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Abstract: The seesaw-extended MSSM provides a framework in which the observed light

neutrino masses and mixing angles can be generated in the context of a natural theory

for the TeV-scale. Sneutrino-mixing phenomena provide valuable tools for connecting the

physics of neutrinos and supersymmetry. We examine the theoretical structure of the

seesaw-extended MSSM, retaining the full complexity of three generations of neutrinos

and sneutrinos. In this general framework, new flavor-changing and CP-violating sneutrino

processes are allowed, and are parameterized in terms of two 3×3 matrices that respectively

preserve and violate lepton number. The elements of these matrices can be bounded by

analyzing the rate for rare flavor-changing decays of charged leptons and the one-loop

contribution to neutrino masses. In the former case, new contributions arise in the seesaw

extended model which are not present in the ordinary MSSM. In the latter case, sneutrino-

antisneutrino mixing generates the leading correction at one-loop to neutrino masses, and

could provide the origin of the observed texture of the light neutrino mass matrix. Finally,

we derive general formulae for sneutrino-antisneutrino oscillations and sneutrino flavor-

oscillations. Unfortunately, neither oscillation phenomena is likely to be observable at

future colliders.
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1. Introduction

The Standard Model of particle physics provides a remarkable description of the funda-

mental interactions of elementary particles at energy scales of order 100 GeV and below.

Precision tests at LEP, the Tevatron and other lower energy colliders have detected no

significant deviations from the predictions of observed electroweak phenomena [1]. Al-

though the scalar sector responsible for electroweak symmetry breaking has not yet been

discovered, the precision electroweak data is consistent with the Standard Model including

a scalar Higgs boson of mass 114 GeV < mh < 182 GeV at 95% CL. Despite its successes,

the Standard Model is widely acknowledged to be only a low-energy effective theory, to

be superseded (most likely at the TeV energy scale) by a more fundamental theory that

can explain the puzzling large hierarchy between the energy scale that governs electroweak

symmetry-breaking and the Planck scale [2].

Numerous proposals for a more fundamental theory that supersedes the Standard

Model have been advanced over the last thirty years [3]. Low-energy supersymmetric

theories (in which supersymmetry breaking effects of order the TeV scale are ultimately re-

sponsible for electroweak symmetry breaking) are perhaps the most well-studied framework

for TeV-scale physics beyond the Standard Model [4 – 6]. The simplest supersymmetric ex-

tension consists of the particle content of the two-Higgs-doublet extension of the Standard

Model and its supersymmetric partners. In addition to the supersymmetric interactions of

the particle supermultiplets, one adds the most general set of soft-supersymmetry-breaking

terms, which parameterizes the unknown dynamics responsible for supersymmetry break-

ing [7, 8]. The resulting minimal supersymmetric Standard Model (MSSM) yields a rich

phenomenology of new superpartners and interactions, which if present in nature is poised

for discovery at the Tevatron and/or Large Hadron Collider (LHC).

Although no significant deviations from Standard Model predictions have been ob-

served at colliders, there is of course one definitive set of observations that are in conflict

with (the minimal version of) the Standard Model — the observation of neutrino mixing

and its implications for neutrino masses [9]. Since neutrinos are strictly massless in the

Standard Model, the latter must be modified in order to incorporate the observed phe-

nomena of neutrino oscillations. The simplest approach is to introduce a gauge invariant

dimension-five operator [10]1

L5 = −fIK

Λ
(ǫijL

I
i Hj)(ǫkℓL

K
k Hℓ) + H.c. , (1.1)

where Hj is the complex Higgs doublet and LI
i ≡ (νI

L , ℓI
L) is the SU(2)-doublet of two-

component lepton fields,2 where I and K label the three generations.

After electroweak symmetry breaking, the neutral component of the doublet Higgs

field acquires a vacuum expectation value, and a Majorana mass matrix for the neutri-

nos is generated. The dimension-five term [eq. (1.1)] is generated by new physics beyond

the Standard Model at the scale Λ. Current bounds on light neutrino masses suggest

1Following refs. [7] and [6], we employ a convention where ǫ12 = −1 = −ǫ21.
2To translate the two-component spinor product LI

i LK
k into four-component spinor notation, see A.

– 2 –
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that v2/Λ <∼ 1 eV [11, 12], or Λ >∼ 1013 GeV. A possible realization of eq. (1.1) is based

on the seesaw mechanism, which was independently discovered by a number of different

authors [13, 14]. In the seesaw extension of the Standard Model [14], one simply adds

SU(2)×U(1) gauge singlet neutrino fields νcI
L and writes down the most general renormal-

izable couplings of νcI
L to the Standard Model fields:

Lseesaw = −ǫijY
IJ
ν HiL

I
jν

c J
L − 1

2
M IJνc I

L νc J
L + H.c. (1.2)

If ‖M‖ ≫ v, then at energy scales below M a dimension-five operator of the form given by

eq. (1.1) is generated.

The MSSM is a minimal extension of the Standard Model. Nevertheless, there is

a potential source for lepton-number violation and hence neutrino masses. Unlike the

Standard Model, it is possible to construct renormalizable operators that violate lepton

number and baryon number [15]. In their most generic forms, such operators would lead

to extremely fast proton decay in conflict with the observations. The traditional solution

is to introduce a discrete symmetry called R parity [16] that distinguishes Standard Model

particles and their superpartners. In the R-parity-conserving (RPC) MSSM, neutrinos are

massless just as in the Standard Model. Thus, one way to incorporate massive neutrinos

in the RPC-MSSM is to formulate a minimal supersymmetric extension of the seesaw-

extended Standard Model [17 – 21]. An alternative approach is to choose a different discrete

symmetry that preserves baryon number but violates lepton number [22]. In such an R-

parity-violating (RPV) MSSM, a Z3 baryon triality guarantees that baryon number is

conserved by the renormalizable operators of the model (hence preventing fast proton

decay). This approach has the advantage that no new fields beyond those of the MSSM

need to be introduced. However, certain RPV (lepton-number-violating) couplings must

be taken to be quite small in order to explain the scale of neutrino masses [23 – 25].

In this paper, we shall consider the minimal supersymmetric extension of the seesaw-

extended Standard Model [17 – 21]. In this model, neutrino masses and mixing are governed

by the same seesaw mechanism originally introduced into the (non-supersymmetric) Stan-

dard Model. In the supersymmetry-extended model, new lepton-violating phenomena enter

due to additional effective lepton-violating operators generated by soft-supersymmetry-

breaking. Such effects govern the behavior of the neutrino superpartners — the sneutrinos.

Thus, the supersymmetric seesaw model provides new sources for lepton-number-violating

phenomena. For example, sneutrinos and antisneutrinos can mix due to effective ∆L = 2

operators [18, 26]. Although such mixing effects are expected to be quite small, there are

some scenarios in which sneutrino mixing phenomena could be observed in future collider

experiments [18, 27]. Sneutrino mixing also contributes a significant one-loop correction

to neutrino masses and could be partially responsible for the observed pattern of neutrino

masses and mixing [18, 25, 28]. The supersymmetric seesaw can also introduce lepton-

flavor-violation and CP-violating effects due to the non-trivial flavor structure of the see-

saw interactions [19, 20, 29]. Such phenomena are exhibited in the flavor oscillations of the

charged sleptons [30] and the sneutrinos, respectively. Moreover, new one-loop processes

contribute to ℓ I → ℓ Jγ and electric dipole moments, and provide interesting constraints

– 3 –
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Fermionic

Superfield hypercharge Boson Fields Partners

L̂I −1 L̃I
j ≡ (ν̃I

L , ℓ̃ I
L) (νI

L , ℓ I
L)

R̂I +2 R̃I ≡ (ℓ̃ I
R)∗ ℓ cI

L

N̂ I 0 Ñ I ≡ (ν̃I
R)∗ νcI

L

Ĥ1 −1 H1
j ≡ (H1

1 , H1
2 ) (H̃1

1 , H̃1
2 )

Ĥ2 +1 H2
j ≡ (H2

1 , H2
2 ) (H̃2

1 , H̃2
2 )

Table 1: Fields of the supersymmetric seesaw model.

on the model parameters.

In section 2, we introduce the Lagrangian for the three-generation supersymmetric

seesaw model, focusing on the interaction of the lepton and Higgs superfields. Our nota-

tion for fermion fields are described in A. In section 3, we derive the mass matrices for

neutrinos and squared-mass matrices for the sneutrinos. In the limit of M ≫ v, one can

use perturbation theory to obtain accurate analytical expressions for the diagonalization of

the effective mass and squared-mass matrices for the light and heavy neutral fermion and

scalar states, respectively. The origin of a non-decoupling contribution to sneutrino masses

noted in section 3 is provided in B. In section 4, we examine the constraints on the lepton-

number conserving parameters of the model due to the observed g − 2 of the muon, the

(unobserved) electric dipole moment of the electron, and the unobserved radiative decays

of charged leptons. In section 5, constraints on the lepton-number violating parameters of

the model are obtained based on observed neutrino mass and mixing data. The general

theory and phenomenology of sneutrino oscillations and mixing are addressed in section 6.

Our conclusions are given in section 7. Although the neutrino are most easily treated as

two-component spinor fields, it is convenient to present the Feynman rules of the model

using four-component spinor notation. In A, we demonstrate how to translate between

two-component and four-component spinor notation in the interaction Lagrangian. The

relevant Feynman rules needed for the computations of this paper are listed in C. Fi-

nally, some order of magnitude estimates for the contributions to one-loop neutrino masses

(relevant for the discussion of section 5.1) are provided in D.

2. Lagrangian and the scalar potential

In this section, we examine the terms of the Lagrangian that contribute to the masses and

the non-gauge interactions of the neutrinos and sneutrinos. That is, we focus on terms

that involve the charged leptons, neutrinos, charged sleptons, sneutrinos and the Higgs

fields. The relevant superfields (denoted with hats above the corresponding field symbol)

are specified in table 1.

The electric charge (in units of e) is given by Q = T3+Y/2, where Y is the hypercharge

specified above. The index j labels components of the SU(2) doublets with T3 = ±1/2 for

j = 1, 2 respectively (and T3 = 0 for the SU(2) singlets). The fermionic partners can

be viewed either as two-component fermion fields or the left-handed projections of four-

– 4 –
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component fermion fields, as explained in A. The index I = 1, 2, 3 labels three possible

generations of charged lepton and neutrino superfields. The notation for the scalar field

components of the hypercharge-zero superfield is motivated by the fact that in the lepton-

number-conserving limit, R̂ and N̂ possess the same lepton number (which is opposite in

sign to that of L̂). Consequently, ν̃L and ν̃R possess identical lepton numbers [cf. eq. (6.3)].

