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In the two-Higgs-doublet model (THDM), generalized-CP transformations (p; — Xi;¢7
where X is unitary) and unitary Higgs-family transformations (¢; — U jp;) have
recently been examined in a series of papers. In terms of gauge-invariant bilinear func-
tions of the Higgs fields ;, the Higgs-family transformations and the generalized-CP
transformations possess a simple geometric description. Namely, these transformations
correspond in the space of scalar-field bilinears to proper and improper rotations, respec-
tively. In this formalism, recent results relating generalized CP transformations with
Higgs-family transformations have a clear geometric interpretation. We will review what
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is known regarding THDM symmetries, as well as derive new results concerning those
symmetries, namely how they can be interpreted geometrically as applications of several
CP transformations.

Keywords: Symmetries; CP; two-Higgs doublet models.

PACS numbers: 11.30.Er, 11.30.Ly, 12.60.Fr, 14.80.Cp

1. Introduction

The Standard Model (SM) of particle physics provides an extremely successful
framework for describing the properties of the fundamental particles and their
interactions. No statistically significant deviation from SM predictions has yet been
observed in collider experiments.! Nevertheless, the experimental exploration of the
scalar sector of particle physics is still in its infancy. The SM contains one complex
doublet, hypercharge-one multiplet of scalar Higgs fields. But it is by no means
excluded that the Higgs sector is larger than that of the SM.? In particular, there
are a number of theoretical arguments suggesting a richer Higgs sector than that
of the SM. For instance, the two-Higgs-doublet model (THDM) is attractive since
it provides a viable framework for spontaneous CP violation.?# The Peccei-Quinn
symmetry, originally introduced in order to solve the so-called strong CP prob-
lem,>® requires an enlarged Higgs sector and can be accommodated in the THDM.
Typically, supersymmetric models require at least two Higgs-doublet fields” 2 in
order to cancel potential gauge anomalies due to higgsino superpartners. Thus,
there is ample motivation to study the simplest two-Higgs-doublet extension of the
SM scalar sector.

Indeed, the theory and phenomenology of the THDM has been extensively
analyzed; see Refs. 13-52 and references therein. Among these studies of the THDM,
one can find two lines of approaches. The traditional approach works directly with
the Higgs-doublet fields.!3 38 In contrast, there is a second approach that empha-
sizes the role of gauge-invariant scalar field bilinears.3* 52 A systematic use of the
scalar field bilinears for the study of the stability and the structure of electroweak
symmetry breaking (EWSB) in the THDM was first carried out in Refs. 40 and
42. Then independently in Ref. 44 the scalar field bilinears were introduced and
employed for the study of the CP properties of the THDM. The bilinear approach
was revisited in Ref. 45. In a recent paper,®® three of the present authors mainly
employed the traditional approach in the study of Higgs-family and generalized-CP
(GCP) symmetries of the THDM. Tt is the purpose of this work to present a careful
review of the recent results in this area, as well as discussing a compelling geomet-
rical interpretation of Higgs-family and GCP symmetries using the formalism of
scalar field bilinears. This formalism provides a powerful geometric framework that
yields new insights, new results concerning the implementation of symmetries and
clarifies the relations among the different possible symmetry transformations of the
THDM.
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In Sec. 2, we review the formalism of scalar field bilinears and their applications
in the analysis of the THDM. In Sec. 3, we introduce the generalized-CP (GCP)
transformations. These transformations are initially defined as transformations of
scalar fields. We then revisit the GCP transformations in the formalism of scalar
field bilinears and provide a geometric interpretation. Two useful theorems involving
GCP transformations are proven in Sec. 4. Higgs-family and GCP symmetries are
examined in detail in Sec. 5. The classification of all possible THDM symmetries is
established in the formalism of scalar field bilinears. The constraints on the scalar
potential parameters due to the various possible symmetry classes is provided in a
form that is covariant with respect to arbitrary transformations of the basis for the
scalar fields. A distinction between parameter constraints derived in an arbitrary
basis and in a specific basis is examined and clarified. Conclusions are given in
Sec. 6. Details on the structure of 3 x 3 rotation matrices that are useful for the
computations performed in this paper are provided in App. A.

2. Scalar Field Bilinears in the THDM

The scalar sector of the THDM contains two complex doublet, hypercharge-one
Higgs fields, with respect to the SU(2)xU(1) electroweak gauge group, denoted by

i(z) = (@j(@) , withi=1,2. (1)

@3 ()

The tree-level THDM Lagrangian contains the kinetic term and the potential
V(¢1, p2) for the Higgs fields, which is gauge invariant and renormalizable. These re-
quirements imply that the scalar potential V (1, ¢2) consists only of quadratic and
quartic terms in the fields. The conventional parametrization in the field approach

reads®19

V =m?, (pler) +m3s(phea) —miy (pl2) — (mdy)" (hen)
+ %)\1 (801801)2 + %M(S@;W)Z + X3 (elen) (ehe2)
+ (ol a) (pleor) + % [% (ele2)” + 25 (s@&plﬂ
+ [Ro(elez) + 2 (0her) | (len)

+ [M(s&h@z) + A?(w%w)} (ple2) (2)

with m3,, m3y, A\ 234 real and m?,, A5 ¢ 7 potentially complex. The parameters of
the scalar potential must be chosen such that the potential is bounded from below,
is stable, and leads to the correct form for EWSB (which preserves U(1)gy). In
addition, one may choose to impose various additional symmetry requirements on
the scalar potential.
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A very convenient way to study the stability, the structure of the EWSB, and

any additional symmetry requirements is to use scalar field bilinears.40-42:44-46 We

follow here the notation of Refs. 40 and 42 and define the four independent gauge
invariant bilinears as

Ko=¢loi+¢ber,  Ki=¢los+ oo, 3
Ky =iolpr —iplpr, Kz =plor —olen.
We summarize some results from Refs. 40 and 42.
e We have
Ko>0, KZ-K}-Ki;—Kj3>0. (4)

That is, the four vectors K = (Ko, K)T = (Ko, K1, K2, K3)" span the forward
light cone in K space. These K parametrize the gauge orbits of the Higgs-doublet
fields.

e A change of basis of the Higgs fields, called a Higgs-family transformation

(2)-(2)-+(2) o
¥2 P2 2
with U = (U;;) € U(2), corresponds to an SO(3) rotation in K space
Ko— K=Ky, K—K =RUK. (6)
Here, the 3 x 3 real orthogonal matrix R(U) is obtained from
Ulo"U = Ry (U)o®. (7)

Since U is continuously connected to the identity, it follows that det R(U) = 1.
It is straightforward to prove that

Ry (U)Rpe(V) = Rae(UV),, (8)

starting from Eq. (7) and using the fact that the % span the space of traceless
2 x 2 Hermitian matrices. Thus, the mapping {U,—U} — R(U) provides the
well-known double cover of SO(3) by SU(2). An explicit formula for Ry, (U) is
easily obtained:

Ra(U) = %Tr(UTU“Uob) . 9)

The most general SO(3) matrix can be uniquely specified by an axis of rotation
n and an angle of rotation 6 that lies in the interval 0 < # < 7. We denote the
corresponding 3 x 3 matrix by R(7, #). The properties of R(7,0) are reviewed in
App. A.

e Every SO(3) rotation in K space, given by (6) with R € SO(3), corresponds to a
Higgs-family transformation (5) that is unique up to gauge transformations.
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e The most general gauge invariant and renormalizable potential V' of the THDM
can be written as

V=K'¢+K'EK. (10)

Here, E and E contain the parameters which are all real,

(% ; no n°
§= < , E= ; 11
¢ n B (11)
with £ = ET a 3 x 3 matrix. Expressing € and E in terms of the parameters of
(2), we find

) —2Re (m%z)

§o = §(m%1 +m3,), §€=5| 2Im(mb) |,
mi; —ms,

1 Re()‘G + >‘7) 1 1

n = il B Im(A¢ +A7) | » 700 = g()‘l + A2) + Z)‘3’ (12)
%(/\1 - X2)

1 A + Re()As) —Im(As) Re(Ag — A7)

E=7| -Im(%s)  A—Re(hs) —Im(s—X)

Re(As — A7) —Im(As — A7) 5(A1+A2) — A
e A transformation (5) corresponds to a Higgs family symmetry if and only if
RU)¢=€, R(Um=n, RUER(U)=E. (13)

In Ref. 45 basis changes of the Higgs fields as in Eq. (5) were considered, but with
the unitary transformation U replaced by more general SL(2, C) transformations.
In K space this corresponds to general Lorentz transformations, which includes
both rotations and boosts. However, the latter change the form of the kinetic terms
of the THDM Lagrangian. Without loss of generality, one may assume that the
kinetic terms of the tree-level THDM Lagrangian are of canonical form. Under this
assumption, only unitary Higgs family transformations are permitted.

3. Generalized-CP Transformations

In this section we study the generalized-CP (GCP) transformations,

pi(r) = Xijpi(2'), withi, j € {1,2}, (14)

X = (X;) €U©2), xz(“"0>, x/=<“"0). (15)

X —X
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Such GCP transformations of scalar fields have been previously considered in
Refs. 54-58, and GCP transformations of fermions fields have also been examined
in Ref. 61. A systematic study of GCP transformations of the scalar fields of the
THDM was carried out in Refs. 47 and 53. The matrix X that appears in Eq. (14)
is basis-dependent. Under a change of basis specified by Eq. (5), the GCP transfor-
mation of Eq. (14) is modified to:

ei(@) = Xi;05"(a"), (16)
where X’ is a unitary matrix given by:
X' =UXxU". (17)

As shown in Ref. 53, three classes of GCP transformations exist depending on
the value of (GCP)?2. Consider first the case of (GCP)? = 1, which is denoted by
CP1 (sometimes called the “standard” CP symmetry transformation). Then,

@i = Xijo; = Xij Xjpon = @i (18)
which implies that X X* = 15 (where 15 is the 2 x 2 identity matrix). Since X is
unitary, the latter implies that X is also symmetric. Thus, Eq. (14) corresponds to
a CP1 transformation if and only if X is a symmetric unitary matrix. One can now
employ the well known result that any symmetric unitary matrix X can be written
as the product of a unitary matrix and its transpose (see e.g. App. D.3 of Ref. 62

for a proof of this result). That is, one can always find a unitary matrix U such that
X = UtU*. Performing the basis transformation given by Eq. (17) then yields that

X' =UuXxUT =vUt U =1,. (19)

That is, in the case of CP1, there is always a basis choice for which X’ = 1.
Next, consider the case of (GCP)? = —1, which is denoted by CP2. Then,

i = Xijo; — Xig X o6 = — i, (20)
which implies that X X* = —1,. Since X is unitary, the latter implies that X is
also antisymmetric. Thus, Eq. (14) corresponds to a CP2 transformation if and only
if X is an antisymmetric unitary matrix. The most general antisymmetric unitary
2 x 2 matrix X isP

) 1
X =¢e, where e=io?=—¢l = —¢l= < (1) O> ) (21)

where ¢ is an arbitrary phase. It then follows that a unitary matrix exists, U =
e~ ™/2¢, such that

X' =UXU" =¢. (22)
That is, in the case of CP2, there is always a basis choice for which X’ = e.
aFor the discussion of CP transformations in the SM see for example Refs. 58-60.

