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In the two-Higgs-doublet model (THDM), generalized-CP transformations (ϕi → Xijϕ∗
j

where X is unitary) and unitary Higgs-family transformations (ϕi → Uijϕj) have
recently been examined in a series of papers. In terms of gauge-invariant bilinear func-
tions of the Higgs fields ϕi, the Higgs-family transformations and the generalized-CP
transformations possess a simple geometric description. Namely, these transformations
correspond in the space of scalar-field bilinears to proper and improper rotations, respec-
tively. In this formalism, recent results relating generalized CP transformations with
Higgs-family transformations have a clear geometric interpretation. We will review what
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is known regarding THDM symmetries, as well as derive new results concerning those
symmetries, namely how they can be interpreted geometrically as applications of several
CP transformations.

Keywords: Symmetries; CP; two-Higgs doublet models.

PACS numbers: 11.30.Er, 11.30.Ly, 12.60.Fr, 14.80.Cp

1. Introduction

The Standard Model (SM) of particle physics provides an extremely successful

framework for describing the properties of the fundamental particles and their

interactions. No statistically significant deviation from SM predictions has yet been

observed in collider experiments.1 Nevertheless, the experimental exploration of the

scalar sector of particle physics is still in its infancy. The SM contains one complex

doublet, hypercharge-one multiplet of scalar Higgs fields. But it is by no means

excluded that the Higgs sector is larger than that of the SM.2 In particular, there

are a number of theoretical arguments suggesting a richer Higgs sector than that

of the SM. For instance, the two-Higgs-doublet model (THDM) is attractive since

it provides a viable framework for spontaneous CP violation.3,4 The Peccei–Quinn

symmetry, originally introduced in order to solve the so-called strong CP prob-

lem,5,6 requires an enlarged Higgs sector and can be accommodated in the THDM.

Typically, supersymmetric models require at least two Higgs-doublet fields7–12 in

order to cancel potential gauge anomalies due to higgsino superpartners. Thus,

there is ample motivation to study the simplest two-Higgs-doublet extension of the

SM scalar sector.

Indeed, the theory and phenomenology of the THDM has been extensively

analyzed; see Refs. 13–52 and references therein. Among these studies of the THDM,

one can find two lines of approaches. The traditional approach works directly with

the Higgs-doublet fields.13–38 In contrast, there is a second approach that empha-

sizes the role of gauge-invariant scalar field bilinears.39–52 A systematic use of the

scalar field bilinears for the study of the stability and the structure of electroweak

symmetry breaking (EWSB) in the THDM was first carried out in Refs. 40 and

42. Then independently in Ref. 44 the scalar field bilinears were introduced and

employed for the study of the CP properties of the THDM. The bilinear approach

was revisited in Ref. 45. In a recent paper,53 three of the present authors mainly

employed the traditional approach in the study of Higgs-family and generalized-CP

(GCP) symmetries of the THDM. It is the purpose of this work to present a careful

review of the recent results in this area, as well as discussing a compelling geomet-

rical interpretation of Higgs-family and GCP symmetries using the formalism of

scalar field bilinears. This formalism provides a powerful geometric framework that

yields new insights, new results concerning the implementation of symmetries and

clarifies the relations among the different possible symmetry transformations of the

THDM.
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In Sec. 2, we review the formalism of scalar field bilinears and their applications

in the analysis of the THDM. In Sec. 3, we introduce the generalized-CP (GCP)

transformations. These transformations are initially defined as transformations of

scalar fields. We then revisit the GCP transformations in the formalism of scalar

field bilinears and provide a geometric interpretation. Two useful theorems involving

GCP transformations are proven in Sec. 4. Higgs-family and GCP symmetries are

examined in detail in Sec. 5. The classification of all possible THDM symmetries is

established in the formalism of scalar field bilinears. The constraints on the scalar

potential parameters due to the various possible symmetry classes is provided in a

form that is covariant with respect to arbitrary transformations of the basis for the

scalar fields. A distinction between parameter constraints derived in an arbitrary

basis and in a specific basis is examined and clarified. Conclusions are given in

Sec. 6. Details on the structure of 3 × 3 rotation matrices that are useful for the

computations performed in this paper are provided in App. A.

2. Scalar Field Bilinears in the THDM

The scalar sector of the THDM contains two complex doublet, hypercharge-one

Higgs fields, with respect to the SU(2)×U(1) electroweak gauge group, denoted by

ϕi(x) =

(

ϕ+
i (x)

ϕ0
i (x)

)

, with i = 1, 2 . (1)

The tree-level THDM Lagrangian contains the kinetic term and the potential

V (ϕ1, ϕ2) for the Higgs fields, which is gauge invariant and renormalizable. These re-

quirements imply that the scalar potential V (ϕ1, ϕ2) consists only of quadratic and

quartic terms in the fields. The conventional parametrization in the field approach

reads2,19

V = m2
11

(

ϕ†
1ϕ1

)

+m2
22

(

ϕ†
2ϕ2

)

−m2
12

(

ϕ†
1ϕ2

)

−
(

m2
12

)∗(
ϕ†
2ϕ1

)

+
1

2
λ1
(

ϕ†
1ϕ1

)2
+

1

2
λ2
(

ϕ†
2ϕ2

)2
+ λ3

(

ϕ†
1ϕ1

)(

ϕ†
2ϕ2

)

+ λ4
(

ϕ†
1ϕ2

)(

ϕ†
2ϕ1

)

+
1

2

[

λ5
(

ϕ†
1ϕ2

)2
+ λ∗5

(

ϕ†
2ϕ1

)2
]

+
[

λ6
(

ϕ†
1ϕ2

)

+ λ∗6
(

ϕ†
2ϕ1

)

]

(

ϕ†
1ϕ1

)

+
[

λ7
(

ϕ†
1ϕ2

)

+ λ∗7
(

ϕ†
2ϕ1

)

]

(

ϕ†
2ϕ2

)

, (2)

with m2
11, m

2
22, λ1,2,3,4 real and m2

12, λ5,6,7 potentially complex. The parameters of

the scalar potential must be chosen such that the potential is bounded from below,

is stable, and leads to the correct form for EWSB (which preserves U(1)EM). In

addition, one may choose to impose various additional symmetry requirements on

the scalar potential.
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A very convenient way to study the stability, the structure of the EWSB, and

any additional symmetry requirements is to use scalar field bilinears.40–42,44–46 We

follow here the notation of Refs. 40 and 42 and define the four independent gauge

invariant bilinears as

K0 = ϕ†
1ϕ1 + ϕ†

2ϕ2 , K1 = ϕ†
1ϕ2 + ϕ†

2ϕ1 ,

K2 = iϕ†
2ϕ1 − iϕ†

1ϕ2 , K3 = ϕ†
1ϕ1 − ϕ†

2ϕ2 .
(3)

We summarize some results from Refs. 40 and 42.

• We have

K0 ≥ 0 , K2
0 −K2

1 −K2
2 −K2

3 ≥ 0 . (4)

That is, the four vectors K̃ = (K0,K)T = (K0,K1,K2,K3)
T span the forward

light cone in K space. These K̃ parametrize the gauge orbits of the Higgs-doublet

fields.

• A change of basis of the Higgs fields, called a Higgs-family transformation
(

ϕ1

ϕ2

)

→
(

ϕ′
1

ϕ′
2

)

= U

(

ϕ1

ϕ2

)

, (5)

with U = (Uij) ∈ U(2), corresponds to an SO(3) rotation in K space

K0 → K ′
0 = K0 , K → K′ = R(U)K . (6)

Here, the 3× 3 real orthogonal matrix R(U) is obtained from

U †σaU = Rab(U)σb . (7)

Since U is continuously connected to the identity, it follows that det R(U) = 1.

It is straightforward to prove that

Rab(U)Rbc(V ) = Rac(UV ) , (8)

starting from Eq. (7) and using the fact that the σa span the space of traceless

2 × 2 Hermitian matrices. Thus, the mapping {U,−U} 7→ R(U) provides the

well-known double cover of SO(3) by SU(2). An explicit formula for Rab(U) is

easily obtained:

Rab(U) =
1

2
Tr(U †σaUσb) . (9)

The most general SO(3) matrix can be uniquely specified by an axis of rotation

n̂ and an angle of rotation θ that lies in the interval 0 ≤ θ ≤ π. We denote the

corresponding 3× 3 matrix by R(n̂, θ). The properties of R(n̂, θ) are reviewed in

App. A.

• Every SO(3) rotation in K space, given by (6) with R ∈ SO(3), corresponds to a

Higgs-family transformation (5) that is unique up to gauge transformations.
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• The most general gauge invariant and renormalizable potential V of the THDM

can be written as

V = K̃Tξ̃ + K̃TẼK̃ . (10)

Here, ξ̃ and Ẽ contain the parameters which are all real,

ξ̃ =

(

ξ0
ξ

)

, Ẽ =

(

η00 ηT

η E

)

, (11)

with E = ET a 3 × 3 matrix. Expressing ξ̃ and Ẽ in terms of the parameters of

(2), we find

ξ0 =
1

2

(

m2
11 +m2

22

)

, ξ =
1

2









−2Re
(

m2
12

)

2 Im
(

m2
12

)

m2
11 −m2

22









,

η =
1

4









Re(λ6 + λ7)

− Im(λ6 + λ7)
1
2 (λ1 − λ2)









, η00 =
1

8
(λ1 + λ2) +

1

4
λ3 ,

E =
1

4









λ4 +Re(λ5) − Im(λ5) Re(λ6 − λ7)

− Im(λ5) λ4 − Re(λ5) − Im(λ6 − λ7)

Re(λ6 − λ7) − Im(λ6 − λ7)
1
2 (λ1 + λ2)− λ3









.

(12)

• A transformation (5) corresponds to a Higgs family symmetry if and only if

R(U)ξ = ξ , R(U)η = η , R(U)ERT(U) = E . (13)

In Ref. 45 basis changes of the Higgs fields as in Eq. (5) were considered, but with

the unitary transformation U replaced by more general SL(2,C) transformations.

In K space this corresponds to general Lorentz transformations, which includes

both rotations and boosts. However, the latter change the form of the kinetic terms

of the THDM Lagrangian. Without loss of generality, one may assume that the

kinetic terms of the tree-level THDM Lagrangian are of canonical form. Under this

assumption, only unitary Higgs family transformations are permitted.

3. Generalized-CP Transformations

In this section we study the generalized-CP (GCP) transformations,

ϕi(x) → Xijϕ
∗
j (x

′) , with i, j ∈ {1, 2} , (14)

X = (Xij) ∈ U(2) , x =

(

x0

x

)

, x′ =

(

x0

−x

)

. (15)
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Such GCP transformations of scalar fields have been previously considered in

Refs. 54–58,a and GCP transformations of fermions fields have also been examined

in Ref. 61. A systematic study of GCP transformations of the scalar fields of the

THDM was carried out in Refs. 47 and 53. The matrix X that appears in Eq. (14)

is basis-dependent. Under a change of basis specified by Eq. (5), the GCP transfor-

mation of Eq. (14) is modified to:

ϕ′
i(x) → X ′

ijϕ
′ ∗
j (x′) , (16)

where X ′ is a unitary matrix given by:

X ′ ≡ UXUT . (17)

As shown in Ref. 53, three classes of GCP transformations exist depending on

the value of (GCP)2. Consider first the case of (GCP)2 = 1, which is denoted by

CP1 (sometimes called the “standard” CP symmetry transformation). Then,

ϕi → Xijϕ
∗
j → XijX

∗
jkϕk = ϕi , (18)

which implies that XX∗ = 12 (where 12 is the 2 × 2 identity matrix). Since X is

unitary, the latter implies that X is also symmetric. Thus, Eq. (14) corresponds to

a CP1 transformation if and only if X is a symmetric unitary matrix. One can now

employ the well known result that any symmetric unitary matrix X can be written

as the product of a unitary matrix and its transpose (see e.g. App. D.3 of Ref. 62

for a proof of this result). That is, one can always find a unitary matrix U such that

X = U †U∗. Performing the basis transformation given by Eq. (17) then yields that

X ′ ≡ UXUT = UU †(UU †)∗ = 12 . (19)

That is, in the case of CP1, there is always a basis choice for which X ′ = 12.

