4

(
v2
u − v2

d

)
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.

Inserting these results into M2
e , we obtain

M2
e =

⎛

⎜⎜
⎝

m2
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s4
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where m2
Z ≡ 1

2G2v2, sβ ≡ sinβ , and cβ ≡ cosβ . The
squared-mass matrix M2

e can be diagonalized to obtain the
bare masses m2

h,H for the light neutral CP-even Higgs boson
h and the heavy neutral CP-even Higgs boson H .

At this stage, it is convenient to replace the bare masses
by physical masses:

m2
h,Z,A,H = m2

hP,ZP,AP,HP

− Σhh,ZZ,AA,HH

(
m2

hP,ZP,AP,HP

)
, (2.13)

where the subscript P indicates the corresponding physical
parameter. The Σ functions are the real parts of the corre-
sponding self-energy functions2 through which parameters
from other sectors of the theory affect the Higgs masses.
At one-loop order, the arguments of Σhh,HH can be con-
sistently replaced with the corresponding tree-level expres-
sions for the physical masses,

m2
ht,H t = 1

2

(
m2

Z + m2
A

∓
√(

m2
A − m2

Z

)2 + 4m2
Am2

Z sin2 2β
)
. (2.14)

2In our notation, the sum of all one-loop Feynman graphs contribut-
ing to the φφ (φ = h,A,H ) and ZZ self-energy functions are denoted
by −iCφφ(p2) and iAZZ(p2)gμν + iBZZ(p2)pμν , respectively, where
p is the four-momentum of the incoming boson. Only ΣZZ(p2) ≡
ReAZZ(p2) and Σφφ(p2) ≡ ReCφφ(p2) are needed to define the
physical on-shell boson masses. Note that the opposite sign choice in
the definition of Σ(p2) is sometimes employed in the literature.

The replacements of Eq. (2.13) largely sidestep the need
to introduce renormalized mass parameters and countert-
erms in the calculation of mh and mH . The only explicit
counterterms required are associated with the parameters vu

and vd , which are divergent because they are fixed to the
vevs of the bare fields Hu,d . Rescaling the fields by wave
function renormalizations renders the vevs finite,

vu →Z−1/2
Hu

vu = vu

(
1 + 1

2
δZHu

)
,

vd → Z−1/2
Hd

vd = vd

(
1 + 1

2
δZHd

)
.

(2.15)

At one-loop order the renormalization of the vevs affects
the Higgs masses only through the parameter tanβ ≡ vu/vd ,
which can be replaced by a renormalized parameter and a
counterterm that is fixed by Eq. (2.15):

tanβ → tanβ − δ tanβ, (2.16)

where

δ tanβ ≡ 1

2
(δZHd

− δZHu) tanβ. (2.17)

Making the substitutions of Eqs. (2.13) and (2.16) and
expanding to leading order in the one-loop functions, we ob-
tain



Page 4 of 14 Eur. Phys. J. C (2013) 73:2522

m2
h = m2

ht − sin(β − α)

√
2Ah

v
− sin2(β + α)ΣZZ

(
m2

Z

)

+ Σhh

(
m2

ht

) − cos2(β − α)ΣAA

(
m2

A

)

+ sin2(β − α)ΣGG(0)

− 2m2
Z cos2 β sin

(
2(β + α)

)
δ tanβ, (2.18)

and

m2
H = m2

Ht − cos(β − α)

√
2AH

v
− cos2(β + α)ΣZZ

(
m2

Z

)

+ ΣHH

(
m2

Ht

) − sin2(β − α)ΣAA

(
m2

A

)

+ cos2(β − α)ΣGG(0)

+ 2m2
Z cos2 β sin

(
2(β + α)

)
δ tanβ, (2.19)

where mht,Ht are the tree-level masses of the neutral CP-
even Higgs bosons [cf. Eq. (2.14)], mA and mZ are the phys-
ical masses3 (i.e., input parameters taken from experimental
measurements), the angle α is the tree-level mixing angle
obtained in the diagonalization of M2

e , and

Ah ≡ Au cosα − Ad sinα, AH ≡ Au sinα + Ad cosα,

are the tadpoles with respect to the neutral CP-even Higgs
mass basis.

In obtaining the formulas in Eqs. (2.18) and (2.19) we
have used the tree-level relation that relates α to the param-
eters β and mA (cf. Eq. (A.20) of Ref. [39]),

m2
A = −m2

Z

sin(2(β + α))

sin(2(β − α))
, (2.20)

as well as the relation between the tadpoles and the Gold-
stone self-energy imposed by the requirement that the one-
loop Goldstone boson mass vanishes,
√

2vΣGG(0) = cos(β − α)AH + sin(β − α)Ah. (2.21)

As a check of our calculation, we note that in the limit of
β = 1

2π and mA > mZ we have mht = mZ , mHt = mA, and
sin(β − α) = 1 at tree level. In this case, Eqs. (2.18) and
(2.19) reduce to

m2
h = m2

Z + Σhh

(
m2

Z

) − ΣZZ

(
m2

Z

) − Ah√
2v

,

m2
H = m2

A + ΣHH

(
m2

A

) − ΣAA

(
m2

A

)
,

(2.22)

which reproduces the result for mh obtained in Refs. [8–10].
From Eqs. (2.18) and (2.19), we see that the only coun-

terterm appearing explicitly in the Higgs masses is δ tanβ . If

3To simplify the typography, we remove all P subscripts. However, all
masses in the subsequent formulas should now be interpreted as (finite)
physical masses.

only a prediction for mh is desired, then δ tanβ can be elim-
inated in favor of mH , and all instances of the renormalized
tanβ parameter appearing in the self-energies may be con-
sistently replaced at one-loop order by solving the tree-level
formula Eq. (2.14) for tanβ as a function of mH . The end
result,

m2
h = m2

A + m2
Z − m2

H + Σhh

(
m2

ht

) + ΣHH

(
m2

Ht

)

− ΣZZ

(
m2

Z

) − ΣAA

(
m2

A

) − ΣGG(0), (2.23)

coincides with a sum rule derived first in Ref. [42].
In the MSSM, the prediction for mh and mH depends

on tanβ and other MSSM mass parameters (such as mA

and the top squark mass and mixing parameters). In par-
ticular, since tanβ appears in the expressions for mht and
mHt [cf. Eq. (2.14)], one must define δ tanβ by specifying
a subtraction scheme. In principle any scheme to define the
parameter tanβ is allowed. In practice, it is preferable to em-
ploy a scheme that satisfies decoupling, in which case tanβ

can be determined solely from physical measurements that
can be carried out in collider experiments. In contrast, if a
non-decoupling scheme is used, then the definition of tanβ

depends on unknown contributions from inaccessible heavy
sectors, in which case the value of tanβ (which is needed to
predict mh and mH ) cannot be determined from low-energy
experimental measurements.