PConversely, it is straightforward to show that if XTo®X = —0%*, where X = exp(ifn - & /2),
then X is proportional to o2, i.e. X is an antisymmetric unitary matrix.
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Finally, we consider the case of (GCP)? = X X* # +15, which is denoted by
CP3. In this case, it is always possible to perform a basis transformation such that
in the new basis, X is transformed into®

0 sinf
X' =uxuT=( 23
<—sin€ cosf )’ (23)
where 0 < 0 < 7/2.
To prove this result, we first note that since X is a unitary matrix, det X = 2¥x
is a pure phase. Following Eq. (17), we shall perform a basis transformation such

that

det X' = det(UXUT) =1. (24)
This can always be done provided that
U=e 20, (25)
where U is an SU(2) matrix. It is convenient to define
X =e XX, (26)
in which case det X = 1 and
X' =UXU". (27)

A general SU(2) matrix U satisfies:
U=eU'e?, (28)

where € is defined in Eq. (21). Equation (28) expresses the well known equivalence of
the irreducible two-dimensional representation of SU(2) and its complex conjugate.
Inserting the transpose of Eq. (28) into Eq. (27) yields

X'e=UXeUT. (29)

It is convenient to define

o=-L (1. 1.) v, (30)
V2 \i —i

where V is a unitary matrix (such that det V = ). Since Xe is an SU(2) matrix,

it follows that the two eigenvalues of Xe are complex conjugates of each other,

denoted below by e, where the real angle ¢ is defined modulo 7. Then, we can

choose V' to be the unitary matrix that diagonalizes X €,

. i 0
o (&
VXVt = ( 0 €i¢> . (31)

¢Equation (23) is an example of a canonical form for unitary congruence. For a comprehensive
mathematical treatment, see Ref. 63 (note in particular Corollary 8.7). In the physics literature,
Eq. (23) first appeared in Ref. 56 and was further generalized in Ref. 64.
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Inserting Eqgs. (30) and (31) into Eq. (29) yields

, sing —cos¢
X = (cos¢ sin¢) ' (32)
Finally, we define ¢ = 6 + /2 to obtain the desired form given by Eq. (23).

The angle ¢ (and hence the angle 0) is defined modulo 7. Thus, it is convenient
to establish a convention in which |§| < 7/2. However, we are free to redefine
U — ¢'U, which has the effect of changing the overall sign of 8.9 Consequently, it
is always possible to find a basis transformation such that X’ takes the form given
by Eq. (23), where 0 < 6 < 7/2. Moreover,

(33)

XX*:UTX/U*UTX/*U:UT < cos 20 Sln26> ,

—sin26 cos260

so that § = 0 corresponds to the case of CP1 [Eq. (19)], § = 7/2 corresponds to the
case of CP2 [Eq. (22)], and 0 < 6 < 7/2 corresponds to the case of CP3 [Eq. (23)].

Summarizing the above results, it follows that in a suitable basis for the scalar
fields the matrix X in (14) can always be brought to the form

cosf sinf
i <0< .
(Sin@ cos&) , with0<60<m/2 (34)

The classification of GCP symmetries established above is®®

e CP1if60 =0,
e CP2if§ =7/2 and
e CP3if0< 0 <m/2

We now demonstrate how the classification of GCP symmetries can be under-
stood in the formalism of field bilinears employed in Ref. 47. To make the present
paper self-contained, we shall repeat some of the derivations of Ref. 47 in the anal-
ysis that follows.

In the notation of Eq. (7), we define the SO(3) matrix Ry, (X) via

XT0°X = Rop(X)o?, (35)
where X is the unitary matrix that specifies the GCP transformation [cf. Eq. (14)].
It is convenient to introduce the improper rotation matrix,

Ry = diag(1,—1,1). (36)

The matrix Ry describes the reflection through the 1-3 plane in K space. Simi-
larly, we introduce R; and Rs as the reflections through the 2-3 and 1-2 planes,
respectively,®

Ry = diag(—1,1,1), Rs = diag(1,1,—1). (37)

dFor any 2 X 2 matrix A, the matrix o' Ao’ is related to A by an interchange of the two diagonal
elements and an interchange of the two off-diagonal elements.

®Here and in the following R, Ra,...and R, R,,... denote proper and improper rotation matrices
with determinant 4+1 and —1, respectively.
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In particular, note that
0% =0T = (Ry) a0’ . (38)
The scalar field bilinears of Eq. (3) can be rewritten as:
K, = gloto;, (39)

where o = (1,6). Then, the GCP transformation defined in Eq. (14) corre-
sponds to

K, = gaiafjgoj — (Xikgpl)*crijjggoz = gazgok(XTJ“X)M. (40)

If 4 = 0, then XTe°X = XX = 15, and so Ky — Ky (where we suppress the
coordinates z and z’). If p = a = 1,2, 3, then one may use Egs. (35) and (38) to
obtain

Ko — oon(XT0"X) ke = olonRap(X) ok,

= ¢} o Rab(X)(R2)be0fy, = RacK. | (41)
where R is the improper rotation matrix
R=R(X)R;. (42)
That is,
Ko(z) = Ko(2'), K(z) — RK(2), (43)

which reproduces the result obtained in Sec. 3 of Ref. 47.

Under each of the three classes of GCP transformations, the improper rotation
matrix R = R(X )Rg must satisfy an appropriate constraint equation. To derive
the relevant constraint, we start with the complex conjugate of Eq. (35). Using
Eq. (38), it then follows that

XT(Ry)apo’ X* = Rap(X)(R2)pe0° . (44)
Employing Eq. (35) once more yields
(R2)ab Rpe(X*)0¢ = Rap(X)(Ra)pe0” . (45)
Since the o are linearly independent and span the space of traceless 2 x 2 Hermitian
matrices, Eq. (45) yields
R(X*) = RoR(X)R>, (46)

after using (R2)? = 13 (where 13 is the 3 x 3 identity matrix). Finally, we multiply
Eq. (46) on the left by R(X) and make use of Eq. (8) to obtain

R(XX*) = R?, (47)

where the improper rotation matrix R = R(X )Ry was introduced in Eq. (42).
Consider separately the cases CP2 (where X is antisymmetric and X X* = —15)
and CP1 (where X is symmetric and X X* = 15). In both cases, Eq. (35) yields
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R(XX*) = R(£13) = 13, and it follows that R? = 13. That is, R is either a
reflection matrix corresponding to a reflection through some plane in K space or
an inversion (or point reflection) through the origin in K space. In Eq. (21), we
noted the most general form for X in the case of CP2 is given by X = e™io?,
where ¢ is an arbitrary phase. Inserting this result into Eq. (35) and making use
of Eq. (38) yields:

Ry (X))o’ = 020" = —0"* = —(Ra) a0’ , (48)
and we conclude that R(X) = —Rs. Hence, Eq. (42) yields R = —13, which corre-
sponds to an inversion (i.e. a point reflection through the origin in K space). This
case is a CPE,i) transformation in the notation of Ref. 47. In contrast, for the case
of CP1, where X is a symmetric unitary matrix, we have R? = 13 and R # —13.
An improper rotation matrix of this type corresponds to reflections through planes
in K space. In particular, an SO(3) matrix R exists such that

R=RRyR". (49)
To prove Eq. (49), simply choose a basis where X = 15 in which case R(X) = 13
and R = R,. Then, rotate in K space to an arbitrary basis using the rotation
matrix R to obtain Eq. (49). One can easily check that R> = 13 and R # —13
as required. This case corresponds to a CPgi) transformation in the notation of
Ref. 47. In summary, for those GCP transformations whose square is equal to the
unit transformation when acting on the gauge invariant field bilinears, we must have
R? = 13. The resulting classification of Ref. 47 is then related to that of Ref. 53 as
follows:

° CP;”): reflections through planes in K space, R = RRyRT with R € SO(3) <
CP1 transformations.

° CP;i): a point reflection through the origin in K space, R = —13 < CP2 trans-
formations.

The case of CP3 transformations was not considered in detail in Ref. 47. In
this case, X X* # 415, which implies that R(XX™) # 15. Hence, Eq. (47) yields
R? +# 13, which means that the improper rotation R is not a reflection matrix or
an inversion. To obtain an explicit form for R = R(X)Rs, it is convenient to choose
a suitable basis in which X is given by Eq. (34), which can be rewritten as:

X =1ycos0 +io?sinf. (50)
We can use Eq. (9) to obtain the corresponding rotation matrix R,,(X ). Evaluating
the relevant traces, one obtains:
Rap(X) = ap €08 20 + 26,2042 sin? 6 + €qp2 5in 26 . (51)
Hence, in a basis in which X is given by Eq. (34),

cos 20 0 —sin26
R=R(X)Ry = 0o -1 0 : (52)
sin 260 0 cos20
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As expected, for a CP1 transformation § = 0 and R = Ry (in a suitable basis in
which X = 15), and for a CP2 transformation § = 7/2 and R = —15. The case
of 0 < 6 < 7/2 corresponds to a CP3 transformation, in which R is an improper
rotation matrix that is not a simple reflection or inversion (i.e. R? # 13). As in
Eq. (49), the form for R in a general basis is related to Eq. (52) by an orthogonal
similarity transformation,

R=RR(X)RyRT, (53)

for some SO(3) matrix R, where R(X) is given by Eq. (51).

Thus, we have reproduced above the result proved in Ref. 47. Every transfor-
mation of the field bilinears given by Eq. (43), where R is any improper rotation
matriz, corresponds to a GCP transformation of the fields as specified in Eq. (14).
This field transformation is uniquely determined by R up to gauge transformations.
In analogy with Eq. (13), a GCP transformation of the form given by Eq. (43) cor-
responds to a GCP symmetry if and only if

R¢E=¢, Rn=n, RERT=E. (54)

4. Two Theorems Involving GCP Transformations

In Ref. 53, it was suggested that all symmetries of the THDM could be expressed in
terms of products of GCP symmetries. In this section, we prove two simple theorems
that demonstrate that all Higgs family and GCP transformations can be expressed
in terms of products of CP1 transformations.

Theorem 1. Any Higgs-family transformation can be considered as a product of
two CP1 transformations.

Theorem 2. Any GCP transformation is either a CP1 transformation or a product
of three CP1 transformations.

These theorems are new. Some particular cases were considered in Ref. 53 but even
there they referred only to symmetries where the form of the potential could play
a role. The results presented here apply to the more fundamental transformations
themselves.