The most general (renormalizable) form of the superpotential involving the lepton and

Higgs superfields in the R-parity-conserving extended MSSM is given by:

W = ǫij(µĤ1
i Ĥ2

j − Y IJ
ℓ Ĥ1

i L̂I
j R̂

J + Y IJ
ν Ĥ2

i L̂I
j N̂

J) +
1

2
M IJN̂ IN̂J , (2.1)

where Yℓ and Yν are complex 3 × 3 matrices, M is a complex symmetric 3 × 3 matrix and

µ is a complex parameter.3 In addition, there are soft-supersymmetry-breaking terms that

involve the scalar field components of the above superfields. Before writing these terms

explicitly, it is convenient to perform field redefinitions of the (charged and neutral) lepton

superfields:

L̂I → V IJ
L L̂J , R̂I → V IJ

R R̂J , N̂ I → V IJ
N N̂J , (2.2)

where VL, VR and VN are 3× 3 unitary matrices. Note that the kinetic energy terms (and

the couplings of the lepton superfields to the gauge fields) are invariant under the above

unitary transformations. However, the coefficients of the terms of the superpotential are

modified:

Yℓ → V T
L YℓVR , Yν → V T

L YνVN , M → V T
N MVN . (2.3)

We shall choose VL, VR and VN such that:

V T
L YℓVR = diag(Ye , Yµ , Yτ ) , (2.4)

V T
N MVN = diag(M1 , M2 , M3) , (2.5)

where the elements of the two diagonal matrices above are real and non-negative. It is

always possible to find unitary matrices VL and VR such that eq. (2.4) is satisfied — this

is the singular value decomposition of an arbitrary complex matrix [31]. Likewise, it is

always possible to find a unitary matrix VN such that eq. (2.5) holds — this is the Takagi-

diagonalization of an arbitrary complex symmetric matrix [31 – 33]. Thus, the redefinition

of the lepton superfields [eq. (2.2)] implies that one can assume from the beginning without

loss of generality that Yℓ and M are real non-negative diagonal matrices.4 Note that the

(transformed) Yν is in general an arbitrary complex 3 × 3 matrix.

We next introduce the most general set of R-parity-conserving soft-supersymmetry

(SUSY)-breaking terms (following the usual rules of [34]) involving the slepton, sneutrino

and Higgs fields:

VSOFT = m2
H1

H1∗
i H1

i + m2
H2

H2∗
i H2

i + (m2
L)IJ L̃I∗

i L̃J
i + (m2

R)IJ R̃I∗R̃J + (m2
N )IJÑ I∗ÑJ

−
[
(m2

B)IJÑ IÑJ +ǫij

(
m2

12H
1
i H2

j +AIJ
ℓ H1

i L̃I
j R̃

J +AIJ
ν H2

i L̃I
j Ñ

J
)

+ H.c.
]
, (2.6)

3With the convention for ǫij as specified in footnote 1, it is convenient to insert an extra minus sign in

front of Yℓ in eq. (2.1). This ensures that in a basis where Yℓ is a real positive diagonal matrix, the charged

lepton masses are also positive. Note that this convention differs from the one adopted in [7].
4After electroweak symmetry breaking, eq. (2.4) corresponds to working in a basis in which the charged

lepton mass matrices are (real) non-negative and diagonal.

– 5 –
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where m2
L, m2

R and m2
N are hermitian matrices, m2

B is a complex symmetric matrix and

Aℓ and Aν are complex matrices. In general, these 3 × 3 matrices do not take a simplified

form in the basis defined by eqs. (2.4) and (2.5). The total scalar potential is made up

of three contributions: the F -terms, which are derived from eq. (2.1), the D-terms, which

arise from the gauge interactions, and and the soft SUSY-breaking terms, which have been

specified in eq. (2.6). The total scalar potential is then given by:

V = VF + VD + VSOFT , where VF ≡
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

(2.7)

and the sum over i is taken over all scalar components of the corresponding superfields.

The Yukawa couplings of the leptons and the Higgs fields and the corresponding fermion

mass terms are derived from eq. (2.1) using the well-known formula [6, 7]:

−Lmass − LYuk =
1

2

∑

ij

[
∂2W [φ]

∂φi∂φj
ψiψj + H.c.

]
, (2.8)

where the ψi are the two-component fermion field superpartners of the corresponding φi,

and W [φ] is the superpotential function with superfields replaced by their scalar com-

ponents. After electroweak symmetry breaking, the neutral Higgs fields acquire vacuum

expectation values,5 〈
H1

1

〉
=

v1√
2

,
〈
H2

2

〉
=

v2√
2

, (2.9)

where v2 ≡ v2
1 + v2

2 = (246 GeV)2 and tan β ≡ v2/v1. Inserting the Higgs field vacuum

expectation values into eqs. (2.7) and (2.8), one can isolate the terms of the Lagrangian

that are quadratic in the scalar fields and fermion fields, respectively. These terms yield

squared-mass matrices for the charged sleptons and sneutrinos and mass matrices for the

charged leptons and neutrinos. In the basis defined by eq. (2.4), the charged lepton mass

matrix is diagonal, with diagonal elements mℓI = v1Y
I
ℓ /

√
2.

In general, the diagonalization of these mass matrices cannot be performed analyt-

ically, and one must resort to numerical techniques. However, the large hierarchy be-

tween neutrino masses and charged lepton masses strongly suggests that the parameters

MI ≫ v, in which case an analytic perturbative diagonalization permits one to isolate the

light (s)neutrino sector and integrate out the superheavy (s)neutrino sector, whose particle

masses are of order the MI . This procedure was carried out for the CP-conserving one-

generation model in [18]. In section 3, we shall generalize this analysis to the most general

(potentially CP-violating) three-generation model.

First, we clarify the expected magnitudes of the parameters of the model:

1. We assume that the Yukawa couplings Y IJ
ν satisfy:6

‖Yν‖ <∼ O(1) . (2.10)

5We define the overall phases of the neutral Higgs fields, H1
1 and H2

2 , such that the corresponding vacuum

expectation values v1,2/
√

2 are real and positive.
6The Euclidean matrix norm is defined by ‖A‖ ≡

ˆ
tr(A†A)

˜
1/2 =

hP
i,j |aij |2

i
1/2

, for a matrix A whose

matrix elements are given by aij .

– 6 –
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2. The Majorana mass M is much heavier than the electroweak scale (seesaw mecha-

nism [13])

‖M‖ ≫ v . (2.11)

3. Although µ is a supersymmetric parameter, we require it to be of a similar order to

the low-energy supersymmetry-breaking scale, MSUSY [35]:

µ ∼ MSUSY . (2.12)

4. The non-singlet soft SUSY-breaking squared-masses are of a similar order to the

supersymmetry-breaking scale:

‖m2
L‖ ∼ ‖m2

R‖ ∼ M2
SUSY . (2.13)

5. The parameters m2
B and Aν are unconnected to electroweak symmetry breaking at

tree-level. However, these parameters generate a mass-splitting between sneutrinos

and antisneutrinos. The latter contributes via loop corrections to neutrino mass

splittings, which are experimentally constrained. One expects that [36]:

‖Aν‖ <∼ MSUSY , ‖m2
B‖ <∼ MSUSY‖M‖ , (2.14)

although these parameters could conceivably be larger by as much as a factor of

103 [18]. Large Aν also leads also to large corrections to charged slepton masses.

Thus, to avoid unnatural fine-tuning in order to prevent charged slepton masses from

being larger than about 1TeV, one again expects that Aν cannot be much larger

than the supersymmetry-breaking scale. The impact of the one-loop effects of m2
B on

charged lepton radiative decays and the Higgs mass parameters also yield constraints

and imply that the bound on m2
B given by eq. (2.14) cannot be significantly relaxed.

6. The singlet soft SUSY-breaking parameter m2
N is also unconnected to electroweak

symmetry breaking at tree-level. However, the one-loop corrections to the Higgs

mass parameters depend quadratically on m2
N , so to avoid unnatural fine-tuning of

the electroweak symmetry breaking scale, one expects that m2
N cannot be much larger

than (1 TeV)2. This expectation is confirmed in B, in which case

‖m2
N‖ <∼ M2

SUSY . (2.15)

If significant fine-tuning of the electroweak scale is allowed (as in the split-super-

symmetry [37] approach), then the constraints on m2
N are significantly relaxed. The

one-loop effects of m2
N on physical observables are rather mild, even as ‖m2

N‖ ap-

proaches ‖M2‖. For example, in [38], the one-loop corrections to Higgs masses in the

seesaw-extended MSSM are found to be large and negative if ‖m2
L‖ , ‖m2

N‖ ∼ ‖M2‖.
However, these corrections become negligible once these soft-SUSY-breaking masses

are taken somewhat below the seesaw scale.

– 7 –
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Thus, we shall present results in this paper that allow for the possibility that:

‖m2
N‖ ∼ ‖M2‖ . (2.16)

If eq. (2.16) holds, then remnants of the heavy neutrino/sneutrino sector can survive

in the effective theory of the light sneutrinos. The origin of this non-decoupling effect

is explored in B.

Although naturalness demands that the scale of low-energy supersymmetry-breaking,

MSUSY, should be (roughly) of O(v), the absence of observed supersymmetric phenomena

(and a light CP-even Higgs boson) suggest that MSUSY may be somewhat larger, of order

1 TeV. Nevertheless, in eqs. (2.12)–(2.15), one could substitute MSUSY with v; the results

of this paper are consistent with either choice.

3. The (s)neutrino (squared-)mass matrices

In this section, we examine in detail the neutrino mass matrix and the sneutrino squared-

mass matrix. In a three-generation model, the neutrino mass matrix is a 6 × 6 complex

symmetric matrix, which can be written in block (partitioned) form in terms of 3 × 3

matrix blocks. The sneutrino squared-mass matrix is a 12 × 12 hermitian matrix, which

can be written in block (partitioned) form in terms of 6 × 6 matrix blocks. Each of these

6 × 6 matrices can be further partitioned in terms of 3 × 3 matrix blocks. In order to

accommodate the proliferation of matrices of dimension 3, 6 and 12, we adopt a notational

device that allows the reader to instantly discern the dimension of a given matrix. Thus,

we use a boldface capital letter (M ) to denote a 12 × 12 matrix, a calligraphic letter (M)

to denote a 6 × 6 matrix, and a Latin letter (M or m) to denote a 3 × 3 matrix. Latin

letters will also be used to denote (scalar) mass parameters, with appropriate identifying

subscript or superscript labels to distinguish these from the 3 × 3 matrices introduced in

sections 2 and 3. Following the conventions of section 2, we shall employ subscript and

superscript upper case Latin indices I, J , K as generation labels that run from 1 to 3.

Lower case Latin indices i, j, k are employed for other purposes, either as SU(2) gauge

indices or as labels representing the six light sneutrino mass eigenstates. Other subscripts

appearing in this section will be used to distinguish among different matrix quantities.

3.1 The neutrino mass matrices

Working in a basis where M is a diagonal matrix [cf. eq. (2.5)], we begin by analyzing the

neutrino mass matrix. The resulting terms quadratic in the neutrino fields are given in

terms of two-component fermion fields7 by:

−Lmν =
1

2

(
v2

√
2 Y IJ

ν νI
LνcJ

L + M IJνcI
L νcJ

L + H.c.
)

=
1

2
(νT

L νcT
L )Mν

(
νL

νc
L

)
+ H.c.

(3.1)

7In A, we show how to rewrite eq. (3.1) in terms of four-component neutrino fields. However, the

two-component formalism is more economical, so we adopt this notation in what follows.