Next, consider the case of (GCP)2 = −1, which is denoted by CP2. Then,

ϕi → Xijϕ
∗
j → XijX

∗
jkϕk = −ϕi , (20)

which implies that XX∗ = −12. Since X is unitary, the latter implies that X is

also antisymmetric. Thus, Eq. (14) corresponds to a CP2 transformation if and only

if X is an antisymmetric unitary matrix. The most general antisymmetric unitary

2× 2 matrix X isb

X = eiψε , where ε ≡ iσ2 = −εT = −ε−1 =

(

0 1

−1 0

)

, (21)

where ψ is an arbitrary phase. It then follows that a unitary matrix exists, U ≡
e−iψ/2ε, such that

X ′ = UXUT = ε . (22)

That is, in the case of CP2, there is always a basis choice for which X ′ = ε.

aFor the discussion of CP transformations in the SM see for example Refs. 58–60.
bConversely, it is straightforward to show that if X†σaX = −σa∗, where X = exp(iθn̂ · ~σ/2),
then X is proportional to σ2, i.e. X is an antisymmetric unitary matrix.

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
1.

26
:7

69
-8

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 H

ow
ar

d 
H

ab
er

 o
n 

08
/2

4/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 22, 2011 15:0 WSPC/139-IJMPA S0217751X11051494

The Geometric Picture of Generalized-CP and Higgs-Family Transformations 775

Finally, we consider the case of (GCP)2 = XX∗ 6= ±12, which is denoted by

CP3. In this case, it is always possible to perform a basis transformation such that

in the new basis, X is transformed intoc

X ′ = UXUT =

(

cos θ sin θ

− sin θ cos θ

)

, (23)

where 0 < θ < π/2.

To prove this result, we first note that since X is a unitary matrix, det X ≡ e2iχ

is a pure phase. Following Eq. (17), we shall perform a basis transformation such

that

detX ′ = det(UXUT) = 1 . (24)

This can always be done provided that

U = e−iχ/2Û , (25)

where Û is an SU(2) matrix. It is convenient to define

X̂ ≡ e−iχX , (26)

in which case det X̂ = 1 and

X ′ = ÛX̂ÛT . (27)

A general SU(2) matrix Û satisfies:

Û = ε Û∗ε−1 , (28)

where ε is defined in Eq. (21). Equation (28) expresses the well known equivalence of

the irreducible two-dimensional representation of SU(2) and its complex conjugate.

Inserting the transpose of Eq. (28) into Eq. (27) yields

X ′ε = ÛX̂ε Û † . (29)

It is convenient to define

Û ≡ 1√
2

(

1 1

i −i

)

V , (30)

where V is a unitary matrix (such that detV = i). Since X̂ε is an SU(2) matrix,

it follows that the two eigenvalues of X̂ε are complex conjugates of each other,

denoted below by e±iφ, where the real angle φ is defined modulo π. Then, we can

choose V to be the unitary matrix that diagonalizes X̂ε,

V X̂εV † =

(

eiφ 0

0 e−iφ

)

. (31)

cEquation (23) is an example of a canonical form for unitary congruence. For a comprehensive
mathematical treatment, see Ref. 63 (note in particular Corollary 8.7). In the physics literature,
Eq. (23) first appeared in Ref. 56 and was further generalized in Ref. 64.
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Inserting Eqs. (30) and (31) into Eq. (29) yields

X ′ =

(

sinφ − cosφ

cosφ sinφ

)

. (32)

Finally, we define φ = θ + π/2 to obtain the desired form given by Eq. (23).

The angle φ (and hence the angle θ) is defined modulo π. Thus, it is convenient

to establish a convention in which |θ| ≤ π/2. However, we are free to redefine

U → σ1U , which has the effect of changing the overall sign of θ.d Consequently, it

is always possible to find a basis transformation such that X ′ takes the form given

by Eq. (23), where 0 ≤ θ ≤ π/2. Moreover,

XX∗ = U †X ′U∗UTX ′ ∗U = U †
(

cos 2θ sin 2θ

− sin 2θ cos 2θ

)

U , (33)

so that θ = 0 corresponds to the case of CP1 [Eq. (19)], θ = π/2 corresponds to the

case of CP2 [Eq. (22)], and 0 < θ < π/2 corresponds to the case of CP3 [Eq. (23)].

Summarizing the above results, it follows that in a suitable basis for the scalar

fields the matrix X in (14) can always be brought to the form
(

cos θ sin θ

− sin θ cos θ

)

, with 0 ≤ θ ≤ π/2 . (34)

The classification of GCP symmetries established above is53

• CP1 if θ = 0,

• CP2 if θ = π/2 and

• CP3 if 0 < θ < π/2.

We now demonstrate how the classification of GCP symmetries can be under-

stood in the formalism of field bilinears employed in Ref. 47. To make the present

paper self-contained, we shall repeat some of the derivations of Ref. 47 in the anal-

ysis that follows.

In the notation of Eq. (7), we define the SO(3) matrix Rab(X) via

X†σaX = Rab(X)σb , (35)

where X is the unitary matrix that specifies the GCP transformation [cf. Eq. (14)].

It is convenient to introduce the improper rotation matrix,

R̄2 ≡ diag(1,−1, 1) . (36)

The matrix R̄2 describes the reflection through the 1–3 plane in K space. Simi-

larly, we introduce R̄1 and R̄3 as the reflections through the 2–3 and 1–2 planes,

respectively,e

R̄1 = diag(−1, 1, 1) , R̄3 = diag(1, 1,−1) . (37)

dFor any 2× 2 matrix A, the matrix σ1Aσ1 is related to A by an interchange of the two diagonal
elements and an interchange of the two off-diagonal elements.
eHere and in the following R, Rα, . . . and R̄, R̄α, . . . denote proper and improper rotation matrices
with determinant +1 and −1, respectively.

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
1.

26
:7

69
-8

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 H

ow
ar

d 
H

ab
er

 o
n 

08
/2

4/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 22, 2011 15:0 WSPC/139-IJMPA S0217751X11051494

The Geometric Picture of Generalized-CP and Higgs-Family Transformations 777

In particular, note that

σa∗ = σaT = (R̄2)abσ
b . (38)

The scalar field bilinears of Eq. (3) can be rewritten as:

Kµ = ϕ†
iσ
µ
ijϕj , (39)

where σµ = (1, ~σ ). Then, the GCP transformation defined in Eq. (14) corre-

sponds to

Kµ = ϕ†
iσ
µ
ijϕj →

(

Xikϕ
†
k

)∗
σµijXj`ϕ

∗
` = ϕ†

`ϕk(X
†σµX)k` . (40)

If µ = 0, then X†σ0X = X†X = 12, and so K0 → K0 (where we suppress the

coordinates x and x′). If µ = a = 1, 2, 3, then one may use Eqs. (35) and (38) to

obtain

Ka → ϕ†
`ϕk(X

†σaX)k` = ϕ†
`ϕkRab(X)σbk`

= ϕ†
`ϕkRab(X)(R̄2)bcσ

c
`k = R̄acKc , (41)

where R̄ is the improper rotation matrix

R̄ ≡ R(X)R̄2 . (42)

That is,

K0(x) → K0(x
′) , K(x) → R̄K(x′) , (43)

which reproduces the result obtained in Sec. 3 of Ref. 47.

Under each of the three classes of GCP transformations, the improper rotation

matrix R̄ ≡ R(X)R̄2 must satisfy an appropriate constraint equation. To derive

the relevant constraint, we start with the complex conjugate of Eq. (35). Using

Eq. (38), it then follows that

XT(R̄2)abσ
bX∗ = Rab(X)(R̄2)bcσ

c . (44)

Employing Eq. (35) once more yields

(R̄2)abRbc(X
∗)σc = Rab(X)(R̄2)bcσ

c . (45)

Since the σa are linearly independent and span the space of traceless 2×2 Hermitian

matrices, Eq. (45) yields

R(X∗) = R̄2R(X)R̄2 , (46)

after using (R̄2)
2 = 13 (where 13 is the 3× 3 identity matrix). Finally, we multiply

Eq. (46) on the left by R(X) and make use of Eq. (8) to obtain

R(XX∗) = R̄2 , (47)

where the improper rotation matrix R̄ ≡ R(X)R̄2 was introduced in Eq. (42).

Consider separately the cases CP2 (where X is antisymmetric and XX∗ = −12)

and CP1 (where X is symmetric and XX∗ = 12). In both cases, Eq. (35) yields
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R(XX∗) = R(±12) = 13, and it follows that R̄2 = 13. That is, R̄ is either a

reflection matrix corresponding to a reflection through some plane in K space or

an inversion (or point reflection) through the origin in K space. In Eq. (21), we

noted the most general form for X in the case of CP2 is given by X = eiψiσ2,

where ψ is an arbitrary phase. Inserting this result into Eq. (35) and making use

of Eq. (38) yields:

Rab(X)σb = σ2σaσ2 = −σa∗ = −(R̄2)abσ
b , (48)

and we conclude that R(X) = −R̄2. Hence, Eq. (42) yields R̄ = −13, which corre-

sponds to an inversion (i.e. a point reflection through the origin in K space). This

case is a CP
(i)
g transformation in the notation of Ref. 47. In contrast, for the case

of CP1, where X is a symmetric unitary matrix, we have R̄2 = 13 and R̄ 6= −13.

An improper rotation matrix of this type corresponds to reflections through planes

in K space. In particular, an SO(3) matrix R̃ exists such that

R̄ = R̃R̄2R̃
T . (49)

To prove Eq. (49), simply choose a basis where X = 12 in which case R(X) = 13

and R̄ = R̄2. Then, rotate in K space to an arbitrary basis using the rotation

matrix R̃ to obtain Eq. (49). One can easily check that R̄2 = 13 and R̄ 6= −13

as required. This case corresponds to a CP
(ii)
g transformation in the notation of

Ref. 47. In summary, for those GCP transformations whose square is equal to the

unit transformation when acting on the gauge invariant field bilinears, we must have

R̄2 = 13. The resulting classification of Ref. 47 is then related to that of Ref. 53 as

follows:

• CP(ii)
g : reflections through planes in K space, R̄ = R̃R̄2R̃

T with R̃ ∈ SO(3) ⇔
CP1 transformations.

• CP(i)
g : a point reflection through the origin in K space, R̄ = −13 ⇔ CP2 trans-

formations.

The case of CP3 transformations was not considered in detail in Ref. 47. In

this case, XX∗ 6= ±12, which implies that R(XX∗) 6= 13. Hence, Eq. (47) yields

R̄2 6= 13, which means that the improper rotation R̄ is not a reflection matrix or

an inversion. To obtain an explicit form for R̄ ≡ R(X)R̄2, it is convenient to choose

a suitable basis in which X is given by Eq. (34), which can be rewritten as:

X = 12 cos θ + iσ2 sin θ . (50)

We can use Eq. (9) to obtain the corresponding rotation matrix Rab(X). Evaluating

the relevant traces, one obtains:

Rab(X) = δab cos 2θ + 2δa2δb2 sin
2 θ + εab2 sin 2θ . (51)

Hence, in a basis in which X is given by Eq. (34),

R̄ ≡ R(X)R̄2 =





cos 2θ 0 − sin 2θ

0 −1 0

sin 2θ 0 cos 2θ



 . (52)

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
1.

26
:7

69
-8

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 H

ow
ar

d 
H

ab
er

 o
n 

08
/2

4/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 22, 2011 15:0 WSPC/139-IJMPA S0217751X11051494

The Geometric Picture of Generalized-CP and Higgs-Family Transformations 779

As expected, for a CP1 transformation θ = 0 and R̄ = R̄2 (in a suitable basis in

which X = 12), and for a CP2 transformation θ = π/2 and R̄ = −13. The case

of 0 < θ < π/2 corresponds to a CP3 transformation, in which R̄ is an improper

rotation matrix that is not a simple reflection or inversion (i.e. R̄2 6= 13). As in

Eq. (49), the form for R̄ in a general basis is related to Eq. (52) by an orthogonal

similarity transformation,

R̄ = R̃R(X)R̄2R̃
T , (53)

for some SO(3) matrix R̃, where R(X) is given by Eq. (51).

Thus, we have reproduced above the result proved in Ref. 47. Every transfor-

mation of the field bilinears given by Eq. (43), where R̄ is any improper rotation

matrix, corresponds to a GCP transformation of the fields as specified in Eq. (14).