Of course, in the context of a specific model of high-
scale physics, one can employ a non-decoupling scheme to
define tanβ and then compute the relation of tanβ so de-
fined to some specific low-energy observable. In this case,
one can formally eliminate tanβ and re-express the MSSM
prediction for mh and mH in terms of the corresponding
low-energy observable. This would then provide a predic-
tion for mh and mH in terms of parameters that can be de-
termined solely from low-energy measurements. Following
such a procedure, one finds that the predicted values for mh

and mH are completely insensitive to high-scale physics, as
expected from the decoupling properties of quantum field
theory (e.g., see Refs. [40, 41]). By employing a definition
of tanβ that respects decoupling, the insensitivity of the pre-
dicted values for mh and mH to high-scale physics is mani-
fest.

Suppose that there are no schemes in which tanβ can
be determined from a low-scale measurement. As a simple
example, consider the case of high-scale SUSY in the de-
coupling limit, where all the superpartner masses and mA

are taken very large, of order mSUSY � mZ . In this case de-
coupling schemes for tanβ are not particularly favored over
non-decoupling schemes. On the other hand, the observed
Higgs mass is no longer a testable prediction, but rather a
scheme-dependent constraint on the two unmeasurable pa-
rameters mSUSY and tanβ . Scheme-dependence is not very
important in this case as it can simply be absorbed in an un-
observable shift of tanβ . Furthermore, it does not affect the
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upper bound on mh for fixed mSUSY, which is obtained in
the large tanβ limit where scheme-dependent terms vanish.
For the rest of this work, we will focus on the case in which
the MSSM Higgs mass prediction is testable at colliders.

The standard DR scheme [43, 44] will not automati-
cally yield decoupling. However, it can be modified slightly
(mDR, in the notation of Ref. [27]) to remove large loga-
rithms by hand. This subtraction reproduces the result one
would obtain at leading-log order with effective field the-
ory, in which heavy sectors are integrated out by hand
at their thresholds. Hence, at leading-log order the mDR
scheme respects decoupling. However, beyond leading log,
one should also remove non-decoupling non-logarithmic fi-
nite terms that are still present in the mDR scheme. This can
be achieved in an extension of the mDR scheme in which all
contributions from the heavy sector are subtracted.

A scheme that possesses similar properties, denoted by
“DEC” (for decoupling) below, fixes the Higgs wave func-
tion counterterms as follows:4

(δZHd
)DEC = dΣHH(p2)

dp2

∣∣∣∣
α=0,p2=0

,

(δZHu)DEC = dΣhh(p
2)

dp2

∣∣∣∣
α=0,p2=0

.

(2.24)

In this scheme, the tanβ counterterm is given by Eq. (2.17),

(δ tanβ)DEC

= 1

2
tanβ

{
d[ΣHH (p2) − Σhh(p

2)]
dp2

}

α=0,p2=0
. (2.25)

Indeed, the DEC scheme manifestly removes large loga-
rithms and finite terms from heavy sectors (as we exhibit
explicitly in Sect. 3.1). This subtraction scheme also re-
moves additional contributions that depend on the low-
energy sectors (without affecting the decoupling behavior
of the scheme). In fact, this is reminiscent of the on-shell
scheme (the definition of which does not involve the limit
α → 0) which was observed in Ref. [27] to respect decou-
pling, but was discarded in favor of the mDR scheme, as the
latter was deemed to be more numerically stable. We em-
phasize that even with a scheme (such as the DEC scheme)
that is not directly related to any particular physical mea-
surement, decoupling is preserved if the effects of the heavy
sector that do not vanish in the large mass limit are fully
removed by hand. In particular this is how effective field

4The choice of evaluating the p2-derivatives of the self-energies at
p2 = 0 is one of many possible choices. Employing a different value
of p2 would simply yield a tanβ definition that differs at the one-loop
level. In the approximations used in this paper, the difference in the
two definitions of tanβ is subdominant and can thus be neglected.

theory analysis should be performed in mass-independent
schemes [45].

Another possibility is to demand that some physical
(measurable) quantity is given at one-loop order by its tree-
level formula. Two such quantities are the mass mH and the
decay rate Γ (A → ττ). In the former case [denoted as the
“HiggsMass” (HM) scheme], the tanβ counterterm is ob-
tained by setting m2

H = m2
Ht in Eq. (2.19), which defines

tanβ in terms of the low-energy physical parameters mZ ,
mH and mA, so that all one-loop pieces cancel:

(δ tanβ)HM

= 1

2m2
Z cos2 β sin(2(β + α))

(
cos(β − α)

√
2AH

v

+ cos2(β + α)ΣZZ

(
m2

Z

) − ΣHH

(
m2

Ht

)

+ sin2(β − α)ΣAA

(
m2

A

)

− cos2(β − α)ΣGG(0)

)
. (2.26)

A detailed and complementary discussion of tanβ renor-
malization appears in Ref. [46]. In this reference, the au-
thors do not emphasize decoupling properties, but exhibit
other flaws among all available schemes. For example, DR
is gauge-dependent at one loop, the HM scheme can lead to
large perturbative corrections and numerical instability, and
using Γ (A → ττ) is both technically complicated and in-
troduces flavor dependence into tanβ . For our purposes of
exhibiting decoupling in the next section, we will use the
DEC and HM schemes as examples.