Proof of Theorem 1. Let X and Y be two arbitrary symmetric unitary matrices.
Consider the product of the corresponding CP1 transformations,

v;(x) = Xjrupp(a'), (55)
@i (x) = Yo" (") = Yi X ok (x) = Uinior(z) (56)

where U = Y X* is a unitary matrix. The theorem is proven if we can show that
an arbitrary unitary matrix U is the product of two symmetric unitary matrices.
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But this last statement is easy to prove. First, we diagonalize U with a unitary
matrix W,

U=WDWT, (57)

where D is a diagonal matrix of phases corresponding to the eigenvalues of U. Then
define the following two symmetric unitary matrices:

Sy =WWT, Sy=Ww*DWT. (58)
It immediately follows that
518, = WWTW*DWt = wbDwt =U, (59)

which shows that any unitary matrix can be written as a product of two symmetric
unitary matrices.

It is also instructive to prove Theorem 1 in K space. Consider an arbitrary
Higgs-family transformation [cf. Egs. (5) and (6)]. Every proper rotation matrix R
is a rotation about an axis and can be represented, in a suitable basis, as

cosae —sina 0
R, = [ sina cosae 0], withO<a<m. (60)
0 0 1

This rotation can also be generated by two reflections, R, /2 and R, as illustrated
in Fig. 1.

second reflection plane first reflection plane

\ K /
\ /
\ K /
\ /
/ — /
K \ y
\ /
/
\\ y K
A RN
\ /
/ K
s\
/ \
\

Fig. 1. The reflections Ra/z and R, illustrated in the K1—K3 plane. The reflection Ra/z brings
the arbitrary vector K to K. Then, R, brings K to K.
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The first reflection, R, /2, is through the plane containing the K3 axis and the
line of the angle /2 in the K;-K5 plane. The second reflection, R,, is through
the plane containing the K3 axis and the line of the angle « itself. The arbitrary
vector K goes into K under the reflection R, /2 and further into K’ under R,. In
Fig. 1 we show the projections of these vectors onto the K;1—K5 plane. Since the
third component of the vectors are not changed under R, /2 and R, we sce that K’
gives exactly the vector rotated by the angle «, that is, K’ = R,K, where R, is
given by Eq. (60). To see all this formally we consider Rg as in Eq. (60) but with
« replaced by an arbitrary angle 8 and define

cos 23 sin28 0
Rp = RBRQRE = | sin2f —cos25 0| . (61)
0 0 1

Note that (RB)2 = 13, which indicates that RB is a pure reflection. In particular,
RB describes the reflection through the plane containing the K3 axis and the line of
angle 3 in the K;-K5 plane. We have R}; = R_p, RoRgRo = R_g and Rp, R, =
Rg,+3,. It is then easy to see that we get R, from Eq. (60) via two reflections,

RoRajs = RaRoRyRojaRaRy o = Ra (62)

This is the K space equivalence of the statement that any Higgs family transfor-
mation is equivalent to the product of two CP1 transformations.

Proof of Theorem 2. If we perform three successive CP1 transformations of the
form given by Eq. (14), with X given by X3, X2 and X3, respectively, then the
resulting transformation is of the form of Eq. (14) with

X =X3X5X1, (63)

where the X; are symmetric unitary matrices. However, any unitary matrix X can
be written in the form of Eq. (63). This follows from the fact that any unitary
matrix can be written as the product of two symmetric unitary matrices, as proven
in Eq. (59). Thus, one can simply choose one of the matrices X; in Eq. (63) to
be the identity matrix! (which is of course a symmetric unitary matrix). Finally,
we note that the product of an odd number of GCP transformations is a GCP
transformation, as this follows trivially from Eq. (14). The proof of Theorem 2 is
then complete.

Again, it is instructive to prove Theorem 2 in K space. Consider an arbitrary
GCP transformation specified by Eq. (43). In a suitable basis R has the form in
Eq. (52). For # = 0 we are finished, since R = Ry which corresponds to a CP1

fOf course, this does not imply that a GCP transformation can be expressed as the product
of two CP1 transformations. Each CP1 transformation involves the complex conjugation of the
scalar fields, so one requires a product of odd number of CP1 transformations to express a GCP
transformation. The product of two CP1 transformations is a Higgs family transformation as
demonstrated in Theorem 1.
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transformation. For 6 # 0 we make a basis transformation in Eq. (52) exchanging
the 2 and the 3 axes, which yields an improper rotation,

cos20 —sin260 0
R}y = | sin20  cos20 0] . (64)
0 0 —1

We can represent this matrix as a product of three CP1 transformations by multi-
plying Eq. (62) by Rz and replacing o by 26. Thus we obtain

R3Ra9Ry = (RR2R™) (RagRoR3y) (RoRoRy) = Rjy (65)
where
) 1 0 0
R=|0 0 —-1]. (66)
0 1 0

Equation (65) is the K space equivalence of the statement that an arbitrary GCP
transformation either is a CP1 transformation or the product of three CP1 trans-
formations.

Note that Theorem 2 is equivalent to the statement that an arbitrary improper
3 X 3 rotation matrix can be expressed as a product of three reflection matrices.
This statement can be proved directly. First, we note that any proper 3 x 3 rotation
matrix can be written as the product of two reflection matrices as in Eq. (62).
However, any improper rotation matrix can be written as the product of a reflection
matrix and a proper rotation matrix. Combining these two statements yields the
desired result.®

5. Higgs-Family and GCP Symmetries

In Secs. 3 and 4, we analyzed Higgs-family and GCP transformations. In this sec-
tion, we shall address the corresponding symmetries. In the scalar sector of the
THDM, there are six nontrivial inequivalent classes of symmetries that can be
exhibited by the tree-level THDM scalar potential. The complete classification of
the THDM symmetry classes, which are listed in Table 1, was first given in Ref. 46
and subsequently analyzed in Ref. 53.

The following points are noteworthy. First, consider the case in which a Higgs-
family or a GCP transformation is a symmetry transformation of the THDM. The
representation of such a symmetry transformation as a product of other transfor-
mations, (e.g. a product of CP1 transformations as discussed in Sec. 4), does not
automatically imply that the individual factors of the product are also symmetries
of the THDM. Second, the analysis of this paper is confined to the scalar sector

8In particular, the inversion matrix —13 can be written as the product of three reflection
matrices. Starting from Eq. (62), we note that —RL is a reflection matrix, in which case,
7R2RQROL/2 = —1s.
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Table 1. The symmetry classes and the corresponding proper [and improper] rotation matrices
R [and R] that generate the symmetry classes in K space. A general rotation matrix R(7,8) is
uniquely determined by an axis of rotation 7 and rotation angle 6 (see App. A). The identity
class generated by R(n,0) = 13 is trivial and is not explicitly displayed. The decomposition of R
and R in terms of products of CP1 reflection matrices is also given in a particular basis. In the
case of the CP2 and SO(3) symmetry classes, the corresponding rotation matrices are invariant
with respect to basis transformations. The generation of the SO(3) symmetry class requires two
rotation matrices (each of which may be a proper or improper rotation depending on the overall
sign choice), where 71 and 72 are noncollinear.

Symmetry Rotation matrices Rotation matrices as a product
class in a generic basis of CP1 reflection matrices
Zo R(n, ) Rrx = RoRy, for i = 2 [see Eq. (70)]
U(1) R(n, 0) Rog = Rog Ry, for = 2 [see Eq. (89)]
(0<b<m)
SO(3) +R(n1,0), +R(n2,0) See Subsec. 5.3
(0< 60 <mni xng#0)
CP1 —R(n, ) Ra, for i = 4 [see Eq. (100)]
CP2 —R(f,0) = —13 —13 = R3R2Ry [see Eq. (110)]
CP3 —R(n,6) Rl291 = R3Ro9, Ry, , for ~ = % [see Eq. (112)]
(0<6<m)

of the THDM. Ultimately, one must also include the Yukawa couplings to fermions
in the theory in the discussion of symmetry transformations. The structure of the
symmetries of the scalar sector may not be respected by the Yukawa sector. As an
example, consider a field transformation S; that can be written as a product of two
others, S; = S2535. Suppose that by imposing the symmetry S, the symmetries
Sy and S are automatically respected by the scalar sector. This property is not
guaranteed to hold for the Yukawa sector. In particular, it is possible that imposing
Sy and S35 separately as symmetries may lead to stronger restrictions as compared
with the imposition of the symmetry S; by itself. This is indeed the case in the
model which was studied in Refs. 48, 49 and 51.

5.1. Symmetries and single rotations in bilinear space

We shall now use Theorems 1 and 2 of Sec. 4 to obtain a new derivation of the
statement (given in Ref. 53) that all possible symmetries of the scalar sector of the
THDM can be reduced to multiple applications of the standard CP symmetry in
suitable bases. In Table 1 we list the possible classes of THDM symmetries, along
with the equivalent result in K space, where the Higgs family and generalized CP
transformations are generated by proper or improper rotations, R or R, respectively.
Also shown is the decomposition of R and R in terms of products of CP1 reflec-
tion matrices in a particular basis choice.® Note that it is sufficient to require the

hIn the CP2 symmetry class, the rotation matrices are independent of 7, so that the basis choice in
this case is fixed by the direction of an eigenvector of E corresponding to one of its nondegenerate
eigenvalues.
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invariance under a single but suitable rotation in order to generate each symmetry
class, with the exception of the SO(3) case.!

The transformation matrices R and R generating the respective symmetry
classes can be written as products of CP1 transformations using Theorems 1 and
2 of Sec. 4. Of course, one still needs to check if the imposition of the CP1 factors
as symmetries is equivalent or more restrictive than the corresponding proper or
improper rotation, R or R, alone. Let us now derive and discuss the results shown
in Table 1 in detail.

e 7o symmetry

The Zs symmetry,53:66

pr(z) = p1(x),  pa(x) = —pa(z), (67)
corresponds in K space to a rotation by 7w around the third axis,
K(z) - R.K(z), (68)
where R, is as in Eq. (60) with a = 7. That is,
0

—_

~1 0
Ry,=R.=| 0 -1 0 |. (69)
0 1

o

This result is most easily obtained by taking U = o3 in Eq. (9).
The application of Theorem 1 gives the decomposition [cf. Eq. (62)]:

Ry = RyRyjs = RoR, . (70)

Requiring Zs to be a symmetry means that the THDM parameters specified in
Eq. (12) must satisfy Eq. (13) with R(U) replaced by R, which yields

§&1=6=0, m=n=0, F3z3=F3=0. (71)

On the other hand, requiring the CP1 transformations corresponding to both R;
and Ry to be separate symmetries gives, in addition to Eq. (71),

By =0. (72)

Thus, imposing the CP1 symmetries R; and Ry yields a stronger constraint than
the Zs symmetry alone. Nevertheless, the scalar potential subject to the CP1 sym-
metries Ry and Ry is physically equivalent to the scalar potential subject to the Zo
symmetry, since the two scalar potentials are related by a change of basis. This is
easily proved by performing a change of basis characterized by an SO(3) matrix R
[Cf. Eq (6)} with R13 = R23 = R31 = R32 =0 and R33 = 1. Note that 6 and n are
invariant under this change of basis, whereas E — RER™. One can choose R such

iFor the SO(3) symmetry class, if a basis for the scalar fields is appropriately chosen, then it is
possible to generate the SO(3) symmetry class via a single rotation matrix, as shown in Subsec. 5.3.
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that F is diagonal, which confirms that the two scalar potentials are related by a
basis transformation.
It is also instructive to introduce the permutation symmetry Ils,

p1(z) = p2(x), w2(x) = p1(v). (73)

In fact, the Zs-symmetric scalar potential and the Ils-symmetric scalar potential
are related by a basis transformation?%53 (and are hence physically equivalent). To
obtain the K space description of Iz, simply insert U = o' into Eq. (9), which

yields

1 0 0
Rp,={0 -1 0]. (74)
0 0 -1

Requiring Il; to be a symmetry implies that the THDM parameters specified in
Eq. (12) must satisfy Eq. (13) with R(U) replaced by Rp,, which yields

&=86=0, m=nm=0, E=FEK3=0. (75)

It is possible (although not particularly illuminating) to construct the basis
transformation that relates Eqs. (71) and (75). However, it is more useful to identify
the most general transformation in K space that corresponds to the presence of the
Zs symmetry specified by Eq. (67) in some basis. This can be accomplished by
starting in a basis where Eq. (68) is satisfied and transforming to an arbitrary
basis.