This field transformation is uniquely determined by R̄ up to gauge transformations.

In analogy with Eq. (13), a GCP transformation of the form given by Eq. (43) cor-

responds to a GCP symmetry if and only if

R̄ξ = ξ , R̄η = η , R̄ER̄T = E . (54)

4. Two Theorems Involving GCP Transformations

In Ref. 53, it was suggested that all symmetries of the THDM could be expressed in

terms of products of GCP symmetries. In this section, we prove two simple theorems

that demonstrate that all Higgs family and GCP transformations can be expressed

in terms of products of CP1 transformations.

Theorem 1. Any Higgs-family transformation can be considered as a product of

two CP1 transformations.

Theorem 2. Any GCP transformation is either a CP1 transformation or a product

of three CP1 transformations.

These theorems are new. Some particular cases were considered in Ref. 53 but even

there they referred only to symmetries where the form of the potential could play

a role. The results presented here apply to the more fundamental transformations

themselves.

Proof of Theorem 1. Let X and Y be two arbitrary symmetric unitary matrices.

Consider the product of the corresponding CP1 transformations,

ϕ′
j(x) = Xjkϕ

∗
k(x

′) , (55)

ϕ′′
i (x) = Yijϕ

′ ∗
j (x′) = YijX

∗
jkϕk(x) = Uikϕk(x) , (56)

where U = Y X∗ is a unitary matrix. The theorem is proven if we can show that

an arbitrary unitary matrix U is the product of two symmetric unitary matrices.
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But this last statement is easy to prove. First, we diagonalize U with a unitary

matrix W ,

U =WDW † , (57)

where D is a diagonal matrix of phases corresponding to the eigenvalues of U . Then

define the following two symmetric unitary matrices:

S1 ≡WWT , S2 ≡W ∗DW † . (58)

It immediately follows that

S1S2 =WWTW ∗DW † =WDW † = U , (59)

which shows that any unitary matrix can be written as a product of two symmetric

unitary matrices.

It is also instructive to prove Theorem 1 in K space. Consider an arbitrary

Higgs-family transformation [cf. Eqs. (5) and (6)]. Every proper rotation matrix R

is a rotation about an axis and can be represented, in a suitable basis, as

Rα =





cosα − sinα 0

sinα cosα 0

0 0 1



 , with 0 ≤ α ≤ π . (60)

This rotation can also be generated by two reflections, R̄α/2 and R̄α, as illustrated

in Fig. 1.

second reflection plane first reflection plane

α
α/2

K1

K2

K

K̃

K
′

Fig. 1. The reflections R̄α/2 and R̄α illustrated in the K1–K2 plane. The reflection R̄α/2 brings

the arbitrary vector K to K̃. Then, R̄α brings K̃ to K
′.
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The first reflection, R̄α/2, is through the plane containing the K3 axis and the

line of the angle α/2 in the K1–K2 plane. The second reflection, R̄α, is through

the plane containing the K3 axis and the line of the angle α itself. The arbitrary

vector K goes into K̃ under the reflection R̄α/2 and further into K′ under R̄α. In

Fig. 1 we show the projections of these vectors onto the K1–K2 plane. Since the

third component of the vectors are not changed under R̄α/2 and R̄α we see that K′

gives exactly the vector rotated by the angle α, that is, K′ = RαK, where Rα is

given by Eq. (60). To see all this formally we consider Rβ as in Eq. (60) but with

α replaced by an arbitrary angle β and define

R̄β = RβR̄2R
T
β =





cos 2β sin 2β 0

sin 2β − cos 2β 0

0 0 1



 . (61)

Note that (R̄β)
2 = 13, which indicates that R̄β is a pure reflection. In particular,

R̄β describes the reflection through the plane containing the K3 axis and the line of

angle β in the K1–K2 plane. We have RT
β = R−β, R̄2RβR̄2 = R−β and Rβ1

Rβ2
=

Rβ1+β2
. It is then easy to see that we get Rα from Eq. (60) via two reflections,

R̄αR̄α/2 = RαR̄2R
T
αRα/2R̄2R

T
α/2 = Rα . (62)

This is the K space equivalence of the statement that any Higgs family transfor-

mation is equivalent to the product of two CP1 transformations.

Proof of Theorem 2. If we perform three successive CP1 transformations of the

form given by Eq. (14), with X given by X1, X2 and X3, respectively, then the

resulting transformation is of the form of Eq. (14) with

X = X3X
∗
2X1 , (63)

where the Xi are symmetric unitary matrices. However, any unitary matrix X can

be written in the form of Eq. (63). This follows from the fact that any unitary

matrix can be written as the product of two symmetric unitary matrices, as proven

in Eq. (59). Thus, one can simply choose one of the matrices Xi in Eq. (63) to

be the identity matrixf (which is of course a symmetric unitary matrix). Finally,

we note that the product of an odd number of GCP transformations is a GCP

transformation, as this follows trivially from Eq. (14). The proof of Theorem 2 is

then complete.

Again, it is instructive to prove Theorem 2 in K space. Consider an arbitrary

GCP transformation specified by Eq. (43). In a suitable basis R̄ has the form in

Eq. (52). For θ = 0 we are finished, since R̄ = R̄2 which corresponds to a CP1

fOf course, this does not imply that a GCP transformation can be expressed as the product
of two CP1 transformations. Each CP1 transformation involves the complex conjugation of the
scalar fields, so one requires a product of odd number of CP1 transformations to express a GCP
transformation. The product of two CP1 transformations is a Higgs family transformation as
demonstrated in Theorem 1.
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transformation. For θ 6= 0 we make a basis transformation in Eq. (52) exchanging

the 2 and the 3 axes, which yields an improper rotation,

R̄ ′
2θ =





cos 2θ − sin 2θ 0

sin 2θ cos 2θ 0

0 0 −1



 . (64)

We can represent this matrix as a product of three CP1 transformations by multi-

plying Eq. (62) by R̄3 and replacing α by 2θ. Thus we obtain

R̄3R̄2θR̄θ =
(

R̃R̄2R̃
T
)(

R2θR̄2R
T
2θ

)(

RθR̄2R
T
θ

)

= R̄ ′
2θ , (65)

where

R̃ =





1 0 0

0 0 −1

0 1 0



 . (66)

Equation (65) is the K space equivalence of the statement that an arbitrary GCP

transformation either is a CP1 transformation or the product of three CP1 trans-

formations.

Note that Theorem 2 is equivalent to the statement that an arbitrary improper

3 × 3 rotation matrix can be expressed as a product of three reflection matrices.

This statement can be proved directly. First, we note that any proper 3×3 rotation

matrix can be written as the product of two reflection matrices as in Eq. (62).

However, any improper rotation matrix can be written as the product of a reflection

matrix and a proper rotation matrix. Combining these two statements yields the

desired result.g

5. Higgs-Family and GCP Symmetries

In Secs. 3 and 4, we analyzed Higgs-family and GCP transformations. In this sec-

tion, we shall address the corresponding symmetries. In the scalar sector of the

THDM, there are six nontrivial inequivalent classes of symmetries that can be

exhibited by the tree-level THDM scalar potential. The complete classification of

the THDM symmetry classes, which are listed in Table 1, was first given in Ref. 46

and subsequently analyzed in Ref. 53.

The following points are noteworthy. First, consider the case in which a Higgs-

family or a GCP transformation is a symmetry transformation of the THDM. The

representation of such a symmetry transformation as a product of other transfor-

mations, (e.g. a product of CP1 transformations as discussed in Sec. 4), does not

automatically imply that the individual factors of the product are also symmetries

of the THDM. Second, the analysis of this paper is confined to the scalar sector

gIn particular, the inversion matrix −13 can be written as the product of three reflection
matrices. Starting from Eq. (62), we note that −RT

α is a reflection matrix, in which case,
−RT

αR̄αR̄α/2 = −13.
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Table 1. The symmetry classes and the corresponding proper [and improper] rotation matrices
R [and R̄] that generate the symmetry classes in K space. A general rotation matrix R(n̂, θ) is
uniquely determined by an axis of rotation n̂ and rotation angle θ (see App. A). The identity
class generated by R(n̂, 0) = 13 is trivial and is not explicitly displayed. The decomposition of R
and R̄ in terms of products of CP1 reflection matrices is also given in a particular basis. In the
case of the CP2 and SO(3) symmetry classes, the corresponding rotation matrices are invariant
with respect to basis transformations. The generation of the SO(3) symmetry class requires two
rotation matrices (each of which may be a proper or improper rotation depending on the overall
sign choice), where n̂1 and n̂2 are noncollinear.

Symmetry Rotation matrices Rotation matrices as a product
class in a generic basis of CP1 reflection matrices

Z2 R(n̂, π) Rπ = R̄2R̄1, for n̂ = ẑ [see Eq. (70)]

U(1) R(n̂, θ) R2θ = R̄2θR̄θ , for n̂ = ẑ [see Eq. (89)]

(0 < θ < π)

SO(3) ±R(n̂1, θ), ±R(n̂2, θ) See Subsec. 5.3

(0 < θ < π, n̂1 × n̂2 6= 0)

CP1 −R(n̂, π) R̄2, for n̂ = ŷ [see Eq. (100)]

CP2 −R(n̂, 0) = −13 −13 = R̄3R̄2R̄1 [see Eq. (110)]

CP3 −R(n̂, θ) R̄′
2θ1

= R̄3R̄2θ1R̄θ1 , for n̂ = ẑ [see Eq. (112)]

(0 < θ < π)

of the THDM. Ultimately, one must also include the Yukawa couplings to fermions

in the theory in the discussion of symmetry transformations. The structure of the

symmetries of the scalar sector may not be respected by the Yukawa sector. As an

example, consider a field transformation S1 that can be written as a product of two

others, S1 = S2S3. Suppose that by imposing the symmetry S1, the symmetries

S2 and S3 are automatically respected by the scalar sector. This property is not

guaranteed to hold for the Yukawa sector. In particular, it is possible that imposing

S2 and S3 separately as symmetries may lead to stronger restrictions as compared

with the imposition of the symmetry S1 by itself. This is indeed the case in the

model which was studied in Refs. 48, 49 and 51.

5.1. Symmetries and single rotations in bilinear space

We shall now use Theorems 1 and 2 of Sec. 4 to obtain a new derivation of the

statement (given in Ref. 53) that all possible symmetries of the scalar sector of the

THDM can be reduced to multiple applications of the standard CP symmetry in

suitable bases. In Table 1 we list the possible classes of THDM symmetries, along

with the equivalent result in K space, where the Higgs family and generalized CP

transformations are generated by proper or improper rotations,R or R̄, respectively.

Also shown is the decomposition of R and R̄ in terms of products of CP1 reflec-

tion matrices in a particular basis choice.h Note that it is sufficient to require the

hIn the CP2 symmetry class, the rotation matrices are independent of n̂, so that the basis choice in
this case is fixed by the direction of an eigenvector of E corresponding to one of its nondegenerate
eigenvalues.
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invariance under a single but suitable rotation in order to generate each symmetry

class, with the exception of the SO(3) case.i

The transformation matrices R and R̄ generating the respective symmetry

classes can be written as products of CP1 transformations using Theorems 1 and

2 of Sec. 4. Of course, one still needs to check if the imposition of the CP1 factors

as symmetries is equivalent or more restrictive than the corresponding proper or

improper rotation, R or R̄, alone. Let us now derive and discuss the results shown

in Table 1 in detail.

• Z2 symmetry

The Z2 symmetry,65,66

ϕ1(x) → ϕ1(x) , ϕ2(x) → −ϕ2(x) , (67)

corresponds in K space to a rotation by π around the third axis,

K(x) → RπK(x) , (68)

where Rπ is as in Eq. (60) with α = π. That is,

RZ2
= Rπ =





−1 0 0

0 −1 0

0 0 1



 . (69)

This result is most easily obtained by taking U = σ3 in Eq. (9).