– 8 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
9

The neutrino mass matrix Mν is a 6 × 6 complex symmetric matrix given in block form

by:

Mν ≡
(

0 mD

mT
D M

)
, (3.2)

where the 3 × 3 complex matrix

mD ≡ v2Yν/
√

2 (3.3)

generalizes the neutrino Dirac mass term of the one-generation model [cf. eq. (A.5)].

Provided that ‖M‖ ≫ ‖mD‖ [as suggested by eq. (2.11)], Mν is of a seesaw type [13].

The neutrino mass matrix can be Takagi block-diagonalized [21, 25, 33] as follows. Intro-

duce the 6 × 6 (approximate) unitary matrix:

U =

( 1− 1
2m∗

DM−2mT
D m∗

DM−1

−M−1mT
D 1− 1

2M−1mT
Dm∗

DM−1

)
, (3.4)

where 1 is the 3 × 3 identity matrix.

One can check that:

U†U =

(1+ O(m4
DM−4) 0

0 1+ O(m4
DM−4)

)
. (3.5)

We define transformed (light and heavy) neutrino states νℓ and νc
h by:

(
νL

νc
L

)
= U

(
νℓ

νc
h

)
. (3.6)

By straightforward matrix multiplication, one can verify that

UTMν U = (3.7)(
−mDM−1mT

D+O(m4
DM−3) O(m3

DM−2)

O(m3
DM−2) M+ 1

2(M−1m†
DmD+mT

Dm∗
DM−1)+O(m4

DM−3)

)
.

At this stage, we can identify an effective (complex symmetric) mass matrix Mνℓ
for

the three light (left-handed) neutrinos with respect to the {νℓ}-basis:

Mνℓ
≃ −mDM−1mT

D . (3.8)

To identify the physical light neutrino states, we must perform a Takagi-diagonalization

of Mνℓ
. This is accomplished by introducing the unitary MNS matrix [39], UMNS, via

νI
ℓ = U IJ

MNS (νJ
ℓ )phys , (3.9)

where the (νJ
ℓ )phys [J = 1, 2, 3] denote the physical light neutrino fields. UMNS is determined

by the Takagi-diagonalization of Mνℓ
:

UT
MNSMνℓ

UMNS = diag(mνℓ1
, mνℓ2

, mνℓ3
) , (3.10)
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where the mνℓJ
are the (real non-negative) masses of the light neutrino mass eigenstates.

For completeness, we examine the effective mass matrix of the heavy neutrino states.

Although M is diagonal by assumption, the lower right-handed block in eq. (3.7) is no

longer diagonal due to the second-order perturbative correction. However, we do not

have to perform another Takagi-diagonalization, since the off-diagonal elements are of

O(m2
DM−1), and would only affect the physical (diagonal) masses at order O(m4

DM−3),

which we neglect. The corresponding mixing angles would be of O(m2
DM−2), which we

also neglect here. Thus, we identify the physical heavy neutrino mass eigenstates to leading

order by:

(νc I
h )phys ≃ νcI

h , (3.11)

with masses

mνhI
= MI

(
1 +

1

M2
I

∑

J

|mJI
D
|2

)
, (3.12)

where the MI are the diagonal elements of M in our chosen basis.

3.2 The sneutrino squared-mass matrices

We now turn to the sneutrino sector. It is convenient to separate out various pieces that

comprise the F -term contributions to the scalar potential [eq. (2.7)]:

VF ≡ Vν + Vµ + Vother , (3.13)

where Vν ≡ ∑
i=eLI

1 , eNI |∂W/∂φi|2 and Vµ ≡ |∂W/∂H2
2 |2 ultimately contribute to the sneu-

trino squared-mass matrix, whereas Vother (which involves derivatives of the superpotential

with respect to the other scalar fields) makes no contributions to tree-level sneutrino masses.

As a pedagogical exercise, we first analyze the supersymmetric limit. Although super-

symmetry-breaking is required in the MSSM to generate electroweak symmetry breaking,

one often finds supersymmetric-like relations between the fermion and sfermion sectors in

the limit of v1 = v2 and µ = 0, i.e. for Vµ = VD = 0. Thus, in the following computation

the supersymmetric limit corresponds to taking the total scalar potential [eq. (2.7)] to

be V = Vν . To analyze the contributions of Vν to sneutrino masses, we can employ the

following trick. Focus on the following two terms of the superpotential:

Wν ≡ Y IJ
ν Ĥ2

2 L̂I
1N̂

J +
1

2
M IJN INJ =

1

2

(
L̂T

1 N̂T
) (

0 Ĥ2
2Yν

Ĥ2
2Y T

ν M

)(
L̂1

N̂

)
. (3.14)

Consistent with eq. (3.6), we redefine the neutrino superfields as follows:

(
L̂1

N̂

)
= U

(
L̂1ℓ

N̂h

)
, (3.15)
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where the unitary matrix U is given by eq. (3.4). Defining the matrix H ≡ Ĥ2
2Yν, the effect

of eq. (3.15) is to transform Wν into8

Wν ≃
1

2
(HM−1HT )IJ L̂I

1ℓL̂
J
1ℓ+

1

2

[
M IJ +

1

2
(M−1H†H+HTH∗M−1)IJ

]
N̂ I

hN̂J
h+O(H4M−3) ,

(3.16)

where there is an implicit sum over I and J . In deriving eq. (3.16), we have used the fact

that M IJ is a non-negative diagonal matrix. Setting H2
2 = v2/

√
2 and using eq. (2.7), we

can directly make use of eq. (3.16) to isolate the contributions to the sneutrino squared-

mass matrix that arise from Vν :

−Lmass = L̃†
1ℓM

2
ℓ†ℓL̃1ℓ + Ñ †

hM2
h†hÑh , (3.17)

where the 3 × 3 hermitian matrices M2
ℓ†ℓ

and M2
h†h

are given by:

M2
ℓ†ℓ = m∗

DM−1m†
DmDM−1mT

D + O(m6
DM−4) , (3.18)

M2
h†h = M2 + m†

DmD +
1

2
(MmT

Dm∗
DM−1 + M−1mT

Dm∗
DM) + O(m4

DM−2) . (3.19)

Moreover, the effective light and heavy neutrino mass matrices, Mνℓ
and Mνh

, can also

be derived by inserting eq. (3.16) into eq. (2.8). As expected, the resulting neutrino mass

matrices are related in a supersymmetric way to the sneutrino squared-mass matrices

obtained in eqs. (3.18) and (3.19):

M2
ℓ†ℓ = M †

νℓ
Mνℓ

, M2
h†h = M †

νh
Mνh

. (3.20)

In particular, in the supersymmetric limit,

UT
MNS M2

ℓ†ℓ U∗
MNS = diag (m2

νℓ1
, m2

νℓ2
, m2

νℓ3
) , (3.21)

which implies that the light neutrino and sneutrino masses coincide.

We now turn to the complete calculation of the sneutrino mass matrix. Although one

could perform the computation with respect to the basis of sneutrino states defined by

eq. (3.15), this basis is not especially convenient. This is due to the fact that the effec-

tive squared-mass matrix of the light sneutrinos is dominated by supersymmetry-breaking

effects. In particular, the supersymmetric contribution of O(m4
DM−2) [cf. eq. (3.18)] is

completely negligible relative to the supersymmetry-breaking contributions. Thus, there is

no advantage to performing in the sneutrino sector the same change of basis used to isolate

the effective mass matrix of the light neutrinos. Hence we will write the 12× 12 hermitian

sneutrino squared-mass matrix in block form as:

−Lmass =
1

2

(
φ†

L φ†
N

) (
M2

LL M2
LN

(M2
LN )† M2

NN

) (
φL

φN

)
, (3.22)

8Strictly speaking, this is not a permissible transformation, since W must be holomorphic in the super-

fields, whereas eq. (3.16) is a function of both bH2
2 and bH2 ∗

2 . However, since we ultimately set H2
2 = v2/

√
2

and only take derivatives of Wν with respect to eL1ℓ and eNh, the procedure outlined here yields correct

results.
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where φL ≡ (L̃1 , L̃∗
1)

T and φN ≡ (Ñ , Ñ∗)T are six-dimensional vectors. The 6 × 6 her-

mitian matrices M2
LL, M2

NN and the 6× 6 complex matrix M2
LN can be written in block

partitioned form as:

M2
AB ≡

(
M2

A†B
M2 ∗

AT B

M2
AT B

M2 ∗
A†B

)
, (3.23)

where the subscripts A and B can take on possible values L and N [this labeling allows

one to keep track of the origin of the various matrix blocks]. The M2
A†A

are 3×3 hermitian

matrices and the M2
AT A

are 3 × 3 complex symmetric matrices, for A = L , N . There are

no restrictions on the 3 × 3 complex matrices M2
A†B

and M2
AT B

for A 6= B.

Adding up the contributions of Vν , Vµ, VD and VSOFT to the sneutrino masses yields:

M2
L†L = m2

L +
1

2
M2

Z cos 2β + m∗
DmT

D , (3.24)

M2
N†N = M2 + m2

N + m†
DmD , (3.25)

M2
L†N = m∗

DM , (3.26)

M2
LT N = −XνmD , (3.27)

M2
NT N = −2m2

B , (3.28)

M2
LT L = 0 , (3.29)

where we have introduced the complex 3× 3 matrix parameter Xν by the following defini-

tion:

XνmD ≡ 1√
2

(v2Aν + µ∗v1Yν) . (3.30)

A quick check of the supersymmetric limit confirms the expected relation between the

neutrino mass matrix and the sneutrino squared-mass matrix:

M†
νMν =

(
m∗

DmT
D m∗

DM

Mm†
D M2 + m†

DmD

)
. (3.31)

As noted above, because of the dominance of supersymmetry-breaking contributions to the

light sneutrino masses, the diagonalization of the light neutrino mass matrix and the light

sneutrino squared-mass matrix are completely independent.

Under the assumptions of eqs. (2.10)–(2.15), the 12×12 sneutrino mass matrix, written

in terms of 6 × 6 matrix blocks with estimated magnitudes,

M2
ν̃ ≡

(
M2

LL M2
LN(

M2
LN

)† M2
NN

)
=

(
O(v2) O(vM)

O(vM) O(M2)

)
, (3.32)

also exhibits a seesaw type behavior, analogous to the seesaw type mass matrix [eq. (3.2)]

of the neutrino sector. Following the standard procedure for diagonalizing such matrices

(see [25]), we introduce a 12 × 12 unitary matrix:

V =

(
I − 1

2M2
LNM−4

NN (M2
LN )† M2

LNM−2
NN

−M−2
NN (M2

LN )† I − 1
2M

−2
NN (M2

LN )†M2
LNM−2

NN

)
, (3.33)
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where I is the 6 × 6 identity matrix. One can easily compute:

V †M2
ν̃ V =

(
M2

LL −M2
LNM−2

NN (M2
LN )† + O(v4M−2) O(v3M−1)

O(v3M−1) M2
NN + O(v2)

)
. (3.34)

Hence, the effective 6 × 6 hermitian squared-mass matrix for the light sneutrinos reads:

M2
ν̃ℓ

≡ M2
LL −M2

LNM−2
NN

(
M2

LN

)†
+ O(v4M−2) , (3.35)

analogous to the light effective neutrino mass matrix of eq. (3.8). Likewise, the effective

6 × 6 hermitian squared-mass matrix for the superheavy sneutrinos reads:

M2
ν̃h

≡ M2
NN +

1

2

[
M−2

NN (M2
LN )†M2

LN + (M2
LN )†M2

LNM−2
NN

]
+ O(v4M−2) , (3.36)

where for completeness, we have exhibited the O(v2) corrections to the leading term.