Under a basis transformation specified by the U(2) matrix U [cf. Egs. (5) and
(6)], we define R = R(U), where R(U) is given by Eq. (9). Then, the Zy symmetry
transformation, K(x) — R,K(z), is transformed to

RK(z) — RR(2,m)R"RK (), (76)
where R, = R(z,7) is a rotation by 180° about the z-axis, and the expression

RTR = 13 has been conveniently inserted. Using Eq. (A.20) given in App. A, it
follows that

K'(z) = RK(z) — R(n,m)K'(z), 7 =Rz, (77)

which is the form of the Zs symmetry in the new basis.

Henceforth, we drop the primed superscripts. The most general transformation
in K space that corresponds to the presence of the Zs symmetry in some basis is
given by:

K(z) = R(n,mK(z), (78)
where R(n,7) is a rotation by 180° about an axis that is parallel to the unit
vector ni. As noted in App. A, R(n,7 ) possesses one nondegenerate eigenvalue

equal to +1 and two degenerate eigenvalues —1. The eigenvector corresponding to
the nondegenerate eigenvalue +1 is identified as the rotation axis n, since

R(f, 7)A =7 (79)
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is just the geometrical statement that the rotation axis is unaffected by the rotation.
Under the symmetry governed by Eq. (78), the THDM parameters specified in
Eq. (12) must satisfy Eq. (13) with R(U) replaced by R(, ), which yields

& and n are eigenvectors of R(n, ) < £ and n are parallel to n, (80)
with eigenvalue +1
ER(n,n) = R(n,m)E < En is parallel to 7. (81)

Equation (80) is a consequence of the fact the eigenvalue +1 of R(m, ) is non-
degenerate, which implies that any vector v that satisfies R(n,7)v = v must be
proportional to nn. To derive Eq. (81), we note that 7 is a simultaneous eigenvector
of R(n,n) and E. In particular, R(n,7)En = ER(n,m)n = En, where the last
step follows from Eq. (79). Hence either Efv = 0 or E is an eigenvector of R(rn, )
with eigenvalue +1. Since the latter is nondegenerate, it follows that?

Eijnj X Ny . (82)

One can easily check that Egs. (80) and (82) reduce to Eq. (71) or Eq. (75) when
n = Z or &, respectively.

Equation (81) implies that the eigenvectors of E can be chosen to be simulta-
neous eigenvectors of R(7i, ). Since E is a real symmetric matrix, these eigenvectors
can be chosen to be orthonormal. We denote these eigenvectors by {n,m,n x m}.
We have already noted that n is an eigenvector of E by virtue of Eq. (82). Thus,
the other two eigenvectors of F must satisfy:¥

R(A, ) = —1m, R(A,7)(A x ) = —A x 1. (83)

Because of the two-fold degeneracy of the eigenvalue —1 of R(n, ), it is possible to
perform orthogonal transformations within the two-dimensional subspace spanned
by m and n x m that leave the form of the Zy symmetry transformation given in
Eq. (78) unchanged. This simply means that the form of the Zy symmetry transfor-
mation does not uniquely specify the basis in K space. To fix the basis completely,
one must specify n and the eigenvectors of R(7,7) corresponding to the two-fold
degenerate eigenvalue —1.

In summary, the Zs symmetry corresponds to K(z) — R(n,7)K(z) for some
choice of n. Imposing this symmetry on the scalar potential requires that

& and m are parallel to n, (84)

E is diagonal with respect to the basis {n,m,n x m}, (85)

iOne can derive Eq. (82) more explicitly by employing Eq. (A.6) in ER(n,7) = R(n,7)E. Tt
follows that n;n; E;, = ngn;FEj;. Using the fact that ET = E, one obtains Eijnj = Cn;, where
the constant of proportionality is identified as C = n; Fjxny.

KIn general, the eigenvectors 11 and 7iza defined in Eq. (A.15) are not expected to be eigenvectors
of E. In this case, m is some linear combination of 1 and 72, and similarly for n x m. In
particular, F is not generally diagonal with respect to the basis {f, M1, m2}.
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where ™ is a simultaneous eigenvector of R(7, 7) and E, with R(f, )m = —m.
In this case, the choice of 1 and m uniquely fixes the basis in K space.

e U(1) Peccei—Quinn symmetry

5,6,8

The U(1) Peccei-Quinn symmetry requires invariance under

o1(z) = e Por(x),  pa(x) = e¥pa(a), (86)
with an arbitrary angle 0, which is defined modulo 7. By taking U = 15 cosf —

ioc3sinf in Eq. (9), we obtain the corresponding symmetry transformation in K
space,

K(z) = RoK(2), (87)
where Rygp is as in Eq. (60) with o = 20, with 0 < 6 < 7. That is,

cos20 —sin20 0
Ry(1) = Rog = | sin26 cos20 0| . (88)
0 0 1

The application of Theorem 1 gives the decomposition [cf. Eq. (62)]:
Ryg = RapRy . (89)

Requiring the U(1) Peccei-Quinn transformation to be a symmetry implies that the
THDM parameters specified in Eq. (12) must satisfy Eq. (13) with R(U) replaced
by Rap (for all possible values of 6), which yields

§i=86=0, m=mn=0, E=dag(u,p,pus). (90)
It is straightforward to check that imposing the two CP1 symmetries Ry and Rag
separately is equivalent to requiring invariance under Rog.

Remarkably, it is sufficient to require invariance of the scalar potential given by
Eq. (2) under Rap, for any single particular value of 26y # 0 (mod 7).7 That is,
Eq. (90) is a consequence of the invariance conditions specified by Eq. (13), with
R(U) = Rgg, for any 20y # 0 (mod ), which in turn implies invariance under Rag
for all values of .!

More generally, we consider the possibility that a basis transformation is re-
quired to identify the symmetry specified in Eq. (86). First, we shall rename 26 by
0 and rewrite Eq. (87) as

K(z) — R(£2,0)K(z), (91)

where 0 < 6 < 7. Note that we must allow for both signs of &2 in order to cover the
entire U(1) Peccei-Quinn group manifold. Under a basis transformation specified

INote that if g = 7/2 then Rag, = Rr, which generates the Zs symmetry class treated previously.
What is perhaps more surprising is that if g = 7/n for any integer n > 2, then the invariance of
the scalar potential under Ryg, [which generates a Zp subgroup of U(1)] implies invariance under
the full U(1) group. This latter result is a consequence of the fact that the scalar potential of
Eq. (2) contains no terms of dimension greater than four. If one relaxes this condition, then new
symmetry classes can arise that are associated with discrete subgroups of U(1) of order d > 2.
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by the U(2) matrix U [cf. Eqs. (5) and (6)], we define R = R(U), where R(U) is
given by Eq. (9). Then, with assistance from Eq. (A.20), the U(1) Peccei-Quinn
symmetry transformation, Eq. (91), is transformed to

K'(z) - RR(+%,0)RTK'(z) = R(+n,0)K'(z), (92)

where 7 = R% and R(n, 6) is a rotation by 6 about the axis 7.

Thus, dropping the primed subscripts, the most general transformation in K
space that corresponds to the presence of the U(1) Peccei-Quinn symmetry in
some basis is given by

K(z) - R(n,0)K(z), for0<f<m. (93)

Note that we have excluded the case of § = 0, which corresponds to the identity
transformation, and the case of § = m, which corresponds to the Zs symmetry
transformation treated previously. When 6 # 0 (mod 7), R(n,0) possesses three
nondegenerate eigenvalues: +1, € and e, and 7 is the normalized eigenvector of
R(n,0) with eigenvalue +1. It is convenient to introduce normalized eigenvectors
m and ", corresponding to the eigenvalues ¢’ and e=*?, respectively. For further
details, see App. A.

Under the symmetry governed by Eq. (93), the THDM parameters specified in

Eq. (12) must satisfy Eq. (13) with R(U) replaced by R(n,0), which yields:

& and n are eigenvectors of R(n,0) < € and n are parallel to no, (94)
with eigenvalue +1
ER(n,0) = R(n,0)E < E is parallel to © for © = n,m,m". (95)

The derivation of Eq. (95) is similar to the one given in the case of the Zy
symmetry above. We thereby obtain two conditions on the matrix E. The first
condition,

Eijnj X g, (96)

coincides with Eq. (82). To derive the second condition, we note that R(n, 0) Er =
ER(n,0)m = ¢ Ern, which implies that either Em = 0 or Erin is an eigenvector
of R(f,0) with eigenvalue . Since 6 # 0 (mod 7) by assumption, the latter is
nondegenerate, and it follows that™

Eijmj o my . (97)

This equation and its complex conjugate imply that 72 and 7™ are eigenvectors
of F, whose eigenvalues are complex conjugates of each other. But E is a real

MQOne can derive Eq. (97) more explicitly by employing Eq. (A.5) in ER(n,0) = R(n,0)E. This
yields two constrains: n;n;E;, = ngpn;jEj; (also obtained in the case of the Zo symmetry, as
noted in footnote j) and €;;0Ejrng = €jpeEijne. If we multiply the latter equation by mj and
employ ET = E, Efn o< 4 and 77 = 0, it then follows that E;jm; = km;, where the constant
of proportionality is identified as k = %(TrE —n;Eijnj).
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symmetric matrix, which implies that its eigenvalues are real. It follows that there
is (at least) a two-fold degeneracy among the eigenvalues of E.

As noted below Eq. (A.14), the eigenvector 7 is independent of the rotation
angle 6, assuming that 6 # 0 (mod 7). Consequently, the constraints on the scalar
potential parameters [governed by egs. (94), (96) and (97)] do not depend on 6. That
is, the invariance of the scalar potential under R(n, §) for any single particular value
of 0 # 0 (mod 7) yields the U(1) Peccei-Quinn symmetry, which in turn implies
the invariance of the scalar potential under R(n,0) for all values of 6.