The application of Theorem 1 gives the decomposition [cf. Eq. (62)]:

Rπ = R̄πR̄π/2 = R̄2R̄1 . (70)

Requiring Z2 to be a symmetry means that the THDM parameters specified in

Eq. (12) must satisfy Eq. (13) with R(U) replaced by Rπ , which yields

ξ1 = ξ2 = 0 , η1 = η2 = 0 , E13 = E23 = 0 . (71)

On the other hand, requiring the CP1 transformations corresponding to both R̄1

and R̄2 to be separate symmetries gives, in addition to Eq. (71),

E12 = 0 . (72)

Thus, imposing the CP1 symmetries R̄1 and R̄2 yields a stronger constraint than

the Z2 symmetry alone. Nevertheless, the scalar potential subject to the CP1 sym-

metries R̄1 and R̄2 is physically equivalent to the scalar potential subject to the Z2

symmetry, since the two scalar potentials are related by a change of basis. This is

easily proved by performing a change of basis characterized by an SO(3) matrix R

[cf. Eq. (6)] with R13 = R23 = R31 = R32 = 0 and R33 = 1. Note that ξ and η are

invariant under this change of basis, whereas E → RERT. One can choose R such

iFor the SO(3) symmetry class, if a basis for the scalar fields is appropriately chosen, then it is
possible to generate the SO(3) symmetry class via a single rotation matrix, as shown in Subsec. 5.3.
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that E is diagonal, which confirms that the two scalar potentials are related by a

basis transformation.

It is also instructive to introduce the permutation symmetry Π2,

ϕ1(x) → ϕ2(x) , ϕ2(x) → ϕ1(x) . (73)

In fact, the Z2-symmetric scalar potential and the Π2-symmetric scalar potential

are related by a basis transformation26,53 (and are hence physically equivalent). To

obtain the K space description of Π2, simply insert U = σ1 into Eq. (9), which

yields

RΠ2
=





1 0 0

0 −1 0

0 0 −1



 . (74)

Requiring Π2 to be a symmetry implies that the THDM parameters specified in

Eq. (12) must satisfy Eq. (13) with R(U) replaced by RΠ2
, which yields

ξ2 = ξ3 = 0 , η2 = η3 = 0 , E12 = E13 = 0 . (75)

It is possible (although not particularly illuminating) to construct the basis

transformation that relates Eqs. (71) and (75). However, it is more useful to identify

the most general transformation in K space that corresponds to the presence of the

Z2 symmetry specified by Eq. (67) in some basis. This can be accomplished by

starting in a basis where Eq. (68) is satisfied and transforming to an arbitrary

basis.

Under a basis transformation specified by the U(2) matrix U [cf. Eqs. (5) and

(6)], we define R̃ ≡ R(U), where R(U) is given by Eq. (9). Then, the Z2 symmetry

transformation, K(x) → RπK(x), is transformed to

R̃K(x) → R̃R(ẑ, π)R̃TR̃K(x) , (76)

where Rπ ≡ R(ẑ, π) is a rotation by 180◦ about the z-axis, and the expression

R̃TR̃ = 13 has been conveniently inserted. Using Eq. (A.20) given in App. A, it

follows that

K′(x) ≡ R̃K(x) → R(n̂, π)K′(x) , n̂ ≡ R̃ẑ , (77)

which is the form of the Z2 symmetry in the new basis.

Henceforth, we drop the primed superscripts. The most general transformation

in K space that corresponds to the presence of the Z2 symmetry in some basis is

given by:

K(x) → R(n̂, π)K(x) , (78)

where R(n̂, π) is a rotation by 180◦ about an axis that is parallel to the unit

vector n̂. As noted in App. A, R(n̂, π) possesses one nondegenerate eigenvalue

equal to +1 and two degenerate eigenvalues −1. The eigenvector corresponding to

the nondegenerate eigenvalue +1 is identified as the rotation axis n̂, since

R(n̂, π)n̂ = n̂ (79)
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is just the geometrical statement that the rotation axis is unaffected by the rotation.

Under the symmetry governed by Eq. (78), the THDM parameters specified in

Eq. (12) must satisfy Eq. (13) with R(U) replaced by R(n̂, π), which yields

ξ and η are eigenvectors of R(n̂, π) ⇔ ξ and η are parallel to n̂ , (80)

with eigenvalue +1

ER(n̂, π) = R(n̂, π)E ⇔ En̂ is parallel to n̂ . (81)

Equation (80) is a consequence of the fact the eigenvalue +1 of R(n̂, π) is non-

degenerate, which implies that any vector v that satisfies R(n̂, π)v = v must be

proportional to n̂. To derive Eq. (81), we note that n̂ is a simultaneous eigenvector

of R(n̂, π) and E. In particular, R(n̂, π)En̂ = ER(n̂, π)n̂ = En̂, where the last

step follows from Eq. (79). Hence either En̂ = 0 or En̂ is an eigenvector of R(n̂, π)

with eigenvalue +1. Since the latter is nondegenerate, it follows that j

Eijnj ∝ ni . (82)

One can easily check that Eqs. (80) and (82) reduce to Eq. (71) or Eq. (75) when

n̂ = ẑ or x̂, respectively.

Equation (81) implies that the eigenvectors of E can be chosen to be simulta-

neous eigenvectors of R(n̂, π). Since E is a real symmetric matrix, these eigenvectors

can be chosen to be orthonormal. We denote these eigenvectors by {n̂, m̂, n̂× m̂}.
We have already noted that n̂ is an eigenvector of E by virtue of Eq. (82). Thus,

the other two eigenvectors of E must satisfy:k

R(n̂, π)m̂ = −m̂ , R(n̂, π)(n̂ × m̂) = −n̂× m̂ . (83)

Because of the two-fold degeneracy of the eigenvalue −1 of R(n̂, π), it is possible to

perform orthogonal transformations within the two-dimensional subspace spanned

by m̂ and n̂× m̂ that leave the form of the Z2 symmetry transformation given in

Eq. (78) unchanged. This simply means that the form of the Z2 symmetry transfor-

mation does not uniquely specify the basis in K space. To fix the basis completely,

one must specify n̂ and the eigenvectors of R(n̂, π) corresponding to the two-fold

degenerate eigenvalue −1.

In summary, the Z2 symmetry corresponds to K(x) → R(n̂, π)K(x) for some

choice of n̂. Imposing this symmetry on the scalar potential requires that

ξ and η are parallel to n̂ , (84)

E is diagonal with respect to the basis {n̂, m̂, n̂× m̂} , (85)

jOne can derive Eq. (82) more explicitly by employing Eq. (A.6) in ER(n̂, π) = R(n̂, π)E. It
follows that ninjEjk = nknjEji. Using the fact that ET = E, one obtains Eijnj = Cni, where
the constant of proportionality is identified as C ≡ njEjknk.
kIn general, the eigenvectors m̂1 and m̂2 defined in Eq. (A.15) are not expected to be eigenvectors
of E. In this case, m̂ is some linear combination of m̂1 and m̂2, and similarly for n̂ × m̂. In
particular, E is not generally diagonal with respect to the basis {n̂, m̂1, m̂2}.
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where m̂ is a simultaneous eigenvector of R(n̂, π) and E, with R(n̂, π)m̂ = −m̂.

In this case, the choice of n̂ and m̂ uniquely fixes the basis in K space.

• U(1) Peccei Quinn symmetry

The U(1) Peccei–Quinn symmetry5,6,8 requires invariance under

ϕ1(x) → e−iθϕ1(x) , ϕ2(x) → eiθϕ2(x) , (86)

with an arbitrary angle θ, which is defined modulo π. By taking U = 12 cos θ −
iσ3 sin θ in Eq. (9), we obtain the corresponding symmetry transformation in K

space,

K(x) → R2θK(x) , (87)

where R2θ is as in Eq. (60) with α = 2θ, with 0 ≤ θ < π. That is,

RU(1) = R2θ =





cos 2θ − sin 2θ 0

sin 2θ cos 2θ 0

0 0 1



 . (88)

The application of Theorem 1 gives the decomposition [cf. Eq. (62)]:

R2θ = R̄2θR̄θ . (89)

Requiring the U(1) Peccei–Quinn transformation to be a symmetry implies that the

THDM parameters specified in Eq. (12) must satisfy Eq. (13) with R(U) replaced

by R2θ (for all possible values of θ), which yields

ξ1 = ξ2 = 0 , η1 = η2 = 0 , E = diag(µ1, µ1, µ3) . (90)

It is straightforward to check that imposing the two CP1 symmetries R̄θ and R̄2θ

separately is equivalent to requiring invariance under R2θ.

Remarkably, it is sufficient to require invariance of the scalar potential given by

Eq. (2) under R2θ0 for any single particular value of 2θ0 6= 0 (mod π).67 That is,

Eq. (90) is a consequence of the invariance conditions specified by Eq. (13), with

R(U) = R2θ0 for any 2θ0 6= 0 (mod π), which in turn implies invariance under R2θ

for all values of θ.l

More generally, we consider the possibility that a basis transformation is re-

quired to identify the symmetry specified in Eq. (86). First, we shall rename 2θ by

θ and rewrite Eq. (87) as

K(x) → R(±ẑ, θ)K(x) , (91)

where 0 ≤ θ ≤ π. Note that we must allow for both signs of ±ẑ in order to cover the

entire U(1) Peccei–Quinn group manifold. Under a basis transformation specified

lNote that if θ0 = π/2 then R2θ0 = Rπ, which generates the Z2 symmetry class treated previously.
What is perhaps more surprising is that if θ0 = π/n for any integer n > 2, then the invariance of
the scalar potential under R2θ0 [which generates a Zn subgroup of U(1)] implies invariance under
the full U(1) group. This latter result is a consequence of the fact that the scalar potential of
Eq. (2) contains no terms of dimension greater than four. If one relaxes this condition, then new
symmetry classes can arise that are associated with discrete subgroups of U(1) of order d > 2.
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by the U(2) matrix U [cf. Eqs. (5) and (6)], we define R̃ ≡ R(U), where R(U) is

given by Eq. (9). Then, with assistance from Eq. (A.20), the U(1) Peccei–Quinn

symmetry transformation, Eq. (91), is transformed to

K′(x) → R̃R(±ẑ, θ)R̃TK′(x) = R(±n̂, θ)K′(x) , (92)

where n̂ = R̃ẑ and R(n̂, θ) is a rotation by θ about the axis n̂.

Thus, dropping the primed subscripts, the most general transformation in K

space that corresponds to the presence of the U(1) Peccei–Quinn symmetry in

some basis is given by

K(x) → R(n̂, θ)K(x) , for 0 < θ < π . (93)

Note that we have excluded the case of θ = 0, which corresponds to the identity

transformation, and the case of θ = π, which corresponds to the Z2 symmetry

transformation treated previously. When θ 6= 0 (mod π), R(n̂, θ) possesses three

nondegenerate eigenvalues: +1, eiθ and e−iθ, and n̂ is the normalized eigenvector of

R(n̂, θ) with eigenvalue +1. It is convenient to introduce normalized eigenvectors

m̂ and m̂
∗, corresponding to the eigenvalues eiθ and e−iθ, respectively. For further

details, see App. A.

Under the symmetry governed by Eq. (93), the THDM parameters specified in

Eq. (12) must satisfy Eq. (13) with R(U) replaced by R(n̂, θ), which yields:

ξ and η are eigenvectors of R(n̂, θ) ⇔ ξ and η are parallel to n̂ , (94)

with eigenvalue +1

ER(n̂, θ) = R(n̂, θ)E ⇔ Ev̂ is parallel to v̂ for v̂ = n̂, m̂, m̂∗ . (95)

The derivation of Eq. (95) is similar to the one given in the case of the Z2

symmetry above. We thereby obtain two conditions on the matrix E. The first

condition,

Eijnj ∝ ni , (96)

coincides with Eq. (82). To derive the second condition, we note that R(n̂, θ)Em̂ =

ER(n̂, θ)m̂ = eiθEm̂, which implies that either Em̂ = 0 or Em̂ is an eigenvector

of R(n̂, θ) with eigenvalue eiθ. Since θ 6= 0 (mod π) by assumption, the latter is

nondegenerate, and it follows thatm

Eijmj ∝ mi . (97)

This equation and its complex conjugate imply that m̂ and m̂
∗ are eigenvectors

of E, whose eigenvalues are complex conjugates of each other. But E is a real

mOne can derive Eq. (97) more explicitly by employing Eq. (A.5) in ER(n̂, θ) = R(n̂, θ)E. This
yields two constrains: ninjEjk = nknjEji (also obtained in the case of the Z2 symmetry, as
noted in footnote j) and εij`Ejkn` = εjk`Eijn`. If we multiply the latter equation by mk and
employ ET = E, En̂ ∝ n̂ and n̂·m̂ = 0, it then follows that Eijmj = κmi, where the constant
of proportionality is identified as κ ≡ 1

2
(TrE − niEijnj).
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symmetric matrix, which implies that its eigenvalues are real. It follows that there

is (at least) a two-fold degeneracy among the eigenvalues of E.