Regardless of the scheme used to define δ tanβ , measur-
ing Γ (A → ττ) is a good way to experimentally determine
the numerical value of renormalized parameter tanβ in the
given scheme. Once tanβ , mA, and the soft parameters are
fixed (either by hand or from experimental determinations),
mh and mH become predictions of the theory.

3 Right-handed sneutrino contributions to mh

Right-handed neutrinos and sneutrinos obtain supersymmet-
ric masses and couple to the Higgs sector through the fol-
lowing superpotential interactions [28–37]:

W = μHdHu + yνLHuN − ylLHdR + 1

2
mMNN, (3.1)

where N and R represent the right-handed neutrino and
lepton multiplets, respectively, and mM is the Majorana
mass. There are also new soft SUSY-breaking couplings and
masses given by the potential

Vsoft = m2
R̃
Ñ∗Ñ + (

yνAνH
0
U ν̃LÑ∗ + mMBνÑÑ + h.c.

)
.

(3.2)
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In general all masses and couplings are 3 × 3 matrices in
flavor space, but for simplicity we consider only a single
flavor. The resulting neutrino mass matrix is given by

Mν =
(

0 mD

mD mM

)
, (3.3)

where mD ≡ yνvu. The CP-even/odd (+/−) sneutrino mass
matrices are given by [28]:

M2
ν̃± =

(
m2

L̃
+ m2

D + 1
2m2

Z cos 2β mD(Aν − μ cotβ ± mM)

mD(Aν − μ cotβ ± mM) m2
R̃

+ m2
D + m2

M ± 2BνmM

)

, (3.4)

where m2
L̃

is the usual soft-breaking mass for the left-handed
sneutrinos present in the MSSM.

In the analysis presented in this paper, we consider only a
single flavor of right-handed neutrinos and sneutrinos as de-
scribed above. Nevertheless, our conclusions should not be
affected by the presence of additional generations of right-
handed neutrinos and sneutrinos.

3.1 Approximate diagrammatic result

We expect that the right-handed neutrino and sneutrino con-
tributions to the physical Higgs masses should decouple as
the Majorana mass scale becomes much larger than the soft
supersymmetry-breaking scales, if all other parameters are
held fixed. This expectation is based on the fact that the
Majorana mass term mM that appears in the superpoten-
tial [cf. Eq. (3.1)] is a supersymmetry-preserving parame-
ter. Indeed it is well known that the corrections to the tree-
level Higgs mass relations in the MSSM are due entirely
to SUSY-breaking effects. In contrast, we do not expect de-
coupling if the SUSY-breaking parameters associated with
the right-handed sneutrino sector are taken very large. In the
calculations presented in this section, we shall initially as-
sume that all SUSY-breaking masses are no larger than O
(1 TeV). The consequences of large SUSY breaking in the
right-handed sector will be briefly considered in Sect. 3.4.

The relevant one-loop tadpoles and self-energy functions
are given in the appendix of Ref. [27]. We have indepen-
dently computed Σhh,ZZ and Ah in the cotβ → 0 limit and
found agreement except for the minus signs in front of the
m2

Z terms in the last and third-to-last lines of Eq. (81) of
Ref. [27]. Inserting the formulas for the one-loop tadpoles
and self-energy functions into Eqs. (2.18) and (2.19), we
obtain the full results for m2

h,H . To avoid a proliferation
of scales tangential to the question of decoupling, we turn
off Aν − μ cotβ and the Bν parameter, and fix a common
scale mS , where m

L̃
= m

R̃
≡ mS .5 We expand to first or-

der in m2/m2
M , where m ∈ {mZ,mS,mD}, and to leading

5The case where m
R̃

and/or Bν are parametrically larger than the elec-
troweak scale will be briefly considered in Sect. 3.4.

order in powers of mZ , which is the smallest mass scale
when the superpartner masses, the CP-odd Higgs mass mA,
and the Dirac mass are large. Note that keeping only the
leading order in mZ is equivalent to taking α � β − π/2
(since the vev v aligns with the light state h in this limit).
At leading-logarithmic order, we find that the lightest Higgs
mass squared is shifted relative to its tree-level value in the
two renormalization schemes by an amount

(
�m2

h

)
DEC � g2m2

Z

48π2c2
W

cos2 2β log
mS

mZ

− g2m4
Dm2

S

4π2c2
Wm2

Mm2
Z

log
mM

mS

,

(
�m2

h

)
HM � g2m2

Z

48π2c2
W

log
mS

mZ

− g2m4
Dm2

S

4π2c2
Wm2

Mm2
Z sin2 β

log
mM

mS

,

(3.5)

where cW ≡ cos θW = mW/mZ .
The first terms on the right-hand side of Eq. (3.5) are

contributions from left-handed sneutrino loops and are in-
sensitive to the heavy right-handed neutrino scale. These
terms also appear in the ordinary MSSM without neutrino
masses. For TeV-scale superpartners, these terms shift the
Higgs mass by 100–200 MeV. The second terms are leading
corrections from the Majorana sector and decouple rapidly
as logmM/m2

M , giving shifts that are generically less than
a billionth of an eV. Including corrections of O(m2

Z/m2
A)

is equivalent to keeping the tree-level mixing parameter α

as a free parameter. In this case, the expressions given in
Eq. (3.5) are somewhat more complicated (with non-trivial
α-dependence), but the structure of these results are main-
tained. Contributions that would be sensitive to the physics
of the right-handed neutrino sector would yield additional
terms in Eq. (3.5) of O(m2

D). However, using the explicit
expressions given in Appendix, it is straightforward to ver-
ify that such terms exactly cancel in both the HM and DEC
schemes, independently of the value of α.