As expected, the masses of half of the sneutrino eigenstates are of order the electroweak

symmetry breaking scale, whereas the other half are superheavy, of order M .

Following the notation of table 1, the (complex) sneutrino interaction eigenstates are

denoted by: ν̃L ≡ L̃1 and ν̃R ≡ Ñ∗. The latter convention reflects the fact that in the

lepton-number conserving limit of M IJ = m2
B = 0, the lepton numbers of ν̃L and ν̃R are

identical, as previously noted. (Of course, the limit of interest in this paper, ‖M‖ ≫ v,

is very far from the lepton-number conserving limit.) In analogy to νℓ and νh, we define

transformed (light and heavy) sneutrino states ν̃ℓ and ν̃h by:
(

φL

φN

)
= V

(
φℓ

φh

)
, (3.37)

where φℓ ≡ (ν̃ℓ , ν̃∗
ℓ )T and φh ≡ (ν̃∗

h , ν̃h)T are six-dimensional vectors. Sneutrino-

antisneutrino oscillations are a consequence of the ∆L = 2 elements in the light and heavy

sneutrino squared-mass matrices M2
eνℓ

and M2
eνh

, and are governed by M2
NT N

and M2
L†N

(note that M2
LT L

, which would also violate lepton number by two units, is zero).

Using the form of M2
AB (A, B = L or N) given by eq. (3.23) with the M2

AB given in

eqs. (3.24)–(3.29), the effective 6×6 hermitian squared-mass matrix for the light sneutrinos

[eq. (3.35)] is given by:

M2
ν̃ℓ

≡
(

M2
LC (M2

LV )∗

M2
LV (M2

LC)∗

)
, (3.38)

where the lepton-number-conserving (LC) and lepton-number-violating (LV) matrix ele-

ments are given by:

M2
LC ≡ m2

L +
1

2
M2

Z cos 2β + m∗
DmT

D − m∗
DM(M2 + m2

N )−1MmT
D + O(v4M−2) , (3.39)

M2
LV ≡ mDM(M2 + m2 ∗

N )−1mT
DXT

ν + XνmD(M2 + m2
N )−1MmT

D

−2mDM(M2 + m2 ∗
N )−1m2

B(M2 + m2
N )−1MmT

D + O(v4M−2) , (3.40)

under the assumption that m2
B and m2

N can be as large as indicated in eqs. (2.14) and (2.16).

Note that M2
LC is a 3×3 hermitian matrix, and M2

LV is a 3×3 complex symmetric matrix.
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Moreover, although M is a diagonal matrix with real positive entries [cf. eq. (2.5)], m2
N

can be any 3 × 3 hermitian matrix, not necessarily diagonal nor real. The M → ∞
limit of eqs. (3.39) and (3.40) is noteworthy. In this limit, M2

LV = 0 and the lepton-

number-violating effects completely decouple, as expected. If in addition m2
N = 0, then

M2
LC = m2

L + 1
2M2

Z cos 2β, which reproduces the well known 3× 3 light sneutrino squared-

mass matrix of the MSSM. However, according to eq. (2.15), m2
NM−2 ∼ O(1) is possible,

in which case M2
LC deviates from its MSSM value by a quantity of O(v2) even in the exact

decoupling limit of M → ∞. The origin of this non-decoupling behavior is explained in B.

As a result of this non-decoupling phenomenon, remnants of the heavy sector of the seesaw

mechanism may survive in the effective theory of light sneutrinos. These non-decoupling

effects can be detected in principle through measurements of the sneutrino and charged

slepton properties.

The physical light sneutrino states can be identified by diagonalizing M2
ν̃ℓ

. Note that

if M2
LV = 0, then the eigenvalues9 of M2

ν̃ℓ
are doubly degenerate, corresponding to the fact

that the conserved lepton number implies that the six light sneutrino states are comprised

of three sneutrino antisneutrino pairs. If M2
LV 6= 0, then lepton number is violated and

the sneutrinos and antisneutrinos can mix. This mixing splits the degenerate pairs and

yields (in general) six non-degenerate light sneutrinos. In particular, the resulting sneutrino

mass-eigenstates are self-conjugate real fields, which we denote by S1 ,S2 , . . . , S6.

To determine the Sk in terms of the interaction sneutrino eigenstates, one must com-

pute the 6 × 6 unitary matrix W that diagonalizes M2
ν̃ℓ

:

W †M2
ν̃ℓ
W = diag (m2

S1
, m2

S2
, . . . , m2

S6
) . (3.41)

Noting that ΣM2
ν̃ℓ

Σ = M2 ∗
ν̃ℓ

, where Σ ≡ ( 0 11 0 ), it follows that if W satisfies eq. (3.41)

then so does ΣW ∗. However, the unitary matrix that diagonalizes M2
ν̃ℓ

is unique up to

a multiplication on the right by a unitary matrix UD that is arbitrary within a subspace

of degenerate eigenvalues and is otherwise diagonal. Denote the set of all such unitary

matrices by S. Hence, one can conclude that ΣW∗ = WUD for some UD ∈ S. Since W is

unitary, UD = W †ΣW ∗, and it follows that UDU∗
D = I. That is, UD must be a symmetric

unitary matrix. It then follows that the matrix W ′ ≡ WU
1/2
D satisfies W ′ = ΣW ′ ∗.10

Thus, without loss of generality, we may drop the primed superscripts and impose the

constraint W = ΣW∗ on the diagonalizing matrix that satisfies eq. (3.41). It then follows

that W has the following form:

W ≡
(

X iY

X∗ −iY ∗

)
, (3.42)

9Under the assumption that R-parity is not spontaneously broken, the (real) eigenvalues of the hermitian

matrix M2
LC are non-negative.

10We define U1/2

D ∈ S to be the unique square root of UD that is symmetric and unitary. This is

accomplished by noting that there exists a (unique) real symmetric matrix H such that UD = exp(iH).

Then, U1/2

D ≡ exp(iH/2). Note that there is still some freedom left in the choice of W ′, which is unique up

to a multiplication on the right by a real orthogonal matrix that is arbitrary within a degenerate subspace

and is otherwise diagonal.
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where X and Y are 3 × 3 complex matrices that satisfy:

XX† + Y Y † = 1 , XXT = Y Y T , (3.43)

Re(X†X) = Re(Y †Y ) =
1

2
, Im(X†Y ) = 0 , (3.44)

due to the unitarity of W. Consequently, the relation between the sneutrino interaction-

eigenstate fields ν̃I
ℓ and the six self-conjugate sneutrino mass-eigenstate fields Sk is given

by:

ν̃I
ℓ =

6∑

k=1

WIkSk =
3∑

K=1

(
XIKSK + iY IK SK+3

)
, (I = 1, 2, 3) . (3.45)

One can then invert eq. (3.45) [using eqs. (3.43) and (3.44)] to obtain:

SK =

3∑

I=1

(
XIK ∗ν̃I

ℓ + XIK(ν̃I
ℓ )∗

)
,

SK+3 = −i
3∑

I=1

(
Y IK ∗ν̃I

ℓ − Y IK(ν̃I
ℓ )∗

)
, (K = 1, 2, 3) . (3.46)

Indeed, the Sk are self-conjugate real fields as noted above.

Since M2
LC ∼ O(v2) and M2

LV ∼ O(v3M−1), the mass-splittings of the would-be

sneutrino-antisneutrino pairs are expected to be very small, of order a typical neutrino

mass. To compute the magnitude of the corresponding mass-splittings, we can employ per-

turbative techniques to evaluate the eigenvalues of M2
ν̃ℓ

[eq. (3.38)]. First, we diagonalize

the sub-matrix M2
LC :

Q†
0M

2
LCQ0 = D ≡ diag(d1 , d2 , d3) , (3.47)

where Q0 is a 3 × 3 unitary matrix, and the eigenvalues dI are real. Note that Q0 is not

unique. In section 4.3, we will argue that the bounds on the radiative flavor-changing

charged lepton decay ℓJ → ℓIγ imply that matrix M2
LC is very close to a diagonal form. In

the limit of diagonal M2
LC , we shall take Q0 = 1. We can then determine the off-diagonal

elements of Q0 by writing M2
LC ≃ diag(m2

1 , m2
2 , m2

3)+m2
LC , where m2

LC is a matrix made

up of the off-diagonal elements of M2
LC , and Q0 ≃ 1+ q0, where q†0 = −q0. By assumption,

the matrix elements of m2
LC are much smaller than the m2

I , and the matrix elements of q0

are much smaller than unity. Thus treating eq. (3.47) to first order in the small quantities,

we can solve for the off-diagonal elements of q0 in terms of the elements of m2
LC and the

m2
I . Since at first order m2

I = dI , it follows that:

(Q0)IJ ≃ (M2
LC)IJ

dJ − dI
, I 6= J . (3.48)

The diagonal elements of Q0 can then be determined to the same order by using the

unitarity of Q0. In the remainder of this section, we will not make any assumption regarding

the size of the off-diagonal elements of M2
LC , in which case eq. (3.48) does not apply and

Q0 must be obtained numerically from eq. (3.47).
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In the following, it will be convenient to define

Q = Q0T (3.49)

where T is a 3 × 3 diagonal matrix of phases given by:

T ≡ diag
(
e−iφ1/2 , e−iφ2/2 , e−iφ3/2

)
, φJ ≡ arg

(
QT

0 M2
LV Q0

)
JJ

. (3.50)

Note that the right hand side of eq. (3.47) is unchanged when Q0 → Q0T , so that the

unitary matrix Q can also be used to diagonalize M2
LC . It then follows that:

D ≡
(

D B∗

B D

)
=

(
Q† 0

0 QT

)(
M2

LC (M2
LV )∗

M2
LV (M2

LC)∗

)(
Q 0

0 Q∗

)
, (3.51)

where B is the 3 × 3 complex symmetric matrix

B ≡ QTM2
LV Q . (3.52)

Due to the rephasing of Q0 as specified by eqs. (3.49) and (3.50), the diagonal elements of

B are real and non-negative: BJJ = |BJJ |. This is the motivation for our choice of Q in

the diagonalization of M2
LC . Note that if M2

LC is approximately diagonal, then Q0 ≃ 1,

in which case φJ ≃ arg[(M2
LV )JJ ]. Thus, unless the diagonal elements of M2

LV are non-

negative, Q ≃ T 6= 1 in this limiting case.

Even though D ∼ O(v2) and B ∼ O(v3M−1), the unitary matrix that diagonalizes D
is not close to the identity matrix, due to the double degeneracy of the diagonal elements.