As noted below Eq. (A.14), the eigenvector m̂ is independent of the rotation

angle θ, assuming that θ 6= 0 (mod π). Consequently, the constraints on the scalar

potential parameters [governed by eqs. (94), (96) and (97)] do not depend on θ. That

is, the invariance of the scalar potential under R(n̂, θ) for any single particular value

of θ 6= 0 (mod π) yields the U(1) Peccei–Quinn symmetry, which in turn implies

the invariance of the scalar potential under R(n̂, θ) for all values of θ.

One can check that Eqs. (94), (96) and (97) reduce to Eq. (90) in the basis

where n̂ = ẑ and m̂ = 1√
2
(x̂ − iŷ). For example, after inserting m̂ into Eq. (97),

and taking into account that E is a real symmetric matrix, we obtain

E11 − iE12 = iE12 + E22 , E13 − iE23 = 0 . (98)

Taking the real and imaginary parts of the above equations, it follows that E

is a diagonal matrix with E11 = E22 as stated in Eq. (90). Indeed, the above

computation is valid for any choice of θ 6= 0 (mod π), as noted above. Due to

Eqs. (96) and (97), the vectors comprising the orthonormal set {n̂, m̂, m̂∗} are

simultaneous eigenvectors of R(n̂, θ) and E. This means that E is diagonal with

respect to the basis {n̂, m̂, m̂∗}. Since m̂ and m̂
∗ are uniquely determined by n̂

[cf. Eqs. (A.13) and (A.14)] when θ 6= 0 (mod π), it follows that n̂ uniquely fixes

the basis in K space.

• CP1 symmetry

In Sec. 3, we showed that one can always find a basis in which the CP1 transfor-

mation in K space is given by

K(x) → R̄2K(x′) , (99)

that is,

R̄CP1 = R̄2 =





1 0 0

0 −1 0

0 0 1



 . (100)

Requiring CP1 to be a symmetry implies that the THDM parameters specified in

Eq. (12) must satisfy Eq. (54) with R̄ ≡ R̄CP1, which yields

ξ2 = 0 , η2 = 0 , E12 = E23 = 0 . (101)

As expected, Eq. (101) is equivalent to the statement that in a basis in which the

CP1 transformation is given by Eq. (99), all the parameters of the scalar potential

specified in Eq. (2) are real.

As in the case of the Z2 symmetry, there still remains some freedom to perform

a basis transformation while maintaining the form of the CP1 symmetry given in

Eq. (99). By performing a change of basis characterized by an SO(3) matrix R with

R12 = R23 = R21 = R32 = 0 and R22 = 1, we see that Eq. (101) is still satisfied,
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while other matrix elements of E are transformed according to E → RERT. One

is free to choose R such that E in the new basis is diagonal.

The above results pertain to a specific basis choice. With respect to an arbitrary

basis, we showed in Sec. 3 that R̄CP1 is a reflection through planes inK space, which

implies that R̄CP1 is an improper rotation matrix that satisfies

R̄2
CP1 = 13 , R̄CP1 6= −13 . (102)

An explicit form is given by

R̄CP1 = −R(n̂, π) , (103)

where the unit vector n̂ points in the direction normal to the reflection plane.

In general, −R(n̂, π) possesses one nondegenerate eigenvalue −1 and a doubly-

degenerate eigenvalue +1. We identify n̂ as the eigenvector of −R(n̂, π) corre-

sponding to the nondegenerate eigenvalue −1. The eigenvectors corresponding to

the doubly-degenerate eigenvalues of R̄CP1 span the reflection plane in K space.

The scalar potential exhibits the CP1 symmetry, Eq. (99), in some basis if

K(x) → −R(n̂, π)K(x′) (104)

is a symmetry. That is, the THDM parameters specified in Eq. (12) must satisfy

Eq. (54) with R̄ ≡ R̄CP1, which yields

ξ and η are eigenvectors of −R(n̂, π) with eigenvalue +1

⇔ ξ and η are perpendicular to n̂ , (105)

ER(n̂, π) = R(n̂, π)E ⇔ En̂ is parallel to n̂ . (106)

Following the derivation of Eq. (82), either En̂ = 0 or En̂ is an eigenvector of

−R(n̂, π) with eigenvalue −1. Since the latter is nondegenerate, we again recover

Eq. (82). It is a simple matter to confirm that Eqs. (82) and (105) reduce to

Eq. (101) when n̂ = ŷ.

We can introduce simultaneous eigenvectors of E and −R(n̂, π), denoted by m̂

and n̂× m̂, which satisfy Eq. (83) [cf. footnote k]. These two vectors correspond to

the two-fold degenerate eigenvalue +1 of −R(n̂, π). As in the treatment of the Z2

symmetry, the form of the CP1 symmetry transformation does not uniquely specify

the basis in K space. To fix the basis completely, one must specify n̂ and the

eigenvectors of −R(n̂, π) corresponding to the two-fold degenerate eigenvalue +1.

In summary, the CP1 symmetry corresponds to K(x) → −R(n̂, π)K(x′) for

some choice of n̂. Imposing this symmetry on the scalar potential requires that

ξ and η are perpendicular to n̂ , (107)

E is diagonal with respect to the basis {n̂, m̂, n̂× m̂} , (108)

where m̂ is a simultaneous eigenvector of −R(n̂, π) and E, with −R(n̂, π)m̂ = m̂.

In this case, the choice of n̂ and m̂ uniquely fixes the basis in K space.
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• CP2 symmetry

The CP2 symmetry class is generated by requiring that the scalar potential param-

eters specified in Eq. (12) are invariant under R̄ = −R(n̂, 0) = −13 corresponding

to 2θ = π in Eq. (64), which yields

R̄CP2 = R̄′
π =





−1 0 0

0 −1 0

0 0 −1



 . (109)

The form of R̄CP2 is basis-independent, since R(U)R̄CP2R
T(U) = R̄CP2 for any

choice of U . We may now invoke Theorem 2 from Sec. 4. From Eq. (65), we then

obtain

R̄3R̄2R̄1 = −13 . (110)

Invariance under R̄CP2 = −13 requires ξ = 0 and η = 0 but leaves E arbitrary. We

can then perform a basis transformation to diagonalize E, which leaves ξ and η

unchanged. Invariance under all three individual CP1 transformations R̄3, R̄2 and

R̄1, taken together, implies that

ξ = η = 0 and E = diag(µ1, µ2, µ3) . (111)

Clearly, R̄3, R̄2 and R̄1, when separately applied, yield a stronger constraint than

−13 alone. But the three CP1 symmetries are physically equivalent to −13, since
the scalar potentials that result from the two procedures are related by the change

of basis that diagonalizes E. As shown in Ref. 48, this equivalence may no longer

hold once the Yukawa sector is taken into account.

• CP3 symmetry

It is convenient to choose a basis in which the CP3 symmetry class is generated as

follows. We require the transformation R̄′
2θ1

[defined in Eq. (64)] to be a symmetry,

for any choice of angle such that 2θ1 6= 0 (mod π). Theorem 2 can again be employed

to express R̄′
2θ1

as a product of three CP1 transformations. Equations (64) and (65)

then yield

R̄CP3 = R̄′
2θ1 =





cos 2θ1 − sin 2θ1 0

sin 2θ1 cos 2θ1 0

0 0 −1



 = R̄3R̄2θ1R̄θ1 . (112)

Requiring CP3 to be a symmetry implies that the THDM parameters specified

in Eq. (12) must satisfy Eq. (54) with R̄ ≡ R̄′
2θ1

, which yields

ξ = η = 0 , E = diag(µ1, µ1, µ3) . (113)

It is straightforward to check that imposing the three CP1 symmetries R̄3, R̄2θ1

and R̄θ1 separately is equivalent to requiring invariance under R̄′
2θ1

. Similarly to

the case of the U(1) Peccei–Quinn symmetry, the invariance of the scalar potential
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under R̄′
2θ1

, for any single particular value of 2θ1 6= 0 (mod π), implies invariance

under R̄′
2θ for all values of θ.

The above results pertain to a specific basis choice. With respect to an arbitrary

basis, we showed in Sec. 3 that R̄CP3 is an improper rotation matrix that satisfies

R̄2
CP3 6= 13 (i.e. R̄CP3 is not a pure reflection in K space). The most general form

for the CP3 transformation is given by R̄CP3 = −R(n̂, θ) for 0 < θ < π. Thus

the scalar potential, in a basis specified by n̂, exhibits the CP3 symmetry if it is

invariant under the transformation

K(x) → −R(n̂, θ)K(x′) , for 0 < θ < π . (114)

Note that we have excluded the case of θ = 0, which corresponds to the CP2 sym-

metry transformation, and the case of θ = π, which corresponds to the CP1 sym-

metry transformation, both of which have already been treated above. When θ 6= 0

(mod π), the improper rotation matrix −R̄(n̂, θ) possesses three nondegenerate

eigenvalues: −1, −eiθ and −e−iθ, and n̂ is the normalized eigenvector of −R(n̂, θ)
with eigenvalue −1. As in the analysis of the U(1) Peccei–Quinn symmetry, it is

convenient to introduce normalized eigenvectors of −R(n̂, θ), denoted by m̂ and

m̂
∗, corresponding to the eigenvalues −eiθ and −e−iθ, respectively.
Under the symmetry governed by Eq. (114), the THDM parameters specified

in Eq. (12) must satisfy Eq. (54) with R̄ ≡ −R(n̂, θ). Since −R(n̂, θ) has no eigen-

value +1 for θ 6= 0 (mod π), it follows that:

−R(n̂, θ)ξ = ξ , −R(n̂, θ)η = η ⇔ ξ = η = 0 , (115)

ER(n̂, θ) = R(n̂, θ)E ⇔ Ev̂ is parallel to v̂ for v̂ = n̂, m̂, m̂∗ . (116)

The derivation of Eq. (116) is identical to the one given in the analysis of

the U(1) Peccei–Quinn symmetry. Thus, we again recover the results of Eqs. (96)

and (97),

Eijnj ∝ ni and Eijmj ∝ mi . (117)

For the same reasons given below Eq. (97), there is (at least) a two-fold degeneracy

among the eigenvalues of E. Since the constraints imposed by Eqs. (115) and (117)

are independent of the angle θ, the invariance of the scalar potential under −R(n̂, θ)
for any value of θ 6= 0 (mod π) yields the CP3 symmetry, which in turn implies the

invariance of the scalar potential under −R(n̂, θ) for all values of θ. As expected,

when n̂ = ẑ and m̂ = 1√
2
(x̂− iŷ), Eqs. (115) and (117) lead to the previous results

given in Eq. (113) for any value of θ 6= 0 (mod π).

By virtue of Eq. (117), the vectors comprising the orthonormal set {n̂ , m̂ , m̂∗}
are simultaneous eigenvectors of −R(n̂, θ) and E. This means that E is diagonal

with respect to the basis {n̂ , m̂ , m̂∗}. Since m̂ and m̂
∗ are uniquely determined

by n̂ [cf. Eqs. (A.13) and (A.14)] when θ 6= 0 (mod π), it follows that n̂ uniquely

fixes the basis in K space.
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• The SO(3)-symmetric scalar potential

Suppose that the THDM scalar potential is invariant under all possible Higgs-family

transformations [cf. Eq. (5)]. The U(2) invariance group contains a gauged hyper-

charge U(1) subgroup, which is automatically satisfied by the Higgs Lagrangian.

The ungauged invariance group is therefore isomorphic to SO(3). The elements of

this SO(3) group are in one-to-one correspondence with the matrices R(U) defined

in Eq. (9). Hence, the invariance of the scalar potential under SO(3) requires that

Eq. (13) must be satisfied for any SO(3) matrix R(U) ∈ SO(3). This clearly implies

that

ξ = 0 , η = 0 , E = µ13 , (118)

which of course must hold for any choice of basis (since the set of all basis trans-

formations has been promoted to a global symmetry of the scalar potential). In

K space, one rotation matrix is not sufficient to generate all the elements of the

SO(3) symmetry class. Since any rotation matrix must be of the form R(n̂, θ), the

results of Subsec. 5.1 imply that a single rotation matrix will generate either the Z2

symmetry class (if θ = π) or the U(1) Peccei–Quinn symmetry class, if 0 < θ < π.