The decoupling behavior exhibited in Eq. (3.5) depends
on how the light neutrino masses are allowed to change as



Eur. Phys. J. C (2013) 73:2522 Page 7 of 14

mM is taken large. Since the overall scale of the light neu-
trino masses is not known, mD can be held fixed while mM

is increased, in which case both the light neutrino masses
and the second terms in Eq. (3.5) strictly decrease. On the
other hand, one could also hold the light neutrino mass scale
fixed. In this case, because of the seesaw mechanism present
in Eq. (3.3), the second terms in Eq. (3.5) are proportional to
m2

ν and lose their m−2
M decoupling behavior. Of course, this

loss of decoupling is illusory, as the m−2
M behavior is hidden

inside m2
ν via the seesaw relation mν ∼ m2

D/mM . Under the
assumption that yν <∼ O(1), it follows that mD cannot be
larger than the electroweak scale, in which case mν is at
most of order 1 eV for a suitably chosen right-handed neu-
trino mass scale. Hence, the magnitude of the corrections to
mh due to the right-handed neutrino sector are always mi-
nuscule.

For the calculation of �m2
h in the HM scheme, we

avoided the direct computation of δ tanβ by taking advan-
tage of the sum rule, substituting everywhere the tree-level
expression for m2

H . Therefore, as a check of Eq. (3.5), we
can compute the relation between tanβ in the two schemes
and see if it is consistent with the difference in the two com-
putations of �m2

h.
The relation between the renormalized tanβ parameters

is determined by the counterterms,

tanβHM = tanβDEC + δ tanβHM − δ tanβDEC, (3.6)

where δ tanβDEC is given by Eq. (2.25) and δ tanβHM is
given by Eq. (2.26). Hence, the shift in the one-loop pre-
diction for m2

h incurred by changing schemes is given by
inserting Eq. (3.6) into the tree-level formula for m2

h:

(
�m2

h

)
DEC − (

�m2
h

)
HM

� −2m2
Z cos2 β sin 4β[δ tanβHM − δ tanβDEC]. (3.7)

We find, in the approximations used above for �m2
h,

δ tanβHM − δ tanβDEC

� tanβ

cos 2β

(
g2

96π2c2
W

log
mS

mZ

− g2m4
Dm2

S

32π2c2
Wm2

Mm4
Z sin4 β

log
mM

mS

)
. (3.8)

It is straightforward to check that inserting Eq. (3.8) into
Eq. (3.7), the scheme difference obtained in Eq. (3.5) is re-
covered.

In non-decoupling subtraction schemes such as DR,
the non-decoupling contributions to the one-loop corrected
Higgs mass given in Eq. (2.18) enter via the tanβ coun-
terterm. Using the results of Eqs. (A.7) and (A.8) given in

Appendix,

δ tanβDEC − δ tanβDR

� g2m2
D

32π2c2
Wm2

Z sin 2β

(
1 − log

m2
M

Q2

)
, (3.9)

where Q is the renormalization scale. As noted in Ref. [27],
the partial decoupling-by-hand of the mDR scheme can be
achieved in the DR scheme by taking Q2 = m2

M . However,
a finite non-logarithmic term remains that also must be sub-
tracted by hand if tanβ is to be a genuine low-energy pa-
rameter that can be determined from experimental measure-
ments far below the seesaw scale. Indeed, one could sim-
ply extend the mDR scheme by performing this extra sub-
traction. The end result is equivalent to the DEC scheme at
leading order in our expansions.

To make further contact with the results of Ref. [27], we
first note that Eq. (2.18) can be rewritten as

m2
h = m2

ht − Σ̂hh

(
m2

ht

)
, (3.10)

where Σ̂hh(p
2) is defined in Eq. (3.7a) of Ref. [27].6 If the

two-loop contributions generated by products of self-energy
functions are neglected in Eq. (3.2) of Ref. [27], then the
pole in the matrix propagator corresponding to the light CP-
even Higgs mass is given by

m2
h = m2

ht − Σ̂hh

(
m2

h

)
, (3.11)

where m2
h appearing on the right-hand side above is the one-

loop corrected Higgs mass. Note that the fact that the argu-
ment of Σ̂hh is m2

h rather than m2
ht means that partial two-

loop information is being included in the expression for the
one-loop corrected Higgs mass. In this case, Eq. (3.7a) of
Ref. [27] implies that the loop-corrected Higgs mass given
by Eq. (3.11) is equivalent to Eq. (2.18) with the following
replacement:

Σhh

(
m2

ht

) → [
Σhh

(
p2) − δZhh

(
p2 − m2

ht

)]∣∣
p2=m2

h
, (3.12)

where [cf. Eq. (3.10a) of Ref. [27]],

δZhh = sin2 α δZHd
+ cos2 α δZHu. (3.13)

We now examine in more detail how decoupling occurs in
the expression for the loop-corrected Higgs mass. It is con-
venient to define a momentum-dependent Higgs squared-
mass,

6Note that the self-energy and tadpole functions in the conventions of
Ref. [27] differ by an overall sign from those defined in this paper. This
is the origin of the minus sign in Eq. (3.10).
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m2
h

(
p2) ≡ m2

ht − Σ̂hh

(
p2)

= m2
h

(
m2

ht

) + Σhh

(
p2) − Σhh

(
m2

ht

)

− δZhh

(
p2 − m2

ht

)

≡ m2
h

(
p2) − δZhh

(
p2 − m2

ht

)
, (3.14)

where m2
h(p

2) corresponds to the result of Eq. (2.18) af-
ter replacing Σhh(m

2
ht ) with Σhh(p

2). By choosing either
p2 = m2

ht or p2 = m2
h, we recover either Eq. (3.10) or

Eq. (3.11), respectively. The potential non-decoupling be-
havior lies in the O(m2

D) contributions to the loop-corrected
Higgs mass. In Appendix, we give the leading terms con-
tributing at O(m2

D) in the individual self-energy functions,
tadpoles, and the tanβ counterterm. None of the individual
terms that appear in the expression for the loop-corrected
Higgs mass vanish in the large mM limit. However, given
a decoupling scheme for δ tanβ [and δZhh, if Eq. (3.12) is
used], then the non-decoupling terms cancel exactly in the
Higgs mass prediction, leaving only m2

M -suppressed terms
at O(m4

D).
It is instructive to evaluate the O(m2

D) contributions to
m2

h(p
2) in the DEC scheme. Using the results of Appendix,

we readily find that

m2
h

(
p2)∣∣

O(m2
D)