In order to perform a perturbative diagonalization of D, we first introduce the following

6 × 6 unitary matrix P, expressed in block form as:

P ≡ 1√
2

(1 i11 −i1)
, (3.53)

A straightforward computation yields:

P†DP =

(
D + ReB −ImB

−Im B D − ReB

)
, (3.54)

which is a 6 × 6 real symmetric matrix.

If the elements of the diagonal matrix D are non-degenerate11 such that dI−dJ ∼ O(v2)

for all I 6= J , then the matrix P†DP can be diagonalized by a real orthogonal matrix R
that is close to the identity:

R =

( 1+ Re R ImR

ImR 1− ReR

)
+ O(v2M−2) , (3.55)

11In general, we would expect the dI (which are the eigenvalues of M2
LC) to be non-degenerate. Even if

the parameters m2
L and m2

N were proportional to the identity matrix at the high energy scale due to some

flavor symmetry, this latter symmetry would not be respected by the corresponding low-energy parameters,

due to flavor-violating effects that enter the renormalization group running. Moreover, the matrix mD is

likely to reflect some of the flavor-violating effects of the model. Hence, any (near) degeneracy among the

dI would be purely accidental.
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where the 3 × 3 complex antisymmetric matrix R is of order O(vM−1):

RIJ = −RJI ≡ B∗
IJ

dJ − dI
, (I 6= J) . (3.56)

One can check that:

RTP†DPR = diag(m2
S1

, m2
S2

, . . . , ,m2
S6

) + O(v4M−2) , (3.57)

where the squared-masses of the light sneutrinos are given by:

m2
SJ , SJ+3

= dJ ± |BJJ | + O(v4M−2) , (J = 1, 2, 3) , (3.58)

and m2
SJ

> m2
SJ+3

. Note that the perturbations due to the off-diagonal elements of B

contribute only to the O(v4M−2) terms of the squared-masses.

Combining the results of eqs. (3.51), (3.53) and (3.55), the light sneutrino mixing

matrix [defined in eq. (3.41)] is given by:

W =
1√
2

(
Q(1+ R) iQ(1− R)

Q∗(1+ R∗) −iQ∗(1− R∗)

)
+ O(v2M−2) . (3.59)

Comparing with eq. (3.42), we identify:

X =
1√
2
Q(1+ R) + O(v2M−2) , and Y =

1√
2
Q(1− R) + O(v2M−2) . (3.60)

Inserting these results into eqs. (3.45) and (3.46) yields the desired (approximate) relations

between the sneutrino mass eigenstates Sk and the interaction eigenstates ν̃I
ℓ .

For completeness, we briefly examine the modifications to eq. (3.58) if some of the

dI are degenerate. In this case, the diagonalizing matrix R is not close to the identity

matrix, and the perturbative analysis above fails. Consider the case of dI = dJ 6= dK ,

where {I, J,K} is some permutation of {1, 2, 3}. The first order shift in the eigenvalues of

D will depend on BIJ as well as on the diagonal elements of B. However, the perturbations

due to BIK and BJK will only generate second-order shifts to the eigenvalues, which we

neglect here. Thus, it is sufficient to solve the characteristic equation of D in the limit of

dI = dJ and BIK = BJK = 0. In this limit, the characteristic polynomial factors into a

product of two simpler polynomial factors:12

[
(λ−dK)2−|BKK|2

][
(λ−dI)

4−(λ−dI)
2
[
|BII |2 + |BJJ |2 + 2|BIJ |2

]
+

∣∣B2
IJ −BIIBJJ

∣∣2
]
.

(3.61)

The resulting sneutrino squared-masses are:

m2
SI , SI+3

≃ dI ±
{1

2

[
|BII |2 + |BJJ |2 + 2|BIJ |2 +

√
∆

]}1/2
, (3.62)

m2
SJ , SJ+3

≃ dI ±
{1

2

[
|BII |2 + |BJJ |2 + 2|BIJ |2 −

√
∆

]}1/2
, (3.63)

m2
SK , SK+3

≃ dk ± |BKK| , (3.64)

12In the case of a near degeneracy where dI − dJ <∼ O(vM−1), the quartic polynomial factor of the

characteristic equation of D contains a term linear in λ− 1

2
(dI +dJ). In this case, the resulting expressions for

m2
SI , SI+3

and m2
SJ , SJ+3

are significantly more complicated than those presented in eqs. (3.62) and (3.63).
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where

∆ ≡
[
|BII |2 + |BJJ |2 + 2|BIJ |2

]2
− 4

∣∣B2
IJ − BIIBJJ

∣∣2 . (3.65)

The corresponding mixing matrix can be obtained by performing an exact diagonalization

within the two-dimensional degenerate subspace, although we shall omit the details.

Finally, in the very unlikely scenario where d1 = d2 = d3 ≡ d, all of the matrix elements

of B contribute to the first order shifts of the eigenvalues of D. To determine these shifts,

put λ = d + x in the characteristic equation of D to obtain a sixth order polynomial in x.

No further perturbative simplification is possible, since all the terms of this polynomial are

of the same order of magnitude.

As expected, the mass-splittings of the would-be sneutrino-antisneutrino pairs are

nonzero due to the presence of the lepton-number violating matrix M2
LV [cf eq. (3.52)]. If

we denote the three sneutrino mass-splittings by (∆mν̃ℓ
)J ≡ |mSJ

−mSJ+3
| (for J = 1, 2, 3),

then in the non-degenerate case,

(∆mν̃ℓ
)J ≃ |BJJ |√

dJ
. (3.66)

In the case of degenerate dI , the mass-splittings (∆mν̃ℓ
)J also depend on the non-diagonal

elements of B.

It is instructive to examine the above results in a simplified one generation model. In

this case, D ≡ M2
LC and B ≡ M2

LV are just numbers. In particular, m2
N is a real parameter

and M2
ν̃ℓ

is a 2 × 2 hermitian matrix, with eigenvalues

m2
S1,S2

= M2
LC ± |M2

LV |

= m2
L +

1

2
M2

Z cos 2β +
|mD|2m2

N

M2 + m2
N

± 2|mD|2M
M2 + m2

N

∣∣∣∣Xν − Mm2
B

M2 + m2
N

∣∣∣∣ . (3.67)

The corresponding sneutrino mass-splitting, ∆mν̃ℓ
≡ |mS2

− mS1
|, is given by

∆mν̃ℓ

mνℓ

=
2M2

mν̃ℓ
(M2 + m2

N )

∣∣∣∣Xν − Mm2
B

M2 + m2
N

∣∣∣∣ , (3.68)

where mνℓ
≡ |mD|2/M is the mass of the light neutrino and mν̃ℓ

≡ 1
2 (mS1

+ mS2
) is the

average light sneutrino mass. If mN ≪ M , then eq. (3.68) coincides with the result given

in [18] after taking into account a slight difference in notation.13

Assuming that m2
B ∼ O(vM), it follows that both terms on the right hand side of

eq. (3.68) are of the same order, which implies that ∆mν̃ℓ
∼ O(mνℓ

). However, as noted

below eq. (2.14), it is possible that m2
B could be as much as a factor of 103 larger than its

naive estimate [18], in which case the sneutrino-antisneutrino mass splitting could be three

orders of magnitude larger than the corresponding light neutrino mass.14

13If we put m2
B ≡ −MBN and change the sign of Aν (with the corresponding change in Xν [cf. eq. (3.30)]),

we recover the results of [18].
14A similarly enhanced sneutrino-antisneutrino mass splitting also arises in the supersymmetric triplet

seesaw model of [40].
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The same set of manipulations described above can be carried out to obtain the cor-

responding results for the effective 6 × 6 hermitian squared-mass matrix for the heavy

sneutrinos [eq. (3.36)]:

M2
ν̃h

≡
(

M2
H −2(m2

B)∗

−2m2
B (M2

H)∗

)
+ O(v4M−2) , (3.69)

where the 3 × 3 hermitian matrix M2
H is defined by:

M2
H ≡ M2 + m2

N + m†
DmD +

1

2
(M2 + m2

N )−1MmT
Dm∗

DM +
1

2
MmT

Dm∗
DM(M2 + m2

N )−1 .

(3.70)

The physical heavy sneutrino mass-eigenstates are determined by diagonalizing M2
ν̃h

. At

leading order, the mass-eigenstates are mass-degenerate sneutrino/antisneutrino pairs, with

masses and mixing angles (with respect to the basis in which M is diagonal) determined

by the diagonalization of m2
N . The lepton-number violating off-block-diagonal matrix m2

B

generates sneutrino-antisneutrino mixing, and yields mass-splittings between nearly degen-

erate heavy sneutrino pairs of order ∆mν̃h
∼ O(m2

BM−1).

The complex elements of the sneutrino squared-mass matrix govern CP-violating sneu-

trino phenomena, due to the non-degeneracy of masses of the real and imaginary parts of

the sneutrino fields. Following the discussion of the CP-properties of the sneutrino fields

in section 6, we find it convenient to define a new basis of sneutrino interaction eigenstates

of definite CP. That is, we decompose the complex sneutrino fields into real and imaginary

parts:

ν̃ℓ =
1√
2

[
ν̃

(+)
ℓ + i ν̃

(−)
ℓ

]
, (3.71)

ν̃h =
1√
2

[
ν̃

(+)
h + i ν̃

(−)
h

]
, (3.72)

where the [+,−] superscripts indicate that the corresponding sneutrino eigenstates are

CP-even and CP-odd. With respect to the CP-basis,

−Lmass =
1

2
(ν̃

(+)T
ℓ , ν̃

(−)T
ℓ )P†M2

ν̃ℓ
P

(
ν̃

(+)
ℓ

ν̃
(−)
ℓ

)
+

1

2
(ν̃

(+)T
h , ν̃

(−)T
h )PTM2

ν̃h
P∗

(
ν̃

(+)
h

ν̃
(−)
h

)
,

(3.73)

where P is the 6 × 6 unitary matrix introduced in eq. (3.53).

That is, with respect to the CP-basis, the effective squared-mass matrix for the light

sneutrinos is given by:

M 2
ν̃ℓ

≡ P†M2
ν̃ℓ
P =

(
Re(M2

LC + M2
LV ) −Im(M2

LC + M2
LV )

Im(M2
LC − M2

LV ) Re(M2
LC − M2

LV )

)
. (3.74)

This is a real symmetric matrix (which is easily checked by recalling that M2
LC and M2

LV

are, respectively, hermitian and complex symmetric matrices), as the CP-basis consists of

real self-conjugate scalar fields.
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If ImM2
LC = ImM2

LV = 0, then the sneutrino mass-eigenstates are also definite eigen-

states of CP. If in addition ReM2
LV 6= 0, then the would-be sneutrino-antisneutrino pairs

are organized into CP-even/CP-odd pairs of nearly degenerate sneutrinos [18].