However, one can generate all the elements of the SO(3) symmetry class with two

rotation matrices, R(n̂1, θ) and R(n̂2, θ), where 0 < θ < π and n̂1 × n̂2 6= 0. In

group theory language, this is just the statement that starting from two nontrivial

rotations for which the corresponding rotation axes are noncollinear, it is possible

to generate any element of SO(3) by successive multiplication of the two initial

rotation matrices and products thereof.

For example, the SO(3) symmetry class can be generated through the applica-

tion of both

Rα1
=





cosα1 − sinα1 0

sinα1 cosα1 0

0 0 1



 , with 0 < α1 < π , (119)

and

R′
α2

=





1 0 0

0 cosα2 − sinα2

0 sinα2 cosα2



 , with 0 < α2 < π . (120)

Since there is a infinite number of axes noncollinear with the axis of the first rota-

tion, we have infinitely many ways to generate SO(3) through combinations of

Higgs-family transformations.

In fact, the maximal invariance group [orthogonal to the gauged hypercharge

U(1)] of the SO(3)-symmetric scalar potential is O(3), as noted in Refs. 53 and

46. This can be seen either by examining the symmetry transformation properties

of the scalar fields or via the transformations of the scalar field bilinears. Equa-

tion (118) implies that the scalar potential is invariant with respect to Higgs family

transformations, ϕi(x) → Uijϕj(x), for any choice of the unitary matrix U . Since
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all potentially complex parameters of the SO(3)-invariant scalar potential are zero,

Eq. (118) also implies that the scalar potential is invariant with respect to GCP

transformations, ϕi(x) → Xijϕ
∗
j (x

′), for any choice of the unitary matrix X . Math-

ematically, complex conjugation is isomorphic to the discrete group Z2, and hence

the relevant invariance group is SO(3)⊗Z2
∼= O(3). In K space, it immediately

follows from Eq. (118) that Eqs. (13) and (54) are satisfied for all proper and im-

proper rotation matrices R and R̄, respectively. In particular, using the results of

Subsec. 5.1, we immediately conclude that the K space symmetries of the SO(3)-

invariant scalar potential can also be generated by a product of two noncollinear

CP3 transformations,−R(n̂1, θ) and −R(n̂2, θ), or by a product of the Higgs family

transformation R(n̂1, θ) and a CP3 transformation −R(n̂2, θ), where 0 < θ < π

and n̂1 × n̂2 6= 0. Thus, the full O(3) group consisting of all proper and improper

rotation matrices is generated.n

5.2. Identifying the THDM symmetry classes

We have examined the constraints on the scalar potential parameters for each of the

six symmetry classes listed in Table 1. We can reverse the process and determine the

symmetry class given the scalar potential parameters. We summarize the results of

Subsec. 5.1 in Table 2, which agrees, of course, with the basis-independent character-

ization of the symmetry classes given in Refs. 41, 46 and 68. In particular, given

a set of constraints on ξ, η and the eigenvalues and eigenvectors of E, one can

uniquely determine the maximal symmetry class of the scalar potential. Note that

ξ×η = 0 for all symmetry classes, with the possible exception of CP1. In the case

of CP1, the only necessary conditions on the scalar potential parameters areo

ξ · êi = η · êi = 0 , (ξ,η) 6= (0, 0) , (121)

where êi is one of the three eigenvectors of E (independently of the degeneracy of

the eigenvalues of E). When the scalar potential parameters are generic, ξ×η 6= 0.

In this case the constraints given in Eq. (121) are equivalent to the statement that

ξ×η is an eigenvector of E.41,p On the other hand, if ξ×η = 0, then the symmetry

class of the scalar potential will be CP1 if and only if the constraints of the other

symmetry classes listed in Table 2 are not satisfied. For example, consider the case

where one eigenvalue of E is nondegenerate and corresponds to the eigenvector êi
in Eq. (121), and the other eigenvalue of E is doubly-degenerate. Then Eq. (121)

necessarily implies that the collinear vectors ξ and η are also collinear with some

linear combination of the other two eigenvectors êj (j 6= i) of E, and the scalar

nThe reader is cautioned that after the inclusion of the Yukawa sector, the corresponding symmetry
properties of each of these pairs of transformations might be different from the pure scalar theory.
oUsing the results of Table 2, it is easy to check that ξ · ê = η · ê = 0 (where ê is one of the
eigenvectors of E) must hold for all symmetry classes. For the higher symmetry classes, additional
constraints must be satisfied as exhibited in Table 2.
pIn this case, one can define n̂ as the unit vector that points in the direction of ξ×η, and Eq. (107)
is automatically satisfied.
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Table 2. The symmetry classes and the corresponding constraints on the scalar poten-

tial parameters. The unit vector ê is one of the three eigenvectors of E corresponding
to a nondegenerate eigenvalue of E, and the unit vector ê′ is an eigenvector of E cor-
responding to a doubly-degenerate eigenvalue of E. Note that if (ξ,η) = (0, 0), then
the eigenvectors of E play no role in constraining the scalar potential parameters. For
the U(1) symmetry class, ê is uniquely identified as the eigenvector of E correspond-
ing to the nondegenerate eigenvalue (if it exists). For the CP1 symmetry class, ξ and
η are necessarily orthogonal to one of the eigenvectors of E. If ξ and η are collinear
[and (ξ,η) 6= (0, 0)], then we must impose one additional condition to ensure that the
constraints relevant for the Z2 or U(1) symmetry classes are not satisfied.

Symmetry class Constraints on ξ and η Eigenvalues of E

Z2 ξ × ê = η × ê = 0; (ξ,η) 6= (0, 0) nondegenerate

or or

ξ× ê′ = η× ê′ = 0; (ξ,η) 6= (0, 0) doubly-degenerate

U(1) ξ× ê = η× ê = 0; (ξ,η) 6= (0, 0) doubly-degenerate

or or

ξ×η = 0; (ξ,η) 6= (0, 0) triply-degenerate

(E = µ13)

SO(3) (ξ,η) = (0, 0) triply-degenerate

(E = µ13)

CP1 ξ×η is an eigenvector of E unconstrained

or or

ξ×η = 0; ξ · ê = η · ê = 0; (ξ,η) 6= (0, 0); nondegenerate

neither ξ nor η is an eigenvector of E

or or

ξ×η = 0; ξ · ê′ = η · ê′ = 0; (ξ,η) 6= (0, 0); doubly-degenerate

neither ξ nor η is an eigenvector of E

CP2 (ξ,η) = (0, 0) nondegenerate

CP3 (ξ,η) = (0, 0) doubly-degenerate

potential therefore exhibits either the Z2 or U(1) symmetry. If the eigenvalues of

E are nondegenerate, or if êi in Eq. (121) corresponds to a doubly-degenerate

eigenvalue of E, then it is possible that neither ξ nor η is an eigenvector of E, in

which case the symmetry class of the scalar potential is CP1.

Suppose that the scalar potential parameters satisfy the constraints of a par-

ticular symmetry class. By adding additional constraints, it is often possible to

promote the scalar potential to a class with a larger symmetry. That is, there is

a hierarchy of symmetries that can schematically be represented by the following

chain:

CP1 < Z2 <

{

U(1)

CP2

}

< CP3 < SO(3) . (122)
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The meaning of the above equation is the following. A scalar potential that exhibits

a Z2 symmetry also must exhibit a CP1 symmetry. If the scalar potential exhibits

a U(1) symmetry, then it must also exhibit the symmetries that precede it in the

chain, and so on. Note that the U(1) symmetry does not imply a CP2 symmetry

and vice versa. However, a CP3-symmetric potential must exhibit both the U(1)

symmetry and the CP2 symmetry. Equation (122) is a consequence of the results

of Table 2. For example, if we take a CP2-symmetric scalar potential and impose

the additional condition that one of the eigenvalues of E is doubly-degenerate,

then we promote the symmetry to CP3. Likewise, if we take a U(1)-symmetric

scalar potential (assuming E 6= µ13) and then impose the additional constraint

ξ = η = 0, then we promote the symmetry to CP3. The rest of the hierarchy of

symmetries can be deduced in a similar manner.

Note that there are cases in which the symmetry is not enhanced if the de-

generacy of one of the eigenvalues of E is increased. Indeed, these cases do not

correspond to new symmetry classes beyond the six listed in Table 2. This conclu-

sion is a consequence of a classification theorem, originally proved in Ref. 46 based

on a geometrical analysis,q which states that the only possible symmetry classes of

the THDM are those listed in Table 2. This result can be checked by employing the

renormalization group equations (RGE’s) for the scalar potential parameters. In

particular, the constraints on the scalar potential parameters for a given symmetry

class must be respected at any scale and hence invariant under renormalization

group evolution.

The RGE’s for the scalar potential parameters in the general THDM can be

found in Refs. 19, 50, 69 and 70. One can check that all the parameter constraints

exhibited in Table 2 are invariant under renormalization group running. However, if

there are further accidental degeneracies among the eigenvalues of E, these degen-

eracies will not in general be renormalization group invariant. As a simple example,

consider a U(1)-invariant scalar potential in a basis wherem2
12 = λ5 = λ6 = λ7 = 0.

That is, we have from Eq. (12)

η00 =
1

8
(λ1 + λ2) +

1

4
λ3 , ξ =









0

0

ξ3 = 1
2 (m

2
11 −m2

22)









,

η =









0

0

η3 = 1
8 (λ1 − λ2)









, E =
1

4
diag

(

λ4, λ4,
1

2
(λ1 + λ2)− λ3

)

.

(123)

qNote that in Ref. 46 the derivation of the symmetry classes assumes strong stability of the
potential, that is, the quartic terms alone guarantee stability. Here we consider the general case
including weak and marginal stability where the stability of the potential is guaranteed only after
inclusion of the quadratic terms. In fact, the classification of Table 2 is valid even for unstable
potentials.
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In this case ê = (0, 0, 1), and the constraints listed in Table 2 are clearly satisfied.

Now, suppose we add the following additional constraint: λ1 + λ2 = 2(λ3 + λ4). In

this case, the matrix E possesses one triply-degenerate eigenvalue, and E = µ13
with µ ≡ λ4/4. However, this is not a new symmetry class because the constraint

that λ1 + λ2 = 2(λ3 + λ4) is not in general renormalization group invariant. Using

the RGE’s for the scalar potential parameters with λ5 = λ6 = λ7 = 0, we find:

8π2βλ1+λ2−2(λ3+λ4) = [λ1 + λ2 − 2(λ3 + λ4)][3(λ1 + λ2) + 2λ4] + 3(λ1 − λ2)
2 .

(124)

Thus, if λ1 6= λ2, then the condition λ1 + λ2 − 2(λ3 + λ4) = 0 is not stable under

renormalization group running. If in addition λ1 = λ2 and m2
11 = m2

22, then the

scalar potential is SO(3)-invariant, corresponding to one of the other symmetry

classes of Table 2. Note that it is sufficient to set λ1 = λ2 in Eq. (124) to obtain

a fixed point in the RGE at λ1 + λ2 = 2(λ3 + λ4) = 0. This would correspond to

a softly broken SO(3)-invariant scalar potential, where the soft-breaking is due to

m2
11 6= m2

22. Of course, this soft symmetry breaking is invisible to the RGE running

of the coefficients of dimension-four terms of the Higgs Lagrangian.

In general, additional degeneracies in the eigenvalues of E in Table 2 are either

unstable with respect to renormalization group running or else correspond to a

known symmetry class of enhanced symmetry that is either exact or softly-broken

by dimension-two terms of the scalar potential. Thus, we conclude that no addi-

tional symmetry classes beyond those listed in Table 2 exist, in agreement with the

classification theorem of Ref. 46.