One can check that Eqs. (94), (96) and (97) reduce to Eq. (90) in the basis
where n = 2 and m = \/LE(:% —1y). For example, after inserting m into Eq. (97),
and taking into account that E' is a real symmetric matrix, we obtain

E11 — iEu = iElz —+ E22 N E13 — iEzg =0. (98)

Taking the real and imaginary parts of the above equations, it follows that E
is a diagonal matrix with F1; = Fao as stated in Eq. (90). Indeed, the above
computation is valid for any choice of 8 # 0 (mod w), as noted above. Due to
Egs. (96) and (97), the vectors comprising the orthonormal set {f,m,m"} are
simultaneous eigenvectors of R(#,6) and E. This means that E is diagonal with
respect to the basis {n,m,m"}. Since m and 7" are uniquely determined by A
[cf. Egs. (A.13) and (A.14)] when 6 # 0 (mod ), it follows that 7 uniquely fixes
the basis in K space.

e CP1 symmetry

In Sec. 3, we showed that one can always find a basis in which the CP1 transfor-
mation in K space is given by

K(z) —» R2K(2'), (99)
that is,
1 00
Repr=Ro=|0 -1 0. (100)
0 01

Requiring CP1 to be a symmetry implies that the THDM parameters specified in
Eq. (12) must satisfy Eq. (54) with R = Rcp1, which yields

§2=0, m=0, FEpp=~FE3=0. (101)

As expected, Eq. (101) is equivalent to the statement that in a basis in which the
CP1 transformation is given by Eq. (99), all the parameters of the scalar potential
specified in Eq. (2) are real.

As in the case of the Zs symmetry, there still remains some freedom to perform
a basis transformation while maintaining the form of the CP1 symmetry given in
Eq. (99). By performing a change of basis characterized by an SO(3) matrix R with
Ri2 = Roz = Ro1 = R3z = 0 and Rgs = 1, we see that Eq. (101) is still satisfied,
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while other matrix elements of E are transformed according to E — RERT. One
is free to choose R such that E in the new basis is diagonal.

The above results pertain to a specific basis choice. With respect to an arbitrary
basis, we showed in Sec. 3 that Rcp; is a reflection through planes in K space, which
implies that chl is an improper rotation matrix that satisfies

Ripy =13, Ropi #—1s. (102)
An explicit form is given by
Ropy = —R(, ), (103)

where the unit vector m points in the direction normal to the reflection plane.
In general, —R(n, ) possesses one nondegenerate eigenvalue —1 and a doubly-
degenerate eigenvalue +1. We identify nv as the eigenvector of —R(n, ) corre-
sponding to the nondegenerate eigenvalue —1. The eigenvectors corresponding to
the doubly-degenerate eigenvalues of Rcp; span the reflection plane in K space.
The scalar potential exhibits the CP1 symmetry, Eq. (99), in some basis if

K(z) — —R(n,mK() (104)

is a symmetry. That is, the THDM parameters specified in Eq. (12) must satisfy
Eq. (54) with R = Rcp1, which yields

& and n are eigenvectors of —R(n,m) with eigenvalue +1
< € and 1 are perpendicular to 7, (105)
ER(n,n) = R(n,m)E < En is parallel to 7. (106)

Following the derivation of Eq. (82), either Enn = 0 or En is an eigenvector of
—R(n, ) with eigenvalue —1. Since the latter is nondegenerate, we again recover
Eq. (82). It is a simple matter to confirm that Egs. (82) and (105) reduce to
Eq. (101) when n = .

We can introduce simultaneous eigenvectors of E and —R(#, 7), denoted by m
and 1 X rn, which satisfy Eq. (83) [cf. footnote k]. These two vectors correspond to
the two-fold degenerate eigenvalue +1 of —R(#, 7). As in the treatment of the Z,
symmetry, the form of the CP1 symmetry transformation does not uniquely specify
the basis in K space. To fix the basis completely, one must specify n and the
eigenvectors of —R(7, ) corresponding to the two-fold degenerate eigenvalue +1.

In summary, the CP1 symmetry corresponds to K(z) — —R(n,m)K(z') for
some choice of . Imposing this symmetry on the scalar potential requires that

¢ and m are perpendicular to 7, (107)
E is diagonal with respect to the basis {n,m,n x m}, (108)

where 7 is a simultaneous eigenvector of —R(7i, w) and E, with —R(7, ) = m.
In this case, the choice of n and ™ uniquely fixes the basis in K space.
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o CP2 symmetry

The CP2 symmetry class is generated by requiring that the scalar potential param-
eters specified in Eq. (12) are invariant under R = —R(n,0) = —13 corresponding
to 20 = w in Eq. (64), which yields

-1 0 0
Repo=R.=| 0 -1 0]. (109)
0 0 -1

The form of Rcps is basis-independent, since R(U)Rcp2RT(U) = Rcpo for any
choice of U. We may now invoke Theorem 2 from Sec. 4. From Eq. (65), we then
obtain

R3RoRy = —13. (110)

Invariance under Rcpy = —13 requires € = 0 and 17 = 0 but leaves E arbitrary. We
can then perform a basis transformation to diagonalize E, which leaves & and n
unchanged. Invariance under all three individual CP1 transformations Rs, Ry and
Ry, taken together, implies that

£=n=0 and FE =diag(u1,p2,ps3). (111)

Clearly, R3, Ry and Ry, when separately applied, yield a stronger constraint than
—13 alone. But the three CP1 symmetries are physically equivalent to —13, since
the scalar potentials that result from the two procedures are related by the change
of basis that diagonalizes F. As shown in Ref. 48, this equivalence may no longer
hold once the Yukawa sector is taken into account.

e CP3 symmetry

It is convenient to choose a basis in which the CP3 symmetry class is generated as
follows. We require the transformation R’Zel [defined in Eq. (64)] to be a symmetry,
for any choice of angle such that 20; # 0 (mod 7). Theorem 2 can again be employed
to express Rb, as a product of three CP1 transformations. Equations (64) and (65)
then yield

cos20; —sin26, 0
Rcps = Ryy, = | sin26;  cos26; 0 | = R3Rop, Ry, . (112)
0 0 -1
Requiring CP3 to be a symmetry implies that the THDM parameters specified
in Eq. (12) must satisfy Eq. (54) with R = Rlzelv which yields

§=n=0, E=diag(u,p1,ps3). (113)

It is straightforward to check that imposing the three CP1 symmetries Rz, Rag,
and Ry, separately is equivalent to requiring invariance under Rlzel- Similarly to
the case of the U(1) Peccei-Quinn symmetry, the invariance of the scalar potential
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under 132’291, for any single particular value of 26, # 0 (mod =), implies invariance
under R, for all values of 6.

The above results pertain to a specific basis choice. With respect to an arbitrary
basis, we showed in Sec. 3 that Rcps is an improper rotation matrix that satisfies
RQCP3 # 13 (ie. Rcps is not a pure reflection in K space). The most general form
for the CP3 transformation is given by Rcps = —R(n,0) for 0 < 6 < 7. Thus
the scalar potential, in a basis specified by n, exhibits the CP3 symmetry if it is
invariant under the transformation

K(z) > —R(n,0)K(z'), for 0<60<m. (114)

Note that we have excluded the case of # = 0, which corresponds to the CP2 sym-
metry transformation, and the case of §# = 7, which corresponds to the CP1 sym-
metry transformation, both of which have already been treated above. When 6 # 0
(mod 7), the improper rotation matrix —R(n, ) possesses three nondegenerate
eigenvalues: —1, —e” and —e~*, and 7 is the normalized eigenvector of —R(n, )
with eigenvalue —1. As in the analysis of the U(1) Peccei-Quinn symmetry, it is
convenient to introduce normalized eigenvectors of —R(n, ), denoted by m and
m”, corresponding to the eigenvalues —e? and —e~%. respectively.

Under the symmetry governed by Eq. (114), the THDM parameters specified
in Eq. (12) must satisfy Eq. (54) with R = —R(n, ). Since —R(n, §) has no eigen-
value +1 for 0 # 0 (mod ), it follows that:

—R(n,0)6=€, —R(n,0n=n<£&=n=0, (115)
ER(n,0) = R(n,0)E < Ev is parallel to © for © = n,m,m”. (116)

The derivation of Eq. (116) is identical to the one given in the analysis of
the U(1) Peccei-Quinn symmetry. Thus, we again recover the results of Eqs. (96)
and (97),

Eijnj X Ny and Eijmj o my . (117)

For the same reasons given below Eq. (97), there is (at least) a two-fold degeneracy
among the eigenvalues of E. Since the constraints imposed by Egs. (115) and (117)
are independent of the angle 6, the invariance of the scalar potential under —R(, 6)
for any value of  # 0 (mod ) yields the CP3 symmetry, which in turn implies the
invariance of the scalar potential under —R(n, 6) for all values of 6. As expected,
when n = 2 and m = LZ(:% —1i9y), Eqgs. (115) and (117) lead to the previous results
given in Eq. (113) for any value of 6 # 0 (mod 7).

By virtue of Eq. (117), the vectors comprising the orthonormal set {fv, ™ , ™}
are simultaneous eigenvectors of —R(7,0) and E. This means that E is diagonal
with respect to the basis {fi,m ,m*}. Since  and ™™ are uniquely determined
by 7 [cf. Egs. (A.13) and (A.14)] when 6 # 0 (mod =), it follows that 7 uniquely
fixes the basis in K space.
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e The SO(3)-symmetric scalar potential

Suppose that the THDM scalar potential is invariant under all possible Higgs-family
transformations [cf. Eq. (5)]. The U(2) invariance group contains a gauged hyper-
charge U(1) subgroup, which is automatically satisfied by the Higgs Lagrangian.
The ungauged invariance group is therefore isomorphic to SO(3). The elements of
this SO(3) group are in one-to-one correspondence with the matrices R(U) defined
in Eq. (9). Hence, the invariance of the scalar potential under SO(3) requires that
Eq. (13) must be satisfied for any SO(3) matrix R(U) € SO(3). This clearly implies
that

5:07 ”IZO, E:,u]]-i’n (118)

which of course must hold for any choice of basis (since the set of all basis trans-
formations has been promoted to a global symmetry of the scalar potential). In
K space, one rotation matrix is not sufficient to generate all the elements of the
SO(3) symmetry class. Since any rotation matrix must be of the form R(n,0), the
results of Subsec. 5.1 imply that a single rotation matrix will generate either the Zs
symmetry class (if § = 7) or the U(1) Peccei-Quinn symmetry class, if 0 < 6§ < 7.
However, one can generate all the elements of the SO(3) symmetry class with two
rotation matrices, R(n,0) and R(fig, ), where 0 < § < 7 and 1y X ny # 0. In
group theory language, this is just the statement that starting from two nontrivial
rotations for which the corresponding rotation axes are noncollinear, it is possible
to generate any element of SO(3) by successive multiplication of the two initial
rotation matrices and products thereof.