= − g2m2
D

64π2c2
Wm2

Z sin2 β

×
(

1

ε
− γ + log 4π + 1 − log

m2
M

Q2

)

× [
p2 − m2

A + m2
Ht − m2

Z

+ cos 2β
(
m2

Z − m2
A

)

+ cos 2α
(
p2 − m2

Ht

)]
, (3.15)

where the pole at ε = 0 indicates that the ultraviolet diver-
gences have not yet canceled [cf. Eq. (A.2) of Appendix].
We can simplify Eq. (3.15) by using the tree-level sum rule
m2

ht = m2
A − m2

Ht + m2
Z and the tree-level mixing angle re-

lation

cos 2α
(
m2

Ht − m2
ht

) = cos 2β
(
m2

Z − m2
A

)
. (3.16)

The end result is

m2
h

(
p2)∣∣

O(m2
D)

= − g2m2
D cos2 α

32π2c2
Wm2

Z sin2 β

(
p2 − m2

ht

)

×
(

1

ε
− γ + log 4π + 1 − log

m2
M

Q2

)
.

(3.17)

To complete the computation of m2
h(p

2), we make use of
Eqs. (2.24) and (3.13) and the O(m2

D) expressions given in

Eqs. (A.3) and (A.4),

δZhh

∣∣
O(m2

D)
= − g2m2

D cos2 α

32π2c2
Wm2

Z sin2 β

×
(

1

ε
− γ + log 4π + 1 − log

m2
M

Q2

)
.

(3.18)

Using Eq. (3.14), it follows that the O(m2
D) contributions

to m2
h(p

2) exactly cancel in the DEC scheme. This decou-
pling has already been demonstrated for the one-loop cor-
rected Higgs mass defined by Eq. (2.18) in the DEC scheme
[cf. Eq. (3.5)].

One can repeat the above calculation in the HM scheme,
where m2

h(p
2) is most easily obtained using Eq. (2.23),

which yields

m2
h

(
p2) = m2

ht + Σhh

(
p2) + ΣHH

(
m2

H

) − ΣZZ

(
m2

Z

)

− ΣAA

(
m2

A

) − ΣGG(0). (3.19)

Evaluating the self-energy functions using the results of
Appendix, we again recover the result of Eq. (3.15). For
p2 = m2

ht , the O(m2
D) terms vanish exactly and the decou-

pling behavior is established, as previously demonstrated.
In the case of p2 �= m2

ht , we need a separate definition
of the Higgs wave function counterterms. Here, the natu-
ral choice is an on-shell scheme, which fixes the residues
of the corresponding pole masses to unity. In this scheme,
the O(m2

D) contributions to δZhh|O(m2
D) are the same as

those of the DEC scheme, since the O(m2
D) contributions

to dΣhh(p
2)/dp2 and dΣHH (p2)/dp2 are independent of

p2. Thus, it again follows that the O(m2
D) contributions to

m2
h(p

2) exactly cancel in the HM scheme.
In contrast, consider the computation of m2

h(p
2) in the

DR scheme. Due to the modification of the tanβ countert-
erm [cf. Eq. (3.9)], an extra term is obtained in the evalua-
tion of m2

h(m
2
ht ) [cf. Eq. (2.18)]. It follows that in the DR

scheme,

m2
h

(
p2)∣∣

O(m2
D)

= g2m2
D

32π2c2
W

{
cotβ sin

(
2(β + α)

)

×
(

1 − log
m2

M

Q2

)
− cos2 α

sin2 β

(
p2 − m2

ht

m2
Z

)

×
(

1

ε
− γ + log 4π + 1 − log

m2
M

Q2

)}
.

(3.20)

To obtain the corresponding DR expression for δZhh|O(m2
D),

we retain ε−1 − γ + log 4π in Eq. (3.18) and discard the
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remaining terms. Thus in the DR scheme, Eq. (3.14) yields

m2
h

(
p2)∣∣

O(m2
D)

= g2m2
D

32π2c2
W

[
cotβ sin

(
2(β + α)

)

− cos2 α

sin2 β

(
p2 − m2

ht

m2
Z

)](
1 − log

m2
M

Q2

)
.

(3.21)

In the mDR scheme of Ref. [27], one sets Q2 = m2
M to

remove the logarithm, but the constant term remains and
decoupling is not satisfied. The loop-corrected Higgs mass
advocated in Ref. [27] corresponds to setting p2 = m2

h in
m2

h(p
2) [cf. Eq. (3.11)]. In this case, there are two separate

contributions to the non-decoupling behavior, correspond-
ing to the two terms obtained in Eq. (3.21). In the mDR
scheme, the second term of Eq. (3.21) is negative and pro-
vides the dominant source of the Higgs mass shift at large
tanβ . Indeed, it is of the correct order of magnitude to ex-
plain the decrement in mh obtained in the numerical analysis
of Ref. [27].

Thus, we have located the sources of the non-decoupling
behavior found in Ref. [27]. However, we note that even in
a consistent one-loop truncation where p2 = m2

ht is taken to
evaluate the loop-corrected Higgs mass, there is still a resid-
ual non-decoupling behavior in the mDR scheme, which en-
ters via the tanβ counterterm (which fixes the definition of
tanβ). In contrast, by employing a decoupling scheme to fix
the tanβ counterterm (and the Higgs wave function coun-
terterms if separately needed), one is guaranteed a loop-
corrected Higgs mass that is completely insensitive to the
physics at the right-handed neutrino scale (assuming this
scale lies significantly above the SUSY-breaking scale).

3.2 Effective field theory estimates of the Higgs mass shift

In Ref. [27] it was argued that large corrections to mh could
be traced to terms proportional to the external momenta in
the self-energy functions. Such terms would not appear in
the usual effective potential calculation. However, we have
found that in a consistent one-loop truncation, such large
corrections do not appear in the full expression for the phys-
ical Higgs mass when expressed in terms of parameters that
can be measured directly in the low-energy effective the-
ory. Therefore, it should be possible to derive the parametric
properties of the leading terms presented in Sect. 3.1 directly
from corrections to the Higgs quartic coupling in the effec-
tive potential, as computed in effective field theory (EFT)—
the natural framework for dealing with large mass hierar-
chies. For simplicity, we will work primarily in the small-
mZ limit, where the vev v aligns with the light state h such
that α → β − π/2.