5.3. Symmetries in the E-diagonal basis

The parameters of the scalar potential given by Eq. (2) are described in the K space

formalism by Eqs. (11) and (12). In particular, under U(2) basis transformations

of Eq. (5) ξ and η transform as real three-vectors and E transforms as a real

Cartesian second-rank symmetric tensor under SO(3), which is related to the U(2)

basis transformation of the scalar fields via Eq. (9). Starting in a generic basis, one

can always transform to a special basis in which E is diagonal,

RDER
T
D ≡ ED = diag(µ1, µ2, µ3) , (125)

where the µi are the eigenvalues of E and RD ∈ SO(3). We begin by assuming that

the scalar potential parameters are generic. In this case, the eigenvalues of E are

nondegenerate, and RD is unique up to the ordering of its rows and/or columns,

which corresponds to a reordering of the diagonal elements of ED. The correspond-

ing normalized eigenvectors E are unique (up to an irrelevant multiplicative phase)

and will be denoted ê1, ê2 and ê3. Working in the basis where E is diagonal

(henceforth called the E-diagonal basis) is equivalent to expressing the matrix E

with respect to the orthonormal basis {ê1, ê2, ê3}.
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Table 3. The proper [and improper] rotation matrices R [and R̄] that generate the symmetry
classes in K space, where the scalar fields are defined in the E-diagonal basis. The unit vector ê

is any one of the three eigenvectors {ê1, ê2, ê3} of E. In the cases of the Z2 and CP1 symmetry
classes where n̂ 6= êi (for i = 1, 2, 3), E possesses doubly-degenerate eigenvalues if n̂ can be
expressed as a linear combination of two of the eigenvectors of E; otherwise E = µ13. The last
line of the table corresponds to a special case of the CP3 symmetry class in which all three
eigenvalues of E are degenerate. The resulting scalar potential parameter constraints yield an
SO(3)-invariant scalar potential.

Rotation matrices in Symmetry Constraints on
the E-diagonal basis class scalar potential parameters

R(ê, π) Z2 ξ× ê = η× ê = 0;

eigenvalues of E are unconstrained

R(n̂, π), n̂ 6= ê Z2 ξ× n̂ = η× n̂ = 0;

eigenvalues of E are degenerate

R(ê, θ), 0 < θ < π U(1) ξ× ê = η× ê = 0;

eigenvalues of E are doubly-degenerate

R(n̂, θ), n̂ 6= ê, 0 < θ < π, U(1) ξ× n̂ = η × n̂ = 0; E = µ13

−R(ê, π) CP1 ξ · ê = η · ê = 0;

eigenvalues of E are unconstrained

−R(n̂, π), n̂ 6= ê CP1 ξ · n̂ = η · n̂ = 0;

eigenvalues of E are degenerate

−R(n̂, 0) ≡ −13, CP2 ξ = η = 0;

eigenvalues of E are unconstrained

−R(ê, θ), 0 < θ < π CP3 ξ = η = 0;

eigenvalues of E are doubly-degenerate

−R(n̂, θ), n̂ 6= ê, 0 < θ < π CP3 [SO(3)] ξ = η = 0; E = µ13

Having chosen the E-diagonal basis, we now investigate the form of the various

THDM symmetry classes. In each case, the symmetry transformation is of the form:

K(x) → RK(x) , for Higgs family symmetries , (126)

K(x) → R̄K(x′) , for GCP symmetries , (127)

where R is a proper rotation and R̄ is an improper rotation. In Table 3, we sum-

marize the possible forms for R and R̄ and identify the relevant symmetry class.

We also indicate the corresponding constraints on the scalar potential parameters.

In some cases, the imposition of the symmetry will require that the eigenvalues of

E exhibit some degeneracy. If the symmetry imposes no such constraint, we say

that the eigenvalues of E are unconstrained (i.e. nondegenerate for generic choices

of the parameters of the scalar potential).

We now discuss some of the salient points of Table 3. First, the constraints on ξ

and η are precisely the same as the ones given in Table 2. These constraints are de-

termined simply by identifying the eigenvector of R or R̄ (if it exists) corresponding

to the eigenvalue +1. Indeed, when no eigenvalue +1 exists (as in the cases of CP2

and CP3), it follows that ξ = η = 0. Second, in the cases of proper and improper

rotation matrices parametrized in terms of n̂ = ê, where ê is one of the eigenvectors
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of E, no constraints on the eigenvectors of E arise for the Z2, CP1 and CP2 sym-

metry classes (in which case ê can be any one of the three eigenvectors of E). For

the U(1) and CP3 symmetry classes, the eigenvalues of R(n̂, θ) and R̄ ≡ −R(n̂, θ)
are nondegenerate, and the corresponding eigenvectors orthogonal to n̂ are complex

conjugates of each other. Since E commutes with R, the eigenvectors of R are also

eigenvectors of E. Finally, as the eigenvalues of the real symmetric matrix E must

be real, it follows that the eigenvalue of E corresponding to the complex conjugate

pair of eigenvectors is doubly-degenerate.

However, if n̂ 6= êi (for i = 1, 2, 3), then additional constraints on the eigenvalues

of E are imposed. Repeating the arguments of Subsec. 5.1, we see that n̂ must

also be an eigenvector of E. This can only be consistent with n̂ 6= êi if some of

the eigenvalues of E are degenerate, in which case linear combinations of the êi

within the degenerate subspace are also eigenvectors of E. For example, in the case

of the Z2 or the CP1 symmetry classes, if n̂ is a linear combination of two of the

eigenvectors of E, then Eq. (82) yields a two-fold degeneracy in the eigenvalues of E.

Likewise, if n̂ is a linear combination of all three of the originally chosen eigenvectors

of E, then Eq. (82) yields a three-fold degeneracy in the eigenvalues of E, which

means that E is proportional to the identity matrix (i.e. E = µ13). Likewise, in the

case of the U(1) or the CP3 symmetry classes, if n̂ 6= êi (for i = 1, 2, 3), then the

eigenvectors ofR or R̄, denoted by m̂ and m̂
∗ in Subsec. 5.1, are linear combinations

of all three of the eigenvectors of E [cf. Eq. (A.13)]. Consequently, Eq. (97) requires

that all three eigenvalues of E must be degenerate, i.e. E = µ13. Here is a simple

example to illustrate the last point. Suppose we work in a coordinate system in

which the eigenvectors of E are ê1 = (1, 0, 0), ê2 = (0, 1, 0), and ê3 = (0, 0, 1). One

possible choice for the axis of the rotation matrix R(n̂, θ) is n̂ = 1√
2
(ê1 + ê2) =

1√
2
(1, 1, 0). In this case, we use Eq. (A.13) to obtain

m̂ =
1

2

(

1√
2
(1 + i) , − 1√

2
(1 + i) , −1 + i

)

, (128)

where m̂ is the eigenvector of R(n̂, θ) corresponding to the nondegenerate eigen-

value eiθ of R(n̂, θ) [under the assumption that 0 < θ < π]. When we impose the

symmetry constraint, ER(n̂, θ) = RE(n̂, θ), it follows that m̂ must also be an

eigenvector of E. This is only possible if E = µ13, as indicated in the last row

of Table 3. Any other choice of n̂ 6= êi (for i = 1, 2, 3) would lead to the same

conclusion.

To summarize, we have examined possible symmetry transformations in the

E-diagonal basis, in which the vectors ξ and η and the matrix E are given with

respect to the orthonormal basis constructed from the eigenvectors of E, namely

{ê1, ê2, ê3}. Applying a symmetry transformation ±R(n̂, θ), where n̂ 6= êi (for

i = 1, 2, 3), yields the symmetry classes Z2, U(1), CP1, CP2 and CP3, but with

extra degeneracies among the eigenvalues of E. Nevertheless, these extra degen-

eracies do not correspond in general to new enhanced symmetry classes as argued

in Subsec. 5.2. In particular, symmetry transformations defined with respect to a
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specific basis choice can yield constraints on the scalar potential parameters that

are not stable with respect to renormalization group running.

Of course, one can always redefine the scalar fields of the tree-level scalar poten-

tial to achieve a particular choice of basis. However, once higher order corrections

are taken into account, the energy scale of the scalar potential parameters becomes

relevant. For example, the diagonalization required to achieve the E-diagonal basis

depends on the renormalization scale M . In general, the eigenvalues and the direc-

tions of the eigenvectors of E will not remain fixed under a change in the renormal-

ization scale. Thus, parameter constraints defined in some specific basis relative to

some scale M will not automatically be preserved at some other scale M ′ 6= M .

When discussing restrictions on parameters of the tree-level scalar potential due to

possible symmetries, one has to check explicitly that they are preserved by renor-

malization group evolution.

As an example, we consider the GCP transformation

(

ϕ1(x)

ϕ2(x)

)

→
(

e−iω 0

0 eiω

)

(

ϕ∗
1(x

′)

ϕ∗
2(x

′)

)

, (129)

for some fixed ω with 0 < ω < π/2, which corresponds to an improper rotation in

K space given by

R̄ω =





cos 2ω sin 2ω 0

sin 2ω − cos 2ω 0

0 0 1



 . (130)

We require this to be a symmetry. Using Eqs. (A.8), (A.10) and (A.11), it follows

that

R̄ω ≡ −R(n̂, π) , with n̂ = (sinω,− cosω, 0) , (131)

which means that R̄ω generates a CP1 transformation. If we apply this transforma-

tion in the E-diagonal basis, where ê1 = (1, 0, 0), ê2 = (0, 1, 0), and ê3 = (0, 0, 1),

then n̂ = sinωê1 − cosωê2 must also be an eigenvector of E. Hence in the E-

diagonal basis, E = diag(µ1, µ1, µ3) possesses doubly-degenerate eigenvalues.

However, the existence of doubly-degenerate eigenvalues is not stable under

renormalization group evolution. To verify this statement, we shall work in a real

basis (i.e. a basis in which all scalar potential parameters exhibited in Eq. (2) are

real), which is stable under renormalization group running. Using Eq. (12), the

matrix E then takes the form:

E =
1

4





λ4 + λ5 0 λ6 − λ7
0 λ4 − λ5 0

λ6 − λ7 0 1
2 (λ1 + λ2)− λ3



 , (132)

where λ5, λ6 and λ7 are real. In the E-diagonal basis, λ6 = λ7. Applying the

symmetry constraints, Eq. (54), imposed by R̄ω, yields λ5 = 0 and we see that E

possesses a doubly-degenerate eigenvalue, λ4. We first note that the diagonal form
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for E is not preserved under renormalization group running. In particular, in the

real basis,

8π2βλ6−λ7
= (λ6 − λ7)[3(λ1 + λ2) + 2λ4 + 4λ5] + 3(λ6 + λ7)(λ1 − λ2) . (133)

Since λ1 6= λ2 in general, we see that the diagonal form for E is not stable. However,

to check whether the CP1 symmetry is enhanced, one must examine the eigenvalues

of Eq. (132) to see whether the doubly-degenerate eigenvalue is preserved or not

under the renormalization group running. A straightforward computation shows

that Eq. (132) has a doubly-degenerate eigenvalue if

D ≡ λ5(λ1 + λ2 − 2λ3 − 2λ4 + 2λ5)− (λ6 − λ7)
2 = 0 . (134)

The beta function for D is given by

βD = (λ1 + λ2 − 2λ3 − 2λ4 + 2λ5)βλ5

+ λ5βλ1+λ2−2λ3−2λ4+2λ5
− 2(λ6 − λ7)βλ6−λ7

= λ5
(

βλ1
+ βλ2

− 2βλ3
− 2βλ4

)

+
(

λ1 + λ2 − 2λ3 − 2λ4 + 4λ5
)

βλ5

− 2(λ6 − λ7)(βλ6
− βλ7

) . (135)

Inserting the corresponding RGE’s in the real basis19,50,69,70 yields

8π2βD = 4D(λ1 + λ2 + λ3 + 2λ4 − λ5)

+ 3(λ6 + λ7)
2(λ1 + λ2 − 2λ3 − 2λ4 + 2λ5)

+ 3(λ1 − λ2)
[

λ5(λ1 − λ2)− 2λ26 + 2λ27
]

. (136)

Indeed, as long as λ1 = λ2 and λ7 = −λ6 is not satisfied, we see that D = 0 is not

a fixed point of Eq. (136). We recognize λ1 = λ2 and λ7 = −λ6 as the constraints

on the dimensionless parameters of the scalar potential in the exceptional region

of the parameter space (ERPS) identified in Ref. 53. When we impose these ERPS

conditions, the CP1 symmetry is promoted to a CP3 symmetryr (modulo possible

soft-symmetry breaking squared-mass terms). Outside of the ERPS, the double-

degeneracy of the eigenvalue of E is not a renormalization group invariant, and the

CP1 symmetry is not enhanced.