For example, the SO(3) symmetry class can be generated through the applica-
tion of both

cosa; —sinay; 0
Ro, = | sinog cosa; 0], with 0<ap <, (119)
0 0 1
and
1 0 0
R, =0 cosas —sinay |, with 0<ap <. (120)
0 sinas COS (v

Since there is a infinite number of axes noncollinear with the axis of the first rota-
tion, we have infinitely many ways to generate SO(3) through combinations of
Higgs-family transformations.

In fact, the maximal invariance group [orthogonal to the gauged hypercharge
U(1)] of the SO(3)-symmetric scalar potential is O(3), as noted in Refs. 53 and
46. This can be seen either by examining the symmetry transformation properties
of the scalar fields or via the transformations of the scalar field bilinears. Equa-
tion (118) implies that the scalar potential is invariant with respect to Higgs family
transformations, ¢;(x) — Ui;jp;(z), for any choice of the unitary matrix U. Since
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all potentially complex parameters of the SO(3)-invariant scalar potential are zero,
Eq. (118) also implies that the scalar potential is invariant with respect to GCP
transformations, p;(z) — X;;¢}(2'), for any choice of the unitary matrix X . Math-
ematically, complex conjugation is isomorphic to the discrete group Zo, and hence
the relevant invariance group is SO(3)®Zs = O(3). In K space, it immediately
follows from Eq. (118) that Eqs. (13) and (54) are satisfied for all proper and im-
proper rotation matrices R and R, respectively. In particular, using the results of
Subsec. 5.1, we immediately conclude that the K space symmetries of the SO(3)-
invariant scalar potential can also be generated by a product of two noncollinear
CP3 transformations, — R(71, 0) and — R(2, #), or by a product of the Higgs family
transformation R(7v1,6) and a CP3 transformation —R(n2,0), where 0 < 0 < «
and 7o X 1o # 0. Thus, the full O(3) group consisting of all proper and improper

rotation matrices is generated.”

5.2. Identifying the THDM symmetry classes

We have examined the constraints on the scalar potential parameters for each of the
six symmetry classes listed in Table 1. We can reverse the process and determine the
symmetry class given the scalar potential parameters. We summarize the results of
Subsec. 5.1 in Table 2, which agrees, of course, with the basis-independent character-
ization of the symmetry classes given in Refs. 41, 46 and 68. In particular, given
a set of constraints on &, n and the eigenvalues and eigenvectors of E, one can
uniquely determine the maximal symmetry class of the scalar potential. Note that
& X n =0 for all symmetry classes, with the possible exception of CP1. In the case
of CP1, the only necessary conditions on the scalar potential parameters are®

§-éi=m-e=0, (&n)#(0,0), (121)

where é; is one of the three eigenvectors of E (independently of the degeneracy of
the eigenvalues of F'). When the scalar potential parameters are generic, & X 1 # 0.
In this case the constraints given in Eq. (121) are equivalent to the statement that
€ X 1 is an eigenvector of £.41P On the other hand, if € X n = 0, then the symmetry
class of the scalar potential will be CP1 if and only if the constraints of the other
symmetry classes listed in Table 2 are not satisfied. For example, consider the case
where one eigenvalue of F is nondegenerate and corresponds to the eigenvector é;
in Eq. (121), and the other eigenvalue of E is doubly-degenerate. Then Eq. (121)
necessarily implies that the collinear vectors & and m are also collinear with some
linear combination of the other two eigenvectors &; (j # i) of E, and the scalar

"The reader is cautioned that after the inclusion of the Yukawa sector, the corresponding symmetry
properties of each of these pairs of transformations might be different from the pure scalar theory.
°Using the results of Table 2, it is easy to check that £€-é = m-é& = 0 (where é is one of the
eigenvectors of F) must hold for all symmetry classes. For the higher symmetry classes, additional
constraints must be satisfied as exhibited in Table 2.

PIn this case, one can define 7 as the unit vector that points in the direction of & X 1, and Eq. (107)
is automatically satisfied.
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Table 2. The symmetry classes and the corresponding constraints on the scalar poten-
tial parameters. The unit vector e is one of the three eigenvectors of E corresponding
to a nondegenerate eigenvalue of E, and the unit vector &’ is an eigenvector of E cor-
responding to a doubly-degenerate eigenvalue of E. Note that if (§,1) = (0,0), then
the eigenvectors of F play no role in constraining the scalar potential parameters. For
the U(1) symmetry class, & is uniquely identified as the eigenvector of E correspond-
ing to the nondegenerate eigenvalue (if it exists). For the CP1 symmetry class, € and
m are necessarily orthogonal to one of the eigenvectors of E. If & and n are collinear
[and (&,m) # (0,0)], then we must impose one additional condition to ensure that the
constraints relevant for the Zo or U(1) symmetry classes are not satisfied.

Symmetry class Constraints on & and 7 FEigenvalues of E
Zo Exe=nxe=0;(&mn) #(0,0) nondegenerate
or or
¢xe =nxeée =0;(mn)#0,0) doubly-degenerate
U(1) Exe=nxe=0;(&mn) #(0,0) doubly-degenerate
or or
EXn=0;(&mn) #(0,0) triply-degenerate
(B = pls)
SO(3) (&,m) =(0,0) triply-degenerate
(B = pls)
CP1 £ X m is an eigenvector of E unconstrained
or or
Exn=0;¢-e=n-e=0; (&n) #(0,0); nondegenerate

neither £ nor 7 is an eigenvector of E
or or
Exn=0¢-& =mn-& =0; (&,n) # (0,0); doubly-degenerate

neither & nor 7 is an eigenvector of E

CP2 (&;m) = (0,0) nondegenerate

CP3 (&,m) = (0,0) doubly-degenerate

795

potential therefore exhibits either the Zg or U(1) symmetry. If the eigenvalues of
E are nondegenerate, or if é; in Eq. (121) corresponds to a doubly-degenerate
eigenvalue of F, then it is possible that neither & nor n is an eigenvector of E, in
which case the symmetry class of the scalar potential is CP1.

Suppose that the scalar potential parameters satisfy the constraints of a par-

chain:

ticular symmetry class. By adding additional constraints, it is often possible to
promote the scalar potential to a class with a larger symmetry. That is, there is
a hierarchy of symmetries that can schematically be represented by the following

CP1 <Zy < {U<1) } < CP3 < SO(3). (122)

CP2
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The meaning of the above equation is the following. A scalar potential that exhibits
a Zo symmetry also must exhibit a CP1 symmetry. If the scalar potential exhibits
a U(1) symmetry, then it must also exhibit the symmetries that precede it in the
chain, and so on. Note that the U(1) symmetry does not imply a CP2 symmetry
and vice versa. However, a CP3-symmetric potential must exhibit both the U(1)
symmetry and the CP2 symmetry. Equation (122) is a consequence of the results
of Table 2. For example, if we take a CP2-symmetric scalar potential and impose
the additional condition that one of the eigenvalues of E is doubly-degenerate,
then we promote the symmetry to CP3. Likewise, if we take a U(1)-symmetric
scalar potential (assuming E # pls) and then impose the additional constraint
& = n = 0, then we promote the symmetry to CP3. The rest of the hierarchy of
symmetries can be deduced in a similar manner.

Note that there are cases in which the symmetry is not enhanced if the de-
generacy of one of the eigenvalues of F is increased. Indeed, these cases do not
correspond to new symmetry classes beyond the six listed in Table 2. This conclu-
sion is a consequence of a classification theorem, originally proved in Ref. 46 based
on a geometrical analysis,4 which states that the only possible symmetry classes of
the THDM are those listed in Table 2. This result can be checked by employing the
renormalization group equations (RGE’s) for the scalar potential parameters. In
particular, the constraints on the scalar potential parameters for a given symmetry
class must be respected at any scale and hence invariant under renormalization
group evolution.

The RGE’s for the scalar potential parameters in the general THDM can be
found in Refs. 19, 50, 69 and 70. One can check that all the parameter constraints
exhibited in Table 2 are invariant under renormalization group running. However, if
there are further accidental degeneracies among the eigenvalues of E, these degen-
eracies will not in general be renormalization group invariant. As a simple example,
consider a U(1)-invariant scalar potential in a basis where m?, = A5 = A\g = A7 = 0.
That is, we have from Eq. (12)

0
1 1
7700=§(/\1+)\2)+Z/\3, §= 0 )
&3 = %(mfl — M3s)
(123)
0
1 .. 1
n= 0 , FE= Zdlag </\4,)\4,§(/\1 +/\2)—)\3> .

ns = 5(A1 — A2)

ANote that in Ref. 46 the derivation of the symmetry classes assumes strong stability of the
potential, that is, the quartic terms alone guarantee stability. Here we consider the general case
including weak and marginal stability where the stability of the potential is guaranteed only after
inclusion of the quadratic terms. In fact, the classification of Table 2 is valid even for unstable
potentials.
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In this case € = (0,0, 1), and the constraints listed in Table 2 are clearly satisfied.
Now, suppose we add the following additional constraint: A\; + Ao = 2(A3 + A\4). In
this case, the matrix E possesses one triply-degenerate eigenvalue, and £ = uls
with u = A\4/4. However, this is not a new symmetry class because the constraint
that Ay + A2 = 2(A3 + \4) is not in general renormalization group invariant. Using
the RGE’s for the scalar potential parameters with A5 = A\g = A7 = 0, we find:

872 B+ an—200s+00) = A1+ A2 — 2(As 4+ A)][B(A1 + A2) + 204] + 3(A1 — A2).
(124)

Thus, if Ay # Mg, then the condition Ay + Ao — 2(A3 + A4) = 0 is not stable under
renormalization group running. If in addition A\; = Ay and m%l = m%Z, then the
scalar potential is SO(3)-invariant, corresponding to one of the other symmetry
classes of Table 2. Note that it is sufficient to set Ay = Ao in Eq. (124) to obtain
a fixed point in the RGE at Ay + A2 = 2(A3 + A4) = 0. This would correspond to
a softly broken SO(3)-invariant scalar potential, where the soft-breaking is due to
m32, # m3,. Of course, this soft symmetry breaking is invisible to the RGE running
of the coefficients of dimension-four terms of the Higgs Lagrangian.

In general, additional degeneracies in the eigenvalues of E in Table 2 are either
unstable with respect to renormalization group running or else correspond to a
known symmetry class of enhanced symmetry that is either exact or softly-broken
by dimension-two terms of the scalar potential. Thus, we conclude that no addi-
tional symmetry classes beyond those listed in Table 2 exist, in agreement with the
classification theorem of Ref. 46.