Since M 2
ν̃ℓ

is real symmetric, it can be diagonalized by a 6× 6 real orthogonal matrix,

Zν̃ via:

ZT
ν̃ M 2

ν̃ℓ
Zν̃ = (m2

S1
, m2

S2
, . . . , m2

S6
) , (3.75)

and the corresponding physical sneutrino mass eigenstates, Sk (k = 1, . . . , 6), can be iden-

tified as linear combinations of the CP-even and the CP-odd sneutrino eigenstates:

(
ν̃

(+)
ℓ

ν̃
(−)
ℓ

)
= Zν̃




S1
...

S6


 . (3.76)

Matching with the notation employed by our discussion of sneutrino oscillations in section 6,

we note that the sneutrino interaction eigenstates, ν̃ℓ, can be expressed in terms of the

physical (self-conjugate) sneutrino mass eigenstates Sk via:

ν̃I
ℓ =

1√
2

6∑

k=1

(ZIk
ν̃ + iZI+3,k

ν̃ )Sk . (3.77)

Comparing eqs. (3.45) and (3.77), we can identify:

XIK =
1√
2

(
ZIK

ν̃ + iZI+3,K
ν̃

)
,

Y IK = − i√
2

(
ZI,K+3

ν̃ + iZI+3,K+3
ν̃

)
, (I,K = 1, 2, 3) , (3.78)

which can be inverted to obtain:

Zν̃ =
√

2

(
Re X −Im Y

Im X Re Y

)
. (3.79)

One can easily verify that the orthogonality of Zν̃ implies the unitarity of W defined in

eq. (3.42) [and vice versa]. In particular, eqs. (3.41) and (3.75) imply that Zν̃ = P†W, in

which case

ZT
ν̃ Zν̃ = WTP∗P†W = WT

(
0 11 0

)
W = W†W = I , (3.80)

after using the explicit forms for W and P.

In summary, we have derived the light effective sneutrino squared-mass matrix by

exploiting the seesaw mechanism in the sneutrino as well as in the neutrino sector. Our

calculation is quite general under the parameter assumptions specified by eqs. (2.10)–

(2.15). We found that M2
ν̃ℓ

depends on two 3 × 3 matrix blocks, M2
LC and M2

LV , given

by eqs. (3.39) and (3.40), respectively. In particular, M2
LV is responsible for the splitting

of the masses of would-be sneutrino-antisneutrino pairs, or equivalently the mass-splitting

of CP-even/CP-odd sneutrino pairs, ν̃
(±)
ℓ , in the CP-conserving limit. As we shall see in

sections 4 and 5, the matrices M2
LC and M2

LV provide a convenient parameterization for a

number of interesting physical observables, such as neutrino masses and radiative lepton

decays.
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4. Constraints on lepton number conserving parameters

The input parameters that govern sneutrino mixing phenomena and sneutrino decays are

encoded in matrices M2
LV and M2

LC given by eqs. (3.40) and (3.39), respectively [or, alterna-

tively, in the physical sneutrino masses and the orthogonal matrix Zν̃ defined in eq. (3.75)].

At present, apart from neutrino oscillations, only lepton number conserving processes are

observed in current experiments. These processes constrain the entries of the lepton num-

ber conserving matrix M2
LC . In this section we investigate bounds on the structure of M2

LC

imposed by the measurements of the muon magnetic moment anomaly, the gµ − 2, the

electric dipole moment (EDM) of the electron and the radiative flavor changing charged

lepton decays, ℓ J → ℓ Iγ. The latter have also been worked out in detail in [21]. Additional

constraints due to ℓ−J → ℓ−I ℓ−I ℓ+
I decays and µ–e conversion in nuclei are also relevant and

have been analyzed in refs. [21, 41]. These constraints can yield further restrictions on the

structure of M2
LC , although we shall not present this analysis here.

We briefly summarize the constraints from current experiments relevant for the com-

putations presented in this section. The most recent experimental measurement of the

muon anomalous magnetic moment (aexp
µ ) exhibits a slight discrepancy [42] relative to the

predicted value of the Standard Model (ath
µ ). A recent theoretical review of the computa-

tion of the Standard Model prediction [43] yielded δaµ ≡ aexp
µ − ath

µ = (2.94± 0.89)× 10−9,

where all theoretical and experimental errors are added in quadrature, corresponding to

a 3.3σ effect. Thus, we roughly expect that the contribution to the muon anomalous

magnetic moment from new physics beyond the Standard Model to be no larger than

δaµ . 3 × 10−9. There is no experimental evidence of an nonzero EDM for the electron

(de). The most stringent upper bound, obtained in [44], is de ≤ 1.6 × 10−27 e cm at 90%

CL. Likewise, there is no experimental evidence for radiative flavor-changing charged lep-

ton decays. The 90% CL upper limits to the branching ratios for the muon and tau-lepton

radiative decays are given by: BR(µ → eγ) ≤ 1.2 × 10−11, BR(τ → eγ) ≤ 1.1 × 10−7 and

BR(τ → µγ) ≤ 6.8 × 10−8 [11].

4.1 Supersymmetric corrections to the lepton-photon vertex

The amplitudes for the processes of interest are obtained by evaluating triangle diagrams

that contribute to the one-loop correction to the lepton-photon ℓ Jℓ Iγ vertex. Supersym-

metric corrections to this vertex arise from the two topologies of diagrams depicted in fig-

ure 1. The corresponding Feynman rules required for the vertices are given in eqs. (C.3)

and (C.4) of C. The anomalous magnetic moment and electric dipole moment (EDM) of

the leptons and the lepton flavor violating decays ℓ J → ℓ Iγ are derived from the following

terms of an effective Hamiltonian:

H = e
(
CIJ

L ℓ̄ IσµνPLℓ J + CIJ
R ℓ̄ IσµνPRℓ J

)
Fµν , (4.1)

which can be extracted from the computation of the effective one-loop ℓ Iℓ Jγ vertex.

The computation of the Wilson coefficients CL, CR is straightforward. After calculating

the contributions of diagrams (a) and (b) of figure 1 and expanding in momenta of external
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ℓ J ℓ If

S S

−k p − k

γµ

1 2

3

(a)

1: i(aJPL + bJPR)

2: i(bI∗PL + aI∗PR)

3: −ieqS(p − 2k)µ

ℓ J ℓ IS

fC fC

γµ

1 2

3

(b)

1: i(aJPL + bJPR)

2: i(bI∗PL + aI∗PR)
3: −ieqfγµ

Figure 1: One-loop SUSY diagrams contributing to radiative, ℓ J → ℓ Iγ, decays. In (a), the scalar

S is a charged slepton and the fermion f is a neutralino. In (b), the scalar S is a sneutrino and the

fermion f [fC ] is a positively [negatively] charged chargino (qf = 1).

particles, we find for their total Wilson coefficients

CiIJ
L = CiIJ

1L + mℓICiIJ
4L + mℓJ CiIJ

4R ,

CiIJ
R = CiIJ

1R + mℓICiIJ
4R + mℓJ CiIJ

4L , (4.2)

where the index i labels the contribution of diagrams i = a, b and the mℓI (I = 1, 2, 3) are

the lepton masses. For diagram (a) we obtain,

CaIJ
1L =

1

2(4π)2
qSbI∗aJmfC12(mS ,mf ) , CaIJ

1R =
1

2(4π)2
qSaI∗bJmfC12(mS ,mf ) ,

CaIJ
4L =

1

2(4π)2
qSaI∗aJC23(mS ,mf ) , CaIJ

4R =
1

2(4π)2
qSbI∗bJC23(mS ,mf ) , (4.3)

and for the diagram (b),

CbIJ
1L =

1

(4π)2
qfbI∗aJmfC11(mf ,mS) , CbIJ

1R =
1

(4π)2
qfaI∗bJmfC11(mf ,mS) ,

CbIJ
4L =

1

2(4π)2
qfaI∗aJC23(mf ,mS) , CbIJ

4R =
1

2(4π)2
qfbI∗bJC23(mf ,mS) , (4.4)

where mf and mS are the masses of the fermion f and scalar S, respectively, and all other

parameters are defined in figure 1. The loop integrals appearing in eqs. (4.3) and (4.4) are:

C11(x, y) = − x2 − 3y2

4(x2 − y2)2
+

y4

(x2 − y2)3
log

y

x
,

C12(x, y) = − x2 + y2

2(x2 − y2)2
− 2x2y2

(x2 − y2)3
log

y

x
,

C23(x, y) = −x4 − 5x2y2 − 2y4

12(x2 − y2)3
+

x2y4

(x2 − y2)4
log

y

x
. (4.5)

The full Wilson coefficients CL and CR are obtained by summing over all relevant triangle

diagrams in the model. In our case just two of them contribute: diagram (a) with charged

slepton and neutralino exchange and diagram (b) with sneutrino and chargino exchange.
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4.2 (g − 2)µ and the electron EDM

The formalism described above leads easily to expressions for the EDM of the electron and

for the muon magnetic moment anomaly (gµ − 2)/2. For both processes I = J , so that the

flavor-diagonal piece of the effective Hamiltonian is given by

H = e ℓ̄ Jσµν

[
ReCJJ

1L + mℓJ (CJJ
4L + CJJ

4R ) − iImCJJ
1L γ5

]
ℓ JFµν , (4.6)

where we used the relation CJJ
1R = CJJ∗

1L . By matching to the standard form [45, 46]:15

H = − e

4mlJ
aJ ℓ̄ Jσµνℓ JFµν +

idℓJ

2
ℓ̄ Jσµνγ5ℓ

JFµν , (4.7)

where aJ ≡ (gJ − 2)/2 is the magnetic moment anomaly and dℓJ is the EDM of the lepton,

one can extract the expressions for the electron EDM, de, and for gµ − 2,

de = −2e ImC11
1L , (4.8)

aµ = −4mµ

[
ReC22

1L + mµ(C22
4L + C22

4R)
]

. (4.9)

In principle, both quantities can be used to set bounds on parameters such as M , m2
N ,

m2
B and Xν that govern the heavy sneutrino sector. However, the one-loop contribution to

the C11
1L from figure 1(b), which is sensitive to the sneutrino sector, is real if the chargino

parameters µ and M2 are real. Hence, the electron EDM measurement does not yield

any constraints on sneutrino parameters at one loop. However, there can be sensitivity

due to potentially large two-loop corrections; for further details see ref. [29]. Similarly,

the neutrino magnetic and/or electric dipole moments16 are also insensitive to the heavy

sneutrino sector at one-loop, since there is no possibility of attaching the photon to a

one-loop graph that involves the sneutrino-neutrino-neutralino vertex (see C).

The amplitudes displayed in figure 1 can give sizable contributions to the anomalous

magnetic moment of the muon. These contributions are flavor diagonal and are sensitive

mostly to the overall mass scale of the sleptons, gauginos and light sneutrinos — i.e. to the

diagonal entries of corresponding mass matrices. Thus, the measurement of aµ can be used

to set lower bound on these SUSY masses. Assuming that the discrepancy between the

experimentally observed muon anomalous magnetic moment and the theoretical prediction

of the Standard Model, δaµ . 3 × 10−9, is due to new physics effects arising from the

diagrams of figure 1, one can deduce lower bounds on the magnitude of slepton squared-

mass parameter as a function of M2 and tan β. Examples of such bounds are listed in

table 2.