The m2
Z term we found in �m2

h is just the usual contribu-
tion at low scales from the D-term coupling |Hu|2|L̃2, and is

insensitive to the mM threshold. What about the subleading
term? Imagine that we integrate out the right-handed neu-
trino and sneutrino at the right-handed neutrino mass thresh-
old. Above this scale, the running of λ (the coefficient of the
quartic self-coupling 1

8h4 in the effective Lagrangian) is su-
persymmetric, but the TeV-scale soft mass splits the scalar
and fermion states, leading to a logarithmic correction to λ

from the right-handed sneutrino bubble diagram:

�m2
h = 2(�λ)v2 ∼ m4

D

v2
log

m2
Ñ

m2
N

∼ m4
Dm2

S

v2m2
M

. (3.22)

This term is certainly present in the corrections, but it is
mM -suppressed and has no log enhancement, so it is not
the source of the second terms in Eq. (3.5). In addition to
direct contributions to λ, we also generate an approximately
supersymmetric higher-dimensional coupling,

�W = y2
ν

mM

LHuLHu. (3.23)

This coupling affects the running of λ when supersymmetry
is broken via the diagrams in Fig. 1. The dominant contribu-
tion comes from the sneutrino diagram,

∂λ

∂ logQ2
≈ y4

νm2
S sin4 β

8π2m2
M

. (3.24)

Running the quartic coupling down from mM to mS and re-
calling that v = √

2mW/g, we obtain at leading-logarithmic
order,

�m2
h = − m4

Dm2
S

2π2v2m2
M

log
mM

mS

, (3.25)

matching the terms in Eq. (3.5) in the DEC scheme.
To understand why we obtained the DEC scheme result

instead of the HM scheme result, and how the latter can
be reproduced, we have to consider the definition of tanβ

in the effective theory. Up to threshold corrections that are
subleading (not log-enhanced), tanβEFT = tanβfull at the
matching scale Q = mM . Therefore, the tree-level bound-
ary condition for the Higgs self-coupling λ takes the usual
form,

λ = 1

4

(
g2

1 + g2
2

)
cos2 2βEFT, (3.26)

at the matching scale. To obtain the mM -dependent correc-
tions to a low-energy prediction for mh, we should include
not only the shift of Eq. (3.25), but also contributions ob-
tained by rewriting cos2 2β in the EFT at Q = mM in terms
of cos2 2β in the EFT at Q = mS .

Below mM , the dimension-5 operator contributes to the
running of tanβ in a scheme-dependent way. It is straight-
forward to check that the beta-function for tanβ does not
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Fig. 1 Diagrams contributing
to the running of the Higgs
quartic below the right-handed
neutrino mass scale

contain terms proportional to m2
S/m2

M in the DEC scheme
or any minimal subtraction scheme, where the field-strength
renormalization counterterms are set by derivatives of self-
energies with respect to p2. The relevant diagrams are ob-
tained by setting two external legs to vu in Fig. 1, which
makes it clear that the sneutrino loop is independent of p2.
Therefore, in the DEC scheme, the corrections to m2

h from
the running of tanβ are higher order in the mZ expansion,
and are not required to reproduce Eq. (3.5).

In contrast, the tanβ counterterm in the HM scheme
is controlled by the self-energies themselves instead of
their p2 derivatives. At leading order in the mZ expansion,
Eq. (2.26) with α = β − π/2 yields

(δ tanβ)HM = − 1

2m2
Z cos2 β sin 4β

× [
ΣAA

(
m2

A

) − ΣHH

(
m2

H

)]
. (3.27)

Therefore, the sneutrino contributions to ΣHH (m2
H ) and

ΣAA(m2
A) can provide m2

S/m2
M terms in the running of

tanβ . Explicitly,

∂(tanβ)HM

∂ logQ2
= 1

2m2
Z cos2 β sin 4β

y4
νm2

Sv2
u cos2 β

4π2m2
M

, (3.28)

which at leading log yields

�m2
h = 2m2

Z cos2 β sin 4β
∂(tanβ)HM

∂ logQ2
log

m2
S

m2
M

= − m4
Dm2

S

2π2v2m2
M tan2 β

log
mM

mS

. (3.29)

Adding Eq. (3.29) to Eq. (3.25), we recover the leading HM
scheme expression given by the full theory in Eq. (3.5).

A more complete effective field theory analysis of
the threshold corrections from the right-handed neutrino/
sneutrino sector is beyond the scope of this paper. However,
our full-theory calculation makes clear how decoupling will
manifest at the thresholds. Loop diagrams involving right-
handed neutrinos or sneutrinos will indeed provide non-
decoupling finite contributions to the low-energy effective
Higgs self-coupling λ during matching, but these contribu-
tions will be absorbed by finite and unobservable shifts in
tanβ .

3.3 Numerical results

The full one-loop analytic formulas for the Higgs mass shifts
in the decoupling schemes are too complicated to reproduce
here. On the other hand, the approximations used above do
not rule out the possibility of large corrections proportional
to m2

M or logm2
M appearing at higher order in the mZ ex-

pansion or in non-logarithmic terms. To demonstrate that
such terms are not present, we have numerically evaluated
the full one-loop (s)neutrino contribution to mh as a func-
tion of |mν | and mN , with the pure left-handed sneutrino
contribution subtracted out. For definiteness, we define

�mh,RH ≡
√

m2
ht + �m2

h,RH − mht , (3.30)

which can be thought of as an upper bound on the contri-
bution to mh from the right-handed (RH) sector. The results
are exhibited in Fig. 2.