5.3. Symmetries in the E-diagonal basis

The parameters of the scalar potential given by Eq. (2) are described in the K space
formalism by Egs. (11) and (12). In particular, under U(2) basis transformations
of Eq. (5) & and n transform as real three-vectors and E transforms as a real
Cartesian second-rank symmetric tensor under SO(3), which is related to the U(2)
basis transformation of the scalar fields via Eq. (9). Starting in a generic basis, one
can always transform to a special basis in which E is diagonal,

RpER], = Ep = diag(u1, p2, pi3) , (125)

where the y; are the eigenvalues of F and Rp € SO(3). We begin by assuming that
the scalar potential parameters are generic. In this case, the eigenvalues of E are
nondegenerate, and Rp is unique up to the ordering of its rows and/or columns,
which corresponds to a reordering of the diagonal elements of Ep. The correspond-
ing normalized eigenvectors E are unique (up to an irrelevant multiplicative phase)
and will be denoted e;, és and eés. Working in the basis where E is diagonal
(henceforth called the E-diagonal basis) is equivalent to expressing the matrix F
with respect to the orthonormal basis {é1, é2, €3}.



Int. J. Mod. Phys. A 2011.26:769-808. Downloaded from www.worldscientific.com
by Dr. Howard Haber on 08/24/14. For personal use only

798 P. M. Ferreira et al.

Table 3. The proper [and improper] rotation matrices R [and R] that generate the symmetry
classes in K space, where the scalar fields are defined in the E-diagonal basis. The unit vector &
is any one of the three eigenvectors {é1, é2, €3} of E. In the cases of the Zo and CP1 symmetry
classes where v # &; (for ¢ = 1,2,3), E possesses doubly-degenerate eigenvalues if 7 can be
expressed as a linear combination of two of the eigenvectors of E; otherwise F = puls. The last
line of the table corresponds to a special case of the CP3 symmetry class in which all three
eigenvalues of E are degenerate. The resulting scalar potential parameter constraints yield an
SO(3)-invariant scalar potential.

Rotation matrices in Symmetry Constraints on
the E-diagonal basis class scalar potential parameters
R(e,m) Za Exe=nxe=0;
eigenvalues of E are unconstrained
R(n,m), i # & Zo ExXn=nXn=0;
eigenvalues of E are degenerate
R(e,0),0<0 < U(1) EXxe=nxe=0;
eigenvalues of E are doubly-degenerate
R(n,0), n#é,0<0<m, U(1) Exn=mxn=0 E=puls
—R(eé,n) CP1 E-ée=n-e=0;
eigenvalues of E are unconstrained
—R(n,m), " #é CP1 E-n=n-n=0;
eigenvalues of E are degenerate
—R(n,0) = —13, CP2 E=n=0;
eigenvalues of E are unconstrained
—R(&,0),0<0<m CP3 £=n=0;
eigenvalues of E are doubly-degenerate
—R(n,0), n#eé 0<0<m CP3 [SO(3)] E=n=0; E=puls

Having chosen the E-diagonal basis, we now investigate the form of the various
THDM symmetry classes. In each case, the symmetry transformation is of the form:

K(xz) - RK(z), for Higgs family symmetries, (126)
K(z) — RK(2'), for GCP symmetries, (127)

where R is a proper rotation and R is an improper rotation. In Table 3, we sum-
marize the possible forms for R and R and identify the relevant symmetry class.
We also indicate the corresponding constraints on the scalar potential parameters.
In some cases, the imposition of the symmetry will require that the eigenvalues of
FE exhibit some degeneracy. If the symmetry imposes no such constraint, we say
that the eigenvalues of E are unconstrained (i.e. nondegenerate for generic choices
of the parameters of the scalar potential).

We now discuss some of the salient points of Table 3. First, the constraints on &
and 7 are precisely the same as the ones given in Table 2. These constraints are de-
termined simply by identifying the eigenvector of R or R (if it exists) corresponding
to the eigenvalue +1. Indeed, when no eigenvalue +1 exists (as in the cases of CP2
and CP3), it follows that & = = 0. Second, in the cases of proper and improper
rotation matrices parametrized in terms of n = e, where € is one of the eigenvectors
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of E, no constraints on the eigenvectors of E arise for the Zy, CP1 and CP2 sym-
metry classes (in which case & can be any one of the three eigenvectors of E). For
the U(1) and CP3 symmetry classes, the eigenvalues of R(7,0) and R = —R(#, 0)
are nondegenerate, and the corresponding eigenvectors orthogonal to n are complex
conjugates of each other. Since F commutes with R, the eigenvectors of R are also
eigenvectors of E. Finally, as the eigenvalues of the real symmetric matrix £ must
be real, it follows that the eigenvalue of E corresponding to the complex conjugate
pair of eigenvectors is doubly-degenerate.

However, if n # &; (for i = 1,2, 3), then additional constraints on the eigenvalues
of E are imposed. Repeating the arguments of Subsec. 5.1, we see that n must
also be an eigenvector of E. This can only be consistent with n # é; if some of
the eigenvalues of F are degenerate, in which case linear combinations of the e;
within the degenerate subspace are also eigenvectors of E. For example, in the case
of the Zy or the CP1 symmetry classes, if n is a linear combination of two of the
eigenvectors of E, then Eq. (82) yields a two-fold degeneracy in the eigenvalues of E.
Likewise, if n is a linear combination of all three of the originally chosen eigenvectors
of E, then Eq. (82) yields a three-fold degeneracy in the eigenvalues of E, which
means that E is proportional to the identity matrix (i.e. E = uls). Likewise, in the
case of the U(1) or the CP3 symmetry classes, if i # é; (for i = 1,2,3), then the
eigenvectors of R or R, denoted by 1 and ri2” in Subsec. 5.1, are linear combinations
of all three of the eigenvectors of E [cf. Eq. (A.13)]. Consequently, Eq. (97) requires
that all three eigenvalues of £ must be degenerate, i.e. E = uls. Here is a simple
example to illustrate the last point. Suppose we work in a coordinate system in
which the eigenvectors of E are &; = (1,0,0), &2 = (0,1,0), and é3 = (0,0,1). One
possible choice for the axis of the rotation matrix R(7,0) is f = %(él +éy) =

\%(1, 1,0). In this case, we use Eq. (A.13) to obtain

171

n=—-(—= iy, -~ i), —1+i
m—2(\/§(1+), ﬁ<1+)’ 1+>, (128)

where m is the eigenvector of R(#,0) corresponding to the nondegenerate eigen-
value e of R(7,0) [under the assumption that 0 < § < 7]. When we impose the
symmetry constraint, ER(f,0) = RE(#,0), it follows that m must also be an
eigenvector of F. This is only possible if F = puls, as indicated in the last row
of Table 3. Any other choice of fi # &; (for i = 1,2,3) would lead to the same
conclusion.

To summarize, we have examined possible symmetry transformations in the
FE-diagonal basis, in which the vectors & and n and the matrix F are given with
respect to the orthonormal basis constructed from the eigenvectors of F, namely
{é1, é2,é3}. Applying a symmetry transformation £R(#,0), where i # &; (for
1 = 1,2,3), yields the symmetry classes Z,, U(1), CP1, CP2 and CP3, but with
extra degeneracies among the eigenvalues of E. Nevertheless, these extra degen-
eracies do not correspond in general to new enhanced symmetry classes as argued
in Subsec. 5.2. In particular, symmetry transformations defined with respect to a
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specific basis choice can yield constraints on the scalar potential parameters that
are not stable with respect to renormalization group running.

Of course, one can always redefine the scalar fields of the tree-level scalar poten-
tial to achieve a particular choice of basis. However, once higher order corrections
are taken into account, the energy scale of the scalar potential parameters becomes
relevant. For example, the diagonalization required to achieve the E-diagonal basis
depends on the renormalization scale M. In general, the eigenvalues and the direc-
tions of the eigenvectors of E will not remain fixed under a change in the renormal-
ization scale. Thus, parameter constraints defined in some specific basis relative to
some scale M will not automatically be preserved at some other scale M’ # M.
When discussing restrictions on parameters of the tree-level scalar potential due to
possible symmetries, one has to check explicitly that they are preserved by renor-
malization group evolution.

As an example, we consider the GCP transformation

()= (0 D) () -

for some fixed w with 0 < w < 7/2, which corresponds to an improper rotation in
K space given by

cos 2w sin2w 0
R,=|sin2w —cos2w 0] . (130)
0 0 1

We require this to be a symmetry. Using Eqgs. (A.8), (A.10) and (A.11), it follows
that

R, = —R(f,7), with 7 = (sinw,—cosw,0), (131)

which means that R, generates a CP1 transformation. If we apply this transforma-
tion in the E-diagonal basis, where e; = (1,0,0), e2 = (0, 1,0), and es = (0,0,1),
then 7 = sinwe; — cosweés must also be an eigenvector of E. Hence in the FE-
diagonal basis, F = diag(u1, 111, 43) possesses doubly-degenerate eigenvalues.

However, the existence of doubly-degenerate eigenvalues is not stable under
renormalization group evolution. To verify this statement, we shall work in a real
basis (i.e. a basis in which all scalar potential parameters exhibited in Eq. (2) are
real), which is stable under renormalization group running. Using Eq. (12), the
matrix E then takes the form:

A4+ As 0 A6 — A7
E= 1 0 A — As 0 , (132)
A6 — A7 0 %(/\1-1-/\2)—)\3

where A5, A¢ and A7 are real. In the E-diagonal basis, A\¢ = A7. Applying the

symmetry constraints, Eq. (54), imposed by R, yields A5 = 0 and we see that E
possesses a doubly-degenerate eigenvalue, \y. We first note that the diagonal form
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for F is not preserved under renormalization group running. In particular, in the
real basis,

872 Brs -2 = (A6 — A7)[B(A1 4+ A2) 4 2X4 4+ 4X5] +3( X6 + A7) (A1 — X)) . (133)

Since A1 # Ay in general, we see that the diagonal form for F is not stable. However,
to check whether the CP1 symmetry is enhanced, one must examine the eigenvalues
of Eq. (132) to see whether the doubly-degenerate eigenvalue is preserved or not
under the renormalization group running. A straightforward computation shows
that Eq. (132) has a doubly-degenerate eigenvalue if

D =XM1+ A2 — 23 — 20 +2X5) — (M6 — A7) =0. (134)
The beta function for D is given by
Bp = (A1 4+ A2 — 23 — 204 + 2X5) 5,
+ A58 +r0—2xs—20a42x5 — 2(A6 — A7) Brg—s
= X5(Bxr, + Brs — 285, — 280,)
+ (A1 + A2 — 203 — 2X4 4+ 4)5) B,

=26 — A7)(Brg — Brr) - (135)

19,50,69,70

Inserting the corresponding RGE’s in the real basis yields

87%Bp = 4D(A1 + A2 + A3 + 2Xs — As)
+ 3</\6 + )\7)2</\1 + Ao —2A3 — 204 + 2/\5)
+3(A1 — A2) [As (A1 — Ao) — 2X% + 202] . (136)

Indeed, as long as A\ = A\ and A7 = — )¢ is not satisfied, we see that D = 0 is not
a fixed point of Eq. (136). We recognize A\; = A2 and A7 = —\g as the constraints
on the dimensionless parameters of the scalar potential in the exceptional region
of the parameter space (ERPS) identified in Ref. 53. When we impose these ERPS
conditions, the CP1 symmetry is promoted to a CP3 symmetry” (modulo possible
soft-symmetry breaking squared-mass terms). Outside of the ERPS, the double-
degeneracy of the eigenvalue of F is not a renormalization group invariant, and the
CP1 symmetry is not enhanced.