Note that potential contributions to M2
LC [cf. (3.39)] from the terms containing the

Dirac mass mD are suppressed by a quantity of O(m2
NM−2). As we will show in section 4.3,

15In eq. (4.7), the unit of electric charge e is taken positive, so that the electron charge is −e (which also

coincides with the convention adopted by refs. [45] and [46]). Eq. (4.7) is consistent with the corresponding

effective Lagrangian of [45], by noting that Commins et al. define the anomalous magnetic moment of the

electron to be κ = −ae (J.D. Jackson, private communication).
16Note that for Majorana particles only transition dipole moments can be nonzero.
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M2 = 100 M2 = 200 M2 = 300

tan β (mL)min (mL)min (mL)min

5 170 110 70

10 300 270 210

15 420 420 370

20 530 570 530

25 650 740 700

Table 2: Lower bounds on the square root of (m2
L)22 from the measurement of aµ. All masses are

in GeV.

this ratio can be at most of the order of 10−2, otherwise the Dirac mass term mD would

generate unacceptably large contributions to rare ℓ J → ℓ Iγ decays. Thus, the muon

anomalous magnetic moment can be effectively used to set a lower bound on the diagonal

22 element of the soft slepton squared-mass matrix m2
L and on the gaugino mass parameter

M2, as specified in table 2. The dependence on m2
R and µ is significantly weaker.

4.3 Radiative charged lepton decay: ℓ J → ℓ Iγ

The ℓ J → ℓ Iγ decay width is given by

Γ(ℓ J → ℓ Iγ) =
e2m3

lJ

4π

(
|CIJ

L |2 + |CIJ
R |2

)
. (4.10)

The corresponding branching ratio is obtained by dividing the result of eq. (4.10) by the tree

level decay width, Γ(ℓ J → ℓ IνJ ν̄I) = m5
ℓJ G2

F /192π3 (where we ignore W -propagator effects

and a very small correction due to the nonzero mass of the light final state charged lepton).

In particular, the branching ratios for the experimentally interesting decays µ → eγ and

τ → µγ are given by:

BR(µ → eγ) =
48π2e2

m2
µG2

F

(
|C12

L |2 + |C12
R |2

)
, (4.11)

and

BR(τ → µγ) =
48π2e2

m2
τG

2
F

(
|C23

L |2 + |C23
R |2

)
. (4.12)

At leading one-loop order, figure 1(a) yields an amplitude that is proportional to the

off-diagonal terms of the slepton soft mass matrix m2
L, and thus not relevant for setting

bounds on heavy sneutrino parameters.17 The amplitude corresponding to figure 1(b)

depends directly on the lepton flavor conserving part of the light sneutrino mass matrix,

M2
LC . This can be verified by using the Feynman rules collected in the C and employing the

17Of course this diagram is relevant when Yν-dependent corrections to m2
L entries are generated by the

renormalization group evolution of parameters. This effect has been studied extensively in the literature

(see e.g., [47]), and we will not repeat this discussion here.
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mass insertion approximation (MIA) expansion; for more details see e.g. ref. [48]. Assume

(at least formally) that sneutrinos are closely degenerate in mass,

m2
Sk

= m2
0 + δm2

Sk
, (4.13)

and then expand the functions CIJ
L or CIJ

R [denoted generically in eq. (4.14) by f ], which

depend on the squared-massed m2
Sk

, up to the first order. This results in

f(m2
Sk

) ≈ f(m2
0)+(m2

Sk
−m2

0)
∂f

∂m2
Sk

∣∣∣∣∣
m2

0

= f(m2
0)−m2

0

∂f

∂m2
Sk

∣∣∣∣∣
m2

0

+m2
Sk

∂f

∂m2
Sk

∣∣∣∣∣
m2

0

, (4.14)

where there is an implicit sum over k. The advantage of this procedure is that it allows one

to perform the sum over the sneutrino flavor index k in evaluating eqs. (4.11) and (4.12).

For example, the neutrino squared-masses always appear multiplied by a pair of sneutrino

mixing matrices (due to the form of the sneutrino couplings given in C). Using the inverse

of eq. (3.75), one obtains Zik
ν̃ Zjk

ν̃ m2
Sk

= (M 2
ν̃ℓ

)ij .

It is possible to relax the assumption of approximately degenerate sneutrino masses.

In particular, it can be shown diagrammatically that it is better to use appropriate ratios

in place of the derivatives of eq. (4.14) in the MIA expansion. Thus, for J > I (corre-

sponding to the decay of a heavier lepton ℓ J into a lighter lepton ℓ I) and neglecting terms

proportional to the lighter lepton mass, one arrives at the simple result:

CIJ
L ≃ 0 , (4.15)

CIJ
R ≃ CbIJ

1R + mℓJ CbIJ
4L

≃ mℓJ

(4π)2
e2

2s2
W

(
M2

LC

)IJ

(
|Z1i

+ |2
(

∆C23

∆m2

)

iIJ

−
√

2

cos β

mχ+
i

MW
Z1i∗

+ Z2i∗
−

(
∆C11

∆m2

)

iIJ

)
,

where the Z± are the chargino mixing matrices defined in [7],

(
∆Cij

∆m2

)

kIJ

≡





Cij(mχ+
k
,mν̃I

ℓ
) − Cij(mχ+

k
,mν̃J

ℓ
)

m2
ν̃I

ℓ
− m2

ν̃J
ℓ

, for I 6= J ,

∂Cij(mχ+
k
,mν̃I

ℓ
)

∂m2
ν̃I

ℓ

, for I = J .

(4.16)

and mν̃I
ℓ

are the three “CP-averaged” sneutrino masses, given by the positive square roots

of the eigenvalues of M2
LC [cf. eqs. (3.47) and (3.58)].

Clearly, our approximate expression for CIJ
R given by eq. (4.15), which enters the

decay rates in eq. (4.10), is proportional to the lepton number conserving squared-mass

matrix, M2
LC , defined in eq. (3.39). Even in the case where m2

L is diagonal, contributions

to radiative lepton decays arise from the off-diagonal elements of M2
LC governed by the

general form of the matrices mD and m2
N [cf. the third term in eq. (3.39)]. Notice that the

flavor dependence disappears completely in the limit of diagonal m2
L and m2

N = 0 in which

case M2
LC is diagonal.

The effect of the seesaw contribution to the lepton number conserving part of the sneu-

trino squared-mass matrix, M2
LC , has not been previously noticed in the literature. This
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tan β 10 20

M2
LC




& 2702 . 42 . 112

. . . & 2702 . 312

. . . . . . & 2702







& 5702 . 82 . 452

. . . & 5702 . 1502

. . . . . . & 5702




Table 3: Bounds on the structure of the matrix elements of M2
LC for M2 = µ = 200GeV. All

masses in the table are given in GeV.

yields an extra contribution to the decay branching ratios BR(ℓ J → ℓ Iγ). Consequently,

for a fixed set of chargino sector parameters (µ, M2 and tan β) and soft slepton squared-

mass matrix (m2
L), the experimental bounds on the radiative lepton branching ratios can

be used [via eqs. (4.11), (4.12) and (4.15)] to determine upper limits on the off-diagonal

matrix elements of M2
LC . Examples of such bounds for M2 = µ = 200 GeV and two sets of

tan β and mmin
L (previously exhibited in table 2) are shown in table 3. In obtaining these

bounds, we assumed that m2
L is diagonal so that figure 1(a) does not contribute to the decay

amplitude.18 We then varied the matrix elements of M2
LC until the constraints from mea-

surements were violated. Moreover, we incorporated the full numerical one loop calculation

for ℓ J → ℓ Iγ, presented in section 4.1 rather than the approximate expressions given, e.g.,

in eq. (4.15). Notice that there exist lower bounds for the diagonal elements of M2
LC from

(g − 2)µ, but upper bounds for the off-diagonal elements of M2
LC from BR(ℓ J → ℓ I + γ).

The results of table 3 illustrate that the bounds on the square roots of the off-diagonal

elements of M2
LC are at least 10–100 times smaller than the square roots of the diagonal

elements. It is convenient to rewrite eq. (3.39) in the following form:

M2
LC = m2

L +
1

2
M2

Z cos 2β + m∗
DM−1m2

N (1+ M−2m2
N )−1M−1mT

D + O(v4M−2)

= m2
L+

1

2
M2

Z cos 2β + m∗
DM−1m2

NM−1mT
D+O(v4M−2) + O(v2m4

NM−4) , (4.17)

where we have expanded out the quantity (1 + M−2m2
N )−1 under the assumption that

‖M−2m2
N‖ < 1 (to be justified shortly). Eq. (4.17) implies that the off-diagonal elements

of M2
LC are roughly of order m2

Dm2
N/M2 (barring any accidental cancellations). If we

assume that mD is of order the electroweak scale, then the bounds on the off-diagonal

elements given in table 3 imply that

x ≡ ||m2
N ||

||M2|| . O(10−2) , (4.18)

with the strongest bound given by µ → eγ decay. This result suggests that ‖m2
N‖1/2 cannot

be larger than about 10% of the Majorana mass scale M . Hence, M2 + m2
N ≃ M2 and for

the estimates of the magnitude of the entries of the lepton number violating mass matrix

M2
LV in the next section we henceforth set m2

N = 0.

18Non-vanishing off-diagonal elements of m2
L should in most cases tighten the bounds on M2

LC , barring

accidental cancellations between the amplitudes obtained from figure 1(a) and (b).
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5. Neutrino masses and the lepton number violating parameters

In this section we examine the constraints on the lepton number violating sneutrino

squared-mass matrix M2
LV from our knowledge of the physical (light) neutrino masses

and mixing angles.

5.1 One-loop contributions to neutrino masses

The effective operator that describes the light neutrino mass matrix is given by:

−Lmνℓ
=

1

2
M IJ

νℓ
νI

ℓ νJ
ℓ + H.c. (5.1)

Note that νI
ℓ νJ

ℓ is a ∆L = 2 operator, since it changes lepton number by two units. In

section 3.1, we evaluated the tree-level contribution to Mνℓ
[cf. eq. (3.8)]. However, one-

loop contributions to the light neutrino mass matrix can be significant, and in some cases

these can be as or more important than the tree-level contribution [18, 28]. The dominant

one-loop graph involves a loop containing neutralinos and light sneutrinos, as shown in

figure 2(a). Due to the presence of the lepton number-violating sneutrino squared-mass

matrix M2
LV , which violates lepton number by two units, figure 2(a) can contribute signifi-

cantly to the light neutrino mass matrix. Other one-loop contributions shown in figure 2(b),

yield corrections to the light neutrino mass matrix of at most a few percent, and thus can

be neglected.