In Table 3, when n̂ 6= êi (for i = 1, 2, 3), the enhanced degeneracies in the

eigenvalues of E are not stable with respect to renormalization group running in

the cases of the Z2, U(1) and CP1 symmetry classes. However, in the case of the

rIn the E-diagonal basis, the ERPS conditions on the dimensionless couplings of the scalar poten-
tial corresponds to λ1 = λ2 and λ5 = λ6 = λ7 = 0. One is free to make a change of basis that
simultaneously interchanges the rows and columns of E while keeping E diagonal. In the new
basis, λ1 = λ2 and λ6 = λ7 = 0 are maintained, while λ5 = 0 is transformed to λ5 = λ1−λ3−λ4.
The latter reproduces the conditions for a CP3-symmetric scalar potential given in Table 1 of
Ref. 53.
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CP3 symmetry class, the constraints on the scalar potential parameters coincide

with Eq. (118), which are the same constraints imposed by the SO(3)-invariant

scalar potential. In this case, the resulting parameter constraints are invariant with

respect to renormalization group running. That is, the CP3 symmetry class with an

enhanced degeneracy of the eigenvalues of E is promoted to the SO(3) symmetry

class. In particular, it is possible to generate an SO(3) Higgs-family symmetry

by applying any particular CP3 transformation with n̂ 6= êi (for i = 1, 2, 3) in

the E-diagonal basis. This seems to be in conflict with the results of Subsec. 5.1,

where it was shown that two noncollinear rotation matrices are necessary in order

to generate the SO(3) symmetry class in a generic basis. However, given that an

independent rotation matrix RD is required [cf. Eq. (125)] in order to define the

E-diagonal basis, it is perhaps not surprising that the SO(3) symmetry class can be

generated by applying a single (improper) rotation matrix in the E-diagonal basis.

The classification of the possible THDM symmetries is best done in a generic

basis, where the structure of the various symmetry classes is transparent, and the

resulting constraints on the scalar potential parameters can be obtained that are

covariant with respect to basis transformations. Although it is possible to perform

an analysis of symmetry classes in a specific basis (the E-diagonal basis is a conve-

nient choice to consider for this purpose), the resulting classification is complicated

by enhanced symmetry constraints that are typically not renormalization group

invariant. Such enhanced symmetry points in the scalar potential parameter space

are accidental in nature and are not indicative of any new symmetry structures.

6. Conclusions

It is known that there are only six classes of symmetry-constrained potentials in

the THDM.46 Specific implementations were later explored in Ref. 53, using Higgs-

family and generalized CP (GCP) symmetries of the THDM potential. In this

paper, we have presented a review of the known facts concerning symmetry trans-

formations in the scalar sector of the THDM. We have performed an analysis of

the symmetry classes, which applies to completely general scalar potentials. That

is, our analysis applies to scalar potentials that are stable in the strong, weak, or

marginal sense, or even unstable. Furthermore, we have pursued the geometric K

space interpretation of Higgs-family and GCP transformations ;40,42 the former are

proper SO(3) rotations and the latter are improper rotations of the field bilinears

in K space. We have constructed the relevant rotations and shown explicitly their

effects on the Higgs scalar potential. This combines some known results with new

ones into a unified scheme and sets the framework for our analysis.

The following new results have thus been obtained. We have clarified the rela-

tion of the classifications of GCP transformations of Refs. 47 and 53. We have given

a simple geometric proof relating SO(3) rotations to two reflections through planes

and improper rotations to one or three reflections through planes in K space. We

have shown that any Higgs-family transformation can be considered as a product
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of two CP1 transformations and any GCP transformation is either a CP1 transfor-

mation or a product of three CP1 transformations. Based on this result we have

provided a geometric interpretation of the surprising result presented in Ref. 53

that all Higgs-family and GCP symmetries in the THDM can be generated from

suitable CP1 symmetries.
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Appendix A. Properties of 3 × 3 Proper Rotation Matrices

In this appendix, we review the properties of 3× 3 proper rotation matrices. Most

of this material is standard and can be found in Refs. 71–73.

The most general three-dimensional proper rotation is represented by an SO(3)

matrix, R(n̂, θ), whose form is uniquely specified by an axis of rotation, n̂, and a

rotation angle θ. Conventionally, a positive rotation angle corresponds to a counter-

clockwise rotation. The direction of the axis is determined by the right hand rule.

Simple geometrical considerations imply that

R(n̂, θ + 2πk) = R(n̂, θ) , k = 0,±1 ± 2, . . . , (A.1)

[R(n̂, θ)]−1 = R(n̂,−θ) = R(−n̂, θ) . (A.2)

Combining these two results, it follows that

R(n̂, 2π − θ) = R(−n̂, θ) , (A.3)

which implies that any three-dimensional rotation can be described by a counter-

clockwise rotation by θ about an arbitrary axis n̂, where 0 ≤ θ ≤ π.s However, for

θ = π Eq. (A.3) yields

R(n̂, π) = R(−n̂, π) , (A.4)

sIn the convention adopted here, the overall sign of n̂ is meaningful for θ 6= 0modπ.
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which means that for the special case of θ = π, R(n̂, π) and R(−n̂, π) represent

the same rotation. Finally, if θ = 0, then R(n̂, 0) = 13 is the identity operator,

independently of the direction of n̂.

An explicit form for a general three-dimensional proper rotation is given by

Rij(n̂, θ) = δij cos θ + ninj(1− cos θ)− εijknk sin θ . (A.5)

This result simplifies for the case of θ = π,

Rij(n̂, π) = 2ninj − δij . (A.6)

It is noteworthy that R(n̂, θ) is a symmetric matrix if and only if θ = 0 (modπ).

Given the SO(3) matrix R(n̂, θ), one can determine the corresponding angle of

rotation θ and axis of rotation n̂. By taking the trace of Eq. (A.5), we immediately

obtain

TrR(n̂, θ) = 1 + 2 cos θ = 1 + eiθ + e−iθ . (A.7)

It immediately follows that

cos θ =
1

2
(TrR− 1) , (A.8)

which determines θ uniquely in the convention that 0 ≤ θ ≤ π. The axis of rotation

is given by

n̂ =
1

√

(3− TrR)(1 + TrR)
(R32 −R23, R13 −R31, R21 −R12) , for θ 6= 0 modπ .

(A.9)

For θ = 0 (mod π), R(n̂, θ) is symmetric and cannot be determined from Eq. (A.9).

In this case, Eq. (A.8) determines whether cos θ = +1 or cos θ = −1. If cos θ = +1,

then Rij = δij and the axis n̂ is undefined. If cos θ = −1, then Eq. (A.6) determines

the direction of n̂ up to an overall sign. That is,

n̂ is undetermined if θ = 0 ,

n̂ =

(

ε1

√

1

2
(1 +R11) , ε2

√

1

2
(1 +R22) , ε3

√

1

2
(1 +R33)

)

, if θ = π ,

(A.10)

where the individual signs εi = ±1 are determined up to an overall sign viat

εiεj =
Rij

√

(1 +Rii)(1 +Rjj)
, for fixed i 6= j , Rii 6= −1 , Rjj 6= −1 . (A.11)

The ambiguity of the overall sign of n̂ sign is not significant, since R(n̂, π) and

R(−n̂, π) represent the same rotation as noted above [cf. Eq. (A.4)].

tIf Rii = −1, where i is a fixed index, then ni = 0, in which case the corresponding εi is not
well-defined.
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Since the axis of rotation n̂ is invariant under all rotations R(n̂, θ), it follows

that n̂ is an eigenvector of R(n̂, θ) with corresponding eigenvalue +1,

R(n̂, θ)n̂ = n̂ . (A.12)

Moreover, since R(n̂, θ) is also a unitary matrix, we know that its eigenvalues

are pure phases. Combining Eq. (A.7) with detR(n̂, θ) = 1, it follows that the

individual eigenvalues of R(n̂, θ) must be 1, eiθ and e−iθ. For θ 6= 0 (mod π), these

three eigenvalues are nondegenerate. In this case, it is convenient to introduce

normalized eigenvectors m̂ and m̂
∗, corresponding to the eigenvalues eiθ and e−iθ,

respectively. Note that whereas n̂ is a real vector corresponding to the axis of

rotation, m̂ and its complex conjugate are complex vectors. The vectors n̂, m̂ and

m̂
∗ are mutually orthonormal with respect to the inner product of a complex vector

space (e.g. n̂ · m̂ = m̂ · m̂ = 0 and m̂ · m̂∗ = 1). Explicitly, we have

m̂ =
1√
2

(

n3 +
in2(n1 − in2)

1 + n3
, −in3 −

in1(n1 − in2)

1 + n3
, −(n1 − in2)

)

, (A.13)

for n̂ 6= −ẑ, up to an overall phase factor that can be fixed by convention. This

form is not very useful as n3 → −1. However, we can use Eq. (A.2) to obtain (up

to an overall phase)

m̂ =
1√
2

(

− n3 −
in2(n1 + in2)

1− n3
, −in3 +

in1(n1 + in2)

1− n3
, n1 + in2

)

, (A.14)

for n̂ 6= ẑ. Clearly, the eigenvectors n̂, m̂ and m̂
∗ are independent of the value

of the rotation angle θ. In numerical work, it is convenient to use Eq. (A.13) for

n3 ≥ 0 and Eq. (A.14) for n3 ≤ 0. One can check that for n̂ 6= ±ẑ, Eqs. (A.13) and

(A.14) are identical up to an irrelevant multiplicative overall phase.

In the case of θ = π, R(n̂, π) possesses one nondegenerate eigenvalue +1 and

two degenerate eigenvalues −1. The former is associated with the axis of rotation

[cf. Eq. (A.12)]. The eigenvectors corresponding to the degenerate eigenvalues, de-

noted below by m̂1 and m̂2 ≡ n̂× m̂1, can be chosen to be real and orthonormal.

A convenient choice isu

m̂1 =

(

n3 +
n2
2

1 + n3
,
−n1n2

1 + n3
, −n1

)

,

m̂2 =

(−n1n2

1 + n3
, n3 +

n2
1

1 + n3
, −n2

)

.

(A.15)

However, any other orthonormal pair of vectors constructed from linear combi-

nations of m̂1 and m̂2 would be equally suitable. Finally, in the case of θ = 0,

R(n̂, π) = 13 possesses three degenerate eigenvalues +1.

Finally, we prove an important result that is needed in the text. Let R̃ ∈ SO(3)

such that

n̂
′ = R̃n̂ . (A.16)

uIn this case, any problem involving n3 = −1 can be avoided simply by employing Eq. (A.4).

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
1.

26
:7

69
-8

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 H

ow
ar

d 
H

ab
er

 o
n 

08
/2

4/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 22, 2011 15:0 WSPC/139-IJMPA S0217751X11051494

806 P. M. Ferreira et al.

Then

R(n̂′, θ) = R̃R(n̂, θ)R̃T . (A.17)

To prove Eq. (A.17), we first note that

TrR(n̂′, θ) = Tr
[

R̃R(n̂, θ)R̃T
]

= TrR(n̂, θ) , (A.18)

using the cyclicity of the trace and R̃R̃T = 13. It follows from Eq. (A.7) that

the angle of rotation of R(n̂, θ) and R̃R(n̂, θ)R̃T must be the same. Next, we use

Eq. (A.12) to determine the axis of rotation of R̃R(n̂, θ)R̃T,

R̃R(n̂, θ)R̃T(R̃n̂) = R̃R(n̂, θ)n̂ = R̃n̂ , (A.19)

which implies that R̃n̂ is an eigenvector of R̃R(n̂, θ)R̃T with eigenvalue +1. If θ 6= 0,

then the eigenvalue +1 is nondegenerate, in which case R̃n̂ is the axis of rotation

of R(n̂′, θ), and Eqs. (A.16) and (A.17) are confirmed. If θ = 0, then Eq. (A.17) is

trivially satisfied.

Specializing to the case of n̂ = ẑ, it then follows that

R(n̂, θ) = R̃R(ẑ, θ)R̃T , where n̂ ≡ R̃ẑ . (A.20)
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