In Table 3, when 72 # é&; (for i = 1,2,3), the enhanced degeneracies in the
eigenvalues of E are not stable with respect to renormalization group running in
the cases of the Zy, U(1) and CP1 symmetry classes. However, in the case of the

'In the E-diagonal basis, the ERPS conditions on the dimensionless couplings of the scalar poten-
tial corresponds to A\; = A2 and A5 = A\g = A7 = 0. One is free to make a change of basis that
simultaneously interchanges the rows and columns of E while keeping E diagonal. In the new
basis, A1 = A2 and A\g = A7 = 0 are maintained, while A5 = 0 is transformed to A5 = A1 — A3 — \4.
The latter reproduces the conditions for a CP3-symmetric scalar potential given in Table 1 of
Ref. 53.
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CP3 symmetry class, the constraints on the scalar potential parameters coincide
with Eq. (118), which are the same constraints imposed by the SO(3)-invariant
scalar potential. In this case, the resulting parameter constraints are invariant with
respect to renormalization group running. That is, the C'P3 symmetry class with an
enhanced degeneracy of the eigenvalues of E is promoted to the SO(3) symmetry
class. In particular, it is possible to generate an SO(3) Higgs-family symmetry
by applying any particular CP3 transformation with f # é; (for i = 1,2,3) in
the E-diagonal basis. This seems to be in conflict with the results of Subsec. 5.1,
where it was shown that two noncollinear rotation matrices are necessary in order
to generate the SO(3) symmetry class in a generic basis. However, given that an
independent rotation matrix Rp is required [cf. Eq. (125)] in order to define the
E-diagonal basis, it is perhaps not surprising that the SO(3) symmetry class can be
generated by applying a single (improper) rotation matrix in the E-diagonal basis.
The classification of the possible THDM symmetries is best done in a generic
basis, where the structure of the various symmetry classes is transparent, and the
resulting constraints on the scalar potential parameters can be obtained that are
covariant with respect to basis transformations. Although it is possible to perform
an analysis of symmetry classes in a specific basis (the E-diagonal basis is a conve-
nient choice to consider for this purpose), the resulting classification is complicated
by enhanced symmetry constraints that are typically not renormalization group
invariant. Such enhanced symmetry points in the scalar potential parameter space
are accidental in nature and are not indicative of any new symmetry structures.

6. Conclusions

It is known that there are only six classes of symmetry-constrained potentials in
the THDM.#6 Specific implementations were later explored in Ref. 53, using Higgs-
family and generalized CP (GCP) symmetries of the THDM potential. In this
paper, we have presented a review of the known facts concerning symmetry trans-
formations in the scalar sector of the THDM. We have performed an analysis of
the symmetry classes, which applies to completely general scalar potentials. That
is, our analysis applies to scalar potentials that are stable in the strong, weak, or
marginal sense, or even unstable. Furthermore, we have pursued the geometric K
space interpretation of Higgs-family and GCP transformations;*®*2 the former are
proper SO(3) rotations and the latter are improper rotations of the field bilinears
in K space. We have constructed the relevant rotations and shown explicitly their
effects on the Higgs scalar potential. This combines some known results with new
ones into a unified scheme and sets the framework for our analysis.

The following new results have thus been obtained. We have clarified the rela-
tion of the classifications of GCP transformations of Refs. 47 and 53. We have given
a simple geometric proof relating SO(3) rotations to two reflections through planes
and improper rotations to one or three reflections through planes in K space. We
have shown that any Higgs-family transformation can be considered as a product
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of two CP1 transformations and any GCP transformation is either a CP1 transfor-
mation or a product of three CP1 transformations. Based on this result we have
provided a geometric interpretation of the surprising result presented in Ref. 53
that all Higgs-family and GCP symmetries in the THDM can be generated from
suitable CP1 symmetries.
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Appendix A. Properties of 3 X 3 Proper Rotation Matrices

In this appendix, we review the properties of 3 x 3 proper rotation matrices. Most
of this material is standard and can be found in Refs. 71-73.

The most general three-dimensional proper rotation is represented by an SO(3)
matrix, R(n,0), whose form is uniquely specified by an axis of rotation, 72, and a
rotation angle 6. Conventionally, a positive rotation angle corresponds to a counter-
clockwise rotation. The direction of the axis is determined by the right hand rule.
Simple geometrical considerations imply that

R(n,0 4+ 2r7k) = R(n,0), k=0,+1 +£2,..., (A1)
[R(n,0)]7" = R(n, —0) = R(—n,0). (A.2)

Combining these two results, it follows that
R(n,2m — 0) = R(—n, 0), (A.3)

which implies that any three-dimensional rotation can be described by a counter-
clockwise rotation by 6 about an arbitrary axis ni, where 0 < 6 < 7.° However, for
0 =7 Eq. (A.3) yields

R(n,n) = R(—n, ), (A4)

SIn the convention adopted here, the overall sign of 7v is meaningful for 6 # 0 mod .
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which means that for the special case of § = 7, R(n,n) and R(—n, ) represent
the same rotation. Finally, if § = 0, then R(n,0) = 13 is the identity operator,
independently of the direction of .

An explicit form for a general three-dimensional proper rotation is given by

R;;j(n,0) = 0;5 cos0 + ninj(1 — cosl) — €;xnksind . (A.5)
This result simplifies for the case of 8 = ,
Rij (’fl, 7'(') = 2’[11‘7’11]' — 51']' . (AG)

It is noteworthy that R(n,6) is a symmetric matrix if and only if § = 0 (mod 7).

Given the SO(3) matrix R(n, ), one can determine the corresponding angle of
rotation # and axis of rotation fi. By taking the trace of Eq. (A.5), we immediately
obtain

TrR(7,0) =1 +2cosf =1+ 47, (A7)
It immediately follows that
cosf = %(TrR— 1), (A.8)
which determines 6 uniquely in the convention that 0 < # < m. The axis of rotation
is given by
n = ! (R32 — Ro3, R13 — R31, Roa1 — Ri2), for  # 0 modr.

VB-TrR)(1+TrR)
(A.9)

For 6 = 0 (mod ), R(n,0) is symmetric and cannot be determined from Eq. (A.9).
In this case, Eq. (A.8) determines whether cosf = +1 or cosf = —1. If cos§ = +1,
then R;; = d;; and the axis 7o is undefined. If cos @ = —1, then Eq. (A.6) determines
the direction of 7i up to an overall sign. That is,

7i is undetermined if # = 0,

1 1 1
’Fl: <61\/5(1+R11), 62\/5(1+R22), 63\/5(1+R33)), if0:7r,

where the individual signs ¢; = £1 are determined up to an overall sign via

R;j L
€€ = , forfixedi#j, Ry #—1, Rj; # —1. A1)
7 A+ Ra)A+Ry) ” (
The ambiguity of the overall sign of 7 sign is not significant, since R(7,7) and
R(—n, ) represent the same rotation as noted above [cf. Eq. (A.4)].

(A.10)

t

*If R;; = —1, where i is a fixed index, then n; = 0, in which case the corresponding ¢; is not
well-defined.
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Since the axis of rotation 7 is invariant under all rotations R(n,0), it follows
that 7 is an eigenvector of R(n, ) with corresponding eigenvalue +1,

R(f,0)A = f. (A.12)

Moreover, since R(n,0) is also a unitary matrix, we know that its eigenvalues
are pure phases. Combining Eq. (A.7) with det R(n,0) = 1, it follows that the
individual eigenvalues of R(,6) must be 1, e’ and e=%. For § # 0 (mod 7), these
three eigenvalues are nondegenerate. In this case, it is convenient to introduce
normalized eigenvectors rin and m*, corresponding to the eigenvalues e*? and e=%,
respectively. Note that whereas v is a real vector corresponding to the axis of
rotation, m and its complex conjugate are complex vectors. The vectors 7, m and
m™ are mutually orthonormal with respect to the inner product of a complex vector

space (e.g. -1 =1 -1 =0 and m - m”* = 1). Explicitly, we have

m = % <n3 + 7”12(173_ n;nz) , —ing — 7”“(1“_1’_ n;nZ) , _(n1 — Zn2)> ) (A.13)
for n # —Zz, up to an overall phase factor that can be fixed by convention. This
form is not very useful as ng — —1. However, we can use Eq. (A.2) to obtain (up
to an overall phase)

. 1 ing(nl + ing) . inl(nl +ing) .
_ VA B S P A.14
m—\/é< ns , —ing + Tp— ,ny+ing |, ( )

for n # 2. Clearly, the eigenvectors i, m and m”* are independent of the value
of the rotation angle ¢. In numerical work, it is convenient to use Eq. (A.13) for
ng > 0 and Eq. (A.14) for ng < 0. One can check that for n # £z, Eqgs. (A.13) and
(A.14) are identical up to an irrelevant multiplicative overall phase.

In the case of § = w, R(n,7) possesses one nondegenerate eigenvalue +1 and
two degenerate eigenvalues —1. The former is associated with the axis of rotation
[cf. Eq. (A.12)]. The eigenvectors corresponding to the degenerate eigenvalues, de-
noted below by m and ms = n x My, can be chosen to be real and orthonormal.
A convenient choice is"

2
o ny —ning
m; = |n —, , —n1 |,
! ( St T ns’ 1+ns 1)

2
N —ning ny
mo = , , —Nn2 | .
2 <1—|—7’L3 3+1+7’L3 2)

However, any other orthonormal pair of vectors constructed from linear combi-

17’n3

(A.15)

nations of m; and My would be equally suitable. Finally, in the case of § = 0,
R(n, ) = 13 possesses three degenerate eigenvalues +1.

Finally, we prove an important result that is needed in the text. Let R € SO(3)
such that

7' = Rn. (A.16)

UIn this case, any problem involving nz = —1 can be avoided simply by employing Eq. (A.4).
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Then
R(#',0) = RR(n,0)R™ . (A.17)
To prove Eq. (A.17), we first note that
Tr R(7',0) = Tr[RR(R,0)R"] = Tr R(n,0), (A.18)

using the cyclicity of the trace and RRT = 1s. It follows from Eq. (A.7) that
the angle of rotation of R(7,6) and RR(n,#) RT must be the same. Next, we use
Eq. (A.12) to determine the axis of rotation of RR(n,0)R

RR(n,0)RY(Rh) = RR(n,0)7 = Ri, (A.19)

which implies that R is an eigenvector of RR(7, ) R with eigenvalue +1. If 6 # 0,
then the eigenvalue +1 is nondegenerate, in which case Rn is the axis of rotation
of R(R,0), and Eqgs. (A.16) and (A.17) are confirmed. If § = 0, then Eq. (A.17) is
trivially satisfied.

Specializing to the case of n = 2, it then follows that

R(n,0) = RR(%,0)RT, where 7= R%. (A.20)
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