In order to establish the results just quoted, we begin by reviewing the relevant in-

teractions that govern the one-loop contributions to the light neutrino masses. The light

neutrino couplings arise from eq. (2.8) and the supersymmetric sneutrino-neutrino-neutral

gaugino interactions. After isolating the interaction terms containing one neutrino field,

one arrives at

Lν = −Y IJ
ν

(
νI

LνcJ
L H2

2 + H̃2
2νI

Lν̃J∗
R + H̃2

2νcJ
L ν̃I∗

L

)
+

i√
2
(g2W̃

3 − g1B̃)νI
Lν̃I∗

L + H.c. , (5.2)

where W̃ 3 and B̃ are the SU(2) and U(1) neutral (two-component) gaugino fields, and

g2 and g1 are the corresponding gauge couplings. Using eqs. (3.4) and (3.6), it follows

that νL ≃ νℓ + m∗
DM−1νc

h and νc
L ≃ νc

h − M−1mT
Dνℓ. Likewise, it follows from eqs. (3.33)

and (3.37) that

ν̃L ≃ ν̃ℓ + m∗
DM(M2 + m2

N )−1ν̃∗
h , (5.3)

ν̃∗
R ≃ ν̃∗

h − (M2 + m2
N )−1MmT

Dν̃ℓ . (5.4)

Thus, the effective interaction involving (at least) one light neutrino field is given by:

Lνℓ
≃ −Y IJ

ν

{
H̃2

2νI
ℓ ν̃J∗

h + νI
ℓ νcJ

h H2
2 − (mDM−1)KJ

(
H̃2

2νK
ℓ ν̃I∗

ℓ + νI
ℓ νK

ℓ H2
2

)

−[(M2 + m2
N )−1MmT

D]JKH̃2
2νI

ℓ ν̃K
ℓ

}

+
i√
2
(g2W̃

3 − g1B̃)
[
νI

ℓ ν̃I∗
ℓ + mDM(M2 + m2 ∗

N )−1νI
ℓ ν̃I

h

]
+ H.c. (5.5)
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(a)

νI
ℓ νJ

ℓ

Sk

χ0
i

(b)

νI
ℓ νJ

ℓ

h0,H0, A0, G0

×νcK
h νcL

h

Figure 2: One-loop corrections to light neutrino masses. (a) The loop consisting of light sneutri-

nos (Sk, k = 1 . . . 6) and neutralinos (χ0
i , i = 1 . . . 4) is the dominant contribution. (b) The loop

consisting of a neutral Higgs (or Goldstone) boson and a heavy neutrino contributes a relative cor-

rection to the light neutrino mass of at most a few percent. The contributions of the corresponding

graphs (not shown) in which the light sneutrinos in (a) are replaced by heavy sneutrinos and the

heavy neutrinos in (b) are replaced by light neutrinos are suppressed by an additional powers of

O(vM−1) as explained in D.

In order to perform the explicit loop computations, it is convenient to rewrite eq. (5.5)

in terms of mass eigenstate fields. The Higgs field H2
2 is expressed as [49]:

H2
2 =

1√
2

[
v2 + h0 cos α + H0 sin α + i(cos βA0 + sin βG0)

]
, (5.6)

in terms of the CP-even Higgs fields h0 and H0 (where mh0 ≤ mH0), the CP-odd Higgs field

A0 and the Goldstone field G0, where tan β ≡ v2/v1 and α is the CP-even Higgs mixing

angle. We also define two-component mass-eigenstate neutralino fields κ0
j (j = 1, . . . , 4)

following [7] by

ψi ≡ Zij
Nκ0

j , where ψi ≡ (−iB̃ , −iW̃ 3 , H̃1
1 , H̃2

2 ) , (5.7)

and ZN is a unitary matrix that governs the Takagi-diagonalization of the complex sym-

metric 4 × 4 neutralino mass matrix, Mχ0 via ZT
NMχ0ZN = diag(Mχ0

1
, . . . , Mχ0

4
).

Before presenting the explicit computations, let us first estimate the order of magnitude

of the loop-contributions to the neutrino mass due to the loop graphs of figure 2(a) and (b),

and the corresponding graphs (not shown) in which the light sneutrinos [heavy neutrinos]

in graph (a) [(b)] are replaced by heavy sneutrinos [light neutrinos]. This analysis is

presented in D—the results obtained there imply that the graphs of figure 2(a) and (b)

both yield contributions to the one-loop light neutrino mass matrix of order the tree-level

light neutrino masses, multiplied by the appropriate vertex couplings and a typical loop

factor. Other one-loop contributions not shown in figure 2 are suppressed by additional

powers of O(vM−1) and are utterly negligible.

We begin with an examination of the loop amplitude of figure 2(b), which is governed

by the light neutrino-heavy neutrino-Higgs interaction term of eq. (5.5). The internal

heavy neutrino line is marked with an × to indicate the lepton-number violating propagator

proportional to its (diagonal) mass MδKL. Summing over all the internal neutral Higgs and

– 28 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
9

Goldstone states, the leading O(M) term vanishes, leaving a subleading term of O(v2M−1),

which is the magnitude of the light neutrino mass. We find that figure 2(b) yields a leading

contribution to the light neutrino mass that is proportional to the tree-level light neutrino

mass matrix [cf. eq. (3.8)]:

δMνℓ
≈ − Mνℓ

32π2

g2
2

c2
W

log
M

mH
, (5.8)

where M and mH denote average heavy neutrino and Higgs boson masses. This correction

turns out to be of the order of at most few percent. Additional corrections can also arise

that modify the flavor structure of Mνℓ
, but these are not logarithmically enhanced and

are thus even smaller.

Hence, the possibility of a significant one-loop contribution to the light neutrino mass

matrix can only arise from figure 2(a), which is governed by the light sneutrino-neutrino-

gaugino interaction term of eq. (5.5). In the following, we examine the corresponding loop

graph in which the external light neutrino fields are mass eigenstates (νJ
ℓ )phys [cf. eq. (3.9)].

Using four-component spinor methods, the amplitude for this graph (with incoming four-

momentum p) will be denoted by

−i[(/pΣIJ
V + ΣIJ

S )PL + (/pΣIJ∗
V + ΣJI∗

S )PR] , (5.9)

where the generic self energies ΣIJ
V,S(p2) of the Majorana neutrino must be symmetric in its

indices I, J . To evaluate this graph, we express the neutrino-sneutrino-gaugino interaction

Lagrangian in terms of the four-component self-conjugate Majorana neutrino fields νI
M and

the Majorana neutralino fields χ0
i [cf. A]:19

Lχνν̃ = −1

2
(g2Z

2i
N − g1Z

1i
N )(ZIk

ν̃ − iZ(I+3)k
ν̃ )U IJ

MNS χ̄0
i PLνJ

MSk + H.c. , (5.10)

where the neutralino mixing matrix ZN is defined in eq. (5.7). The resulting DR-

renormalized neutrino mass matrix at one-loop order is given by:

(M (1−loop)
νℓ

)IJ = mνℓI
(µR) δIJ + Re

[
ΣIJ

S (m2
νℓ

) +
1

2
mνℓI

ΣIJ
V (m2

νℓ
) +

1

2
mνℓJ

ΣJI
V (m2

νℓ
)

]
,

(5.11)

where the loop diagrams are regularized by dimensional reduction and the tree level di-

agonal mass, mνℓI
, is defined at the renormalization scale µR. In addition, m2

νℓ
, is some

average neutrino mass scale, which to a very good approximation can be taken to be zero

in the explicit loop calculations presented below.

In order to determine the masses of the light neutrinos at one-loop accuracy, it is usually

sufficient to calculate the diagonal matrix elements of the self energies (i.e., by setting I = J

in eq. (5.11)), assuming that the tree-level neutrino masses are non-degenerate. However,

in some cases ΣIJ
S,V can be numerically large for I 6= J . If the latter holds, then one

19More explicitly, the non-zero components of PLνI
M are the two-component neutrino fields (νI

ℓ )phys, and

the non-zero components of PLχ0 are the two-component neutralino fields κ0
i introduced in eq. (5.7).
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must re-diagonalize the neutrino mass matrix, (Mone−loop
νℓ )IJ , in order to obtain the loop-

corrected physical neutrino masses and corresponding mixing matrix UMNS (more details

of a similar procedure in the context of R-parity violating models can be found, e.g., in

refs. [50] and [25]).

An explicit calculation of the diagram shown in figure 2(a), in the limit m2
νℓ

→ 0, yields

ΣIJ
S =

−mχ0
i

4(4π)2
(g2Z

2i
N − g1Z

1i
N )2 (ZLk

ν̃ − iZ(L+3)k
ν̃ ) (ZMk

ν̃ − iZ(M+3)k
ν̃ ) × (5.12)

×ULI
MNSU

MJ
MNS B0(mχ0

i
,mSk

),

ΣIJ
V =

−1

4(4π)2
|g2Z

2i
N − g1Z

1i
N |2 (ZLk

ν̃ − iZ(L+3)k
ν̃ ) (ZMk

ν̃ + iZ(M+3)k
ν̃ ) ×

×ULI
MNSU

MJ∗
MNS B1(mχ0

i
,mSk

), (5.13)

with an implicit sum over repeated indices, where mχ0
i

and mSk
are the neutralino and

sneutrino masses, respectively, and B0, B1 are the standard 2-point loop-integrals [51]

evaluated at p2 = 0,

B0(x, y) = ∆ − log
xy

µ2
R

+ 1 − x2 + y2

x2 − y2
log

x

y
, (5.14)

B1(x, y) = −1

2
∆ +

1

2
log

xy

µ2
R

− 3

4
− y2

2(x2 − y2)
+

(
x4

(x2 − y2)2
− 1

2

)
log

x

y
, (5.15)

with ∆ ≡ 2/(4 − d) − γ + ln 4π set to ∆ = 0 in the minimal subtraction renormalization

scheme. Note that ΣS is finite, i.e. in the sum over k the dependence on ∆ and µR cancels

exactly due to the orthogonality of Z. Likewise, ΣIJ
V is finite for I 6= J , which is easily

verified after using the orthogonality of Z and the unitarity of UMNS. This is to be expected

since in the mass basis there are (by definition) no tree-level off-diagonal neutrino mass

matrix elements. In contrast, ΣJJ
V is divergent, and after minimal subtraction it is here

that the µR dependence resides.

We now examine the relative magnitudes of the various contributions in eq. (5.11)

to the loop-corrected neutrino mass. First, we observe that ΣV [given by eq. (5.13)] is

dimensionless and has a magnitude of the order of a typical electroweak correction (this has

been numerically confirmed). Thus, the one loop contribution of the terms proportional to

the minimally subtracted ΣV in eq. (5.11) is at most a few percent of the tree-level neutrino

mass. Given the current experimental accuracy of neutrino data, this latter correction can

be neglected, as it does not provide any constraints on sneutrino parameters. Thus, we

focus on ΣS [given by eq. (5.12)], which can be simplified by employing the MIA expansion

described in section 4.3. The end result is:

δM IJ
νℓ

≡ (M1−loop
νℓ

)IJ − mνℓI
δIJ (5.16)

≃ −1

32π2

∑

i,K,M

mχ0
i
Re

[
(g2Z

2i
N − g1Z

1i
N )2 UKI

MNSU
MJ
MNS

(
M2

LV

)
KM

] (
∆B0

∆m2

)

iKM

,
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where in analogy to (4.16) we define

(
∆B0

∆m2

)

kIJ

≡





B0(mχ0
k
,mν̃I

ℓ
) − B0(mχ0