If additional sectors are included to raise mh from mht ∼
mZ to 126 GeV, �mh,RH will be further suppressed by
about 40 %, although this is clearly unimportant in light of
the overall scale of the corrections in Fig. 2. Other param-
eters in the figure are fixed to the values Aν = Bν = mS =
1 TeV, μ = 200 GeV, and tanβ = 5. As mM is increased for
fixed mD , we move towards the upper-left corner of the plot,
where the mass shift is minimal: this trend establishes de-
coupling in the fixed mD-sense. If we increase mM and mD

so that the light physical neutrino mass mν is fixed, we see
that the corrections are roughly constant, also as expected. In
either case the overall magnitude of the corrections is never
larger than about 10−10 eV, which is consistent with our es-
timate from Eq. (3.5).

3.4 Large SUSY breaking in the right-handed sector

Consider the impact of choosing values for the SUSY-
breaking parameters m2

R̃
and Bν that are large compared to

the other SUSY-breaking parameters. If soft squared-mass
parameter m2

R̃
becomes of order m2

M , then the contribution

to the Higgs quartic coupling from the running between m2
Ñ

and m2
N no longer decouples with large mM . The Higgs
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Fig. 2 (Left panel) The shift in the Higgs mass due to right-handed (s)neutrinos in the decoupling (DEC) scheme at different points on the neutrino
mass plane, for values of the parameters given in the text. (Right panel) The same in the Higgs Mass (HM) scheme. �mh,RH is defined in Eq. (3.30)

mass receives a correction of order

�m2
h ∼ m4

D

v2
log

(
m2

M + m2
R̃

m2
M

)
, (3.31)

in complete analogy to the contribution from the top
squarks. However, m2

R̃
also enters into the one-loop RGE

for the Higgs mass parameter m2
Hu

, and therefore exacer-

bates the little hierarchy problem when m2
R̃

� m2
Z . For this

reason it is preferable to keep m2
R̃

of the same order as other
squark and slepton squared-mass parameters.

When the soft mass parameter Bν dominates the SUSY-
breaking parameters, it splits the CP-even and CP-odd right-
handed sneutrinos according to m

Ñ± ≈ mM ± Bν . It also al-
ters the running of the Higgs quartic coupling at high energy
scales and inhibits decoupling. Running between m2

Ñ+
and

m2
Ñ−

yields a correction to the Higgs mass of order

�m2
h ∼ m4

D

v2
log

(
m

Ñ+m
Ñ−

m2
N

)

� m4
D

v2
log

(
m2

M − B2
ν

m2
M

)
. (3.32)

The primary distinction from the case of large m2
R̃

is that
Bν lowers the geometric mean of the right-handed sneu-
trino masses, making the logarithm negative and decreas-
ing the Higgs mass. However, as in the case of m2

R̃
, there

is a good reason to keep Bν 
 mM . In particular, a large
value of Bν generates a large contribution to ν̃L–ν̃R mixing,
which in turn generates a one-loop correction to the light
neutrino masses that swamps the tree-level seesaw contribu-
tion if Bν � 103mν̃L

[28].

In both the large m2
R̃

and large Bν scenarios, the con-
tribution to mh from the left-handed sector diagrams of
Fig. 1 are subdominant. The large right-handed neutrino–
sneutrino mass splittings change the argument of the log-
arithm, but the contribution remains suppressed by the
left-handed neutrino–sneutrino mass splitting controlled by
m2

L̃
.

4 Conclusions

A recent analysis [27] has argued that adding a right-handed
neutrino and sneutrino to the MSSM could generate a siz-
able radiative contribution to the lightest Higgs boson mass
in the case of a large right-handed neutrino mass scale, even
if all soft SUSY-breaking parameters remain at the TeV
scale. Such a non-decoupling effect would cast doubt on
the notion that the Higgs mass can be reliably calculated
in a weak-scale supersymmetric theory in terms of measur-
able TeV-scale parameters. In this paper we have reanalyzed
the radiative corrections to the Higgs mass from the right-
handed neutrino sector.

In the analysis presented in this work, we began with a
review of the computation of one-loop corrections to the
physical masses of the neutral Higgs bosons of the MSSM,
streamlining the derivation, providing compact general for-
mulas for the spectrum, and reviewing the decoupling prop-
erties of various tanβ renormalization schemes. In our con-
sideration of the relevance of decoupling, we distinguished
two cases. First, we commented briefly on the possibility
that tanβ cannot be independently measured in any scheme.
For example, this could occur simply because all MSSM de-
grees of freedom are too heavy, in which case the decou-
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pling properties of the scheme used to define tanβ are irrel-
evant. However, the corresponding MSSM Higgs mass pre-
diction cannot be tested, and the most that can be achieved
is a scheme-dependent constraint on the superpartner mass
scale and tanβ . Much more relevant for phenomenology
is the alternative case, where some MSSM particles with
tanβ-sensitive couplings can be accessed in collider exper-
iments. In the latter case, one can predict the masses of
the MSSM Higgs bosons in terms of quantities that are di-
rectly accessible to experimental measurements. These pre-
dicted masses are completely insensitive to physics at mass
scales significantly larger than the scale of SUSY breaking
(such as the high-scale seesaw sector employed in a theory
of neutrino masses). Consequently, it is especially conve-
nient to define the parameter tanβ using a renormalization
scheme that respects decoupling, since the expressions for
the MSSM Higgs masses (which depend explicitly on tanβ)
will then manifestly exhibit the expected decoupling behav-
ior.

Applying the general mass formulas to the right-handed
neutrino sector, we derived expressions for the leading con-
tributions in two decoupling schemes, and found that the
magnitude of the corrections to the Higgs mass are utterly
negligible. The expected decoupling behavior is observed
if the right-handed neutrino mass scale is taken large while
other input parameters are held fixed. The structure of the
leading correction terms is easily recovered from effective
field theory arguments. Finally, to go beyond the approxi-
mate formulas, we performed a numerical analysis includ-
ing all contributing one-loop terms. We find that the cor-
rections remain negligible and are well-reproduced by the
leading terms. Since all the relevant couplings are weak, it is
sufficient to work to one-loop order. In particular, the effec-
tive field theory analysis gives us confidence that our results
will not change with the inclusion of two-loop and higher-
order effects. Thus, we conclude that the right-handed neu-
trino mass scale plays no significant role in the determina-
tion of the Higgs spectrum in weak-scale supersymmetric
models.
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Appendix: Approximate renormalized self-energies and
tadpoles

It is convenient to have analytic approximations for the self-
energy functions and tadpoles in order to see how the terms

sensitive to the seesaw scale explicitly cancel in the expres-
sions for the Higgs masses [Eqs. (2.18) and (2.19)]. Fol-
lowing Ref. [27], we perform a series expansion in pow-
ers of m2

D . At O(m0
D), the contributions are insensitive

to the seesaw scale. At O(m4
D), each self-energy scales

as m−2
M , exhibiting decoupling independently, in agreement

with Ref. [27]. In contrast, decoupling occurs in the O(m2
D)

terms due to non-trivial cancellations among the various
terms in Eqs. (2.18) and (2.19).

Below we give the O(m2
D) contributions to the real parts

of the self-energy functions and tadpoles7 in d-spacetime
dimensions using dimensional regularization, expanded to
leading order with respect to the mass hierarchy

{
m2

Z,p2,m2
A,m2

H

} 
 m2
S 
 m2

M. (A.1)

It is convenient to adopt the shorthand notation

log Q̃2 ≡ 1

ε
− γ + log

(
4πQ2), (A.2)

where Q is the renormalization scale, ε ≡ 2 − 1
2d and γ

is Euler’s constant. The O(m2
D) contribution to Σhh(p

2) at
leading order in the mass hierarchy [cf. Eq. (A.1)] is given
by

Σhh

(
p2) = g2m2

D

64π2c2
Wm2

Z

{
2 cos2 α

sin2 β

[
2m2

S log
m2

M

Q̃2

+ (
m2

Z − p2)
(

1 − log
m2

M

Q̃2

)]

+ m2
Z

(
1 − log

m2
M

Q̃2

)[
cos2 α

(
4 − 3 cot2 β

)

+ 2 sin 2α cotβ − sin2 α
]}

, (A.3)

where p is the incoming four momentum. Likewise,
ΣHH (p2) is obtained by making the replacement α →
α − 1

2π in Eq. (A.3),

ΣHH

(
p2) = g2m2

D

64π2c2
Wm2

Z

{
2 sin2 α

sin2 β

[
2m2

S log
m2

M

Q̃2

+ (
m2

Z − p2)
(

1 − log
m2

M

Q̃2

)]

+ m2
Z

(
1 − log

m2
M

Q̃2

)[
sin2 α

(
4 − 3 cot2 β

)

− 2 sin 2α cotβ − cos2 α
]}

. (A.4)

7Note that the self-energy and tadpole functions in the conventions of
Ref. [27] differ by an overall sign from those defined in this paper.
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For completeness, we provide the O(m2
D) contribution to

the real parts of all the other relevant self-energy functions

[at leading order in the mass hierarchy, Eq. (A.1)],

ΣZZ

(
m2

Z

) = g2m2
D

64π2c2
Wm2

Z

2m2
Z

(
1 − log

m2
M

Q̃2

)
,

ΣAA

(
m2

A

) = g2m2
D

64π2c2
Wm2

Z

{
cos 2β

sin2 β

[
2m2

S log
m2

M

Q̃2

− (
m2

A + m2
Z

)(
1 − log

m2
M

Q̃2

)]

+ 1

sin2 β

[
2m2

S log
m2

M

Q̃2
− m2

A

×
(

1 − log
m2

M

Q̃2

)]

+ 2 cos 2βm2
Z

(
1 − log

m2
M

Q̃2

)}
,

ΣGG(0) = g2m2
D

64π2c2
Wm2

Z

{
4m2

S log
m2

M

Q̃2

− 2 cos 2βm2
Z

(
1 − log

m2
M

Q̃2

)}
,

Ah√
2v

= g2m2
D

64π2c2
Wm2

Z

{
cosα

sinβ

[
4m2

S log
m2

M

Q̃2

− m2
Z

(
1 − log

m2
M

Q̃2

)]

+ m2
Z(sinα cosβ + 3 cosα sinβ)

×
(

1 − log
m2

M

Q̃2

)}
,

AH√
2v

= g2m2
D

64π2c2
Wm2

Z

{
sinα

sinβ

[
4m2

S log
m2

M

Q̃2

− m2
Z

(
1 − log

m2
M

Q̃2

)]

+ m2
Z(3 sinα sinβ − cosα cosβ)

×
(

1 − log
m2

M

Q̃2

)}
.

(A.5)

Next, we compute the O(m2
D) contributions [at leading

order in the mass hierarchy, Eq. (A.1)] to the counterterm

δ tanβ in the various renormalization schemes. In the HM

scheme, δ tanβ is given by Eq. (2.26). Using the above ex-

pressions for the self-energy functions, along with Eq. (2.20)

and the following tree-level relations (cf. Eq. (A.20) of

Ref. [39]):

m2
ht = −m2

Z cos 2β sin(β + α)

sin(β − α)
,

m2
Ht = m2

Z cos 2β cos(β + α)

cos(β − α)
,

(A.6)

we obtain after considerable simplification,

δ tanβHM = δ tanβDEC

= g2m2
D

32π2c2
Wm2

Z sin 2β

×
(

1

ε
− γ + log 4π − log

m2
M

Q2
+ 1

)
. (A.7)

Note that the O(m2
D) contributions to the counterterm

δ tanβ in the HM and DEC schemes are equivalent, in light
of the absence of non-decoupling terms in Eq. (3.8). In-
deed, the O(m2

D) contribution to δ tanβ is independent of
the tree-level Higgs mixing angle α. Although this result
is obvious in the DEC scheme (which is defined via Higgs
wave function counterterms that are evaluated at α = 0), the
cancellation of the α-dependence in the O(m2

D) contribution
to δ tanβHM [defined in Eq. (2.26)] is highly non-trivial.

In contrast, in the DR scheme only the ε−1 − γ + log 4π

is retained, so that the corresponding O(m2
D) contribution is

simply

δ tanβDR = g2m2
D

32π2c2
Wm2

Z sin 2β

(
1

ε
− γ + log 4π

)
. (A.8)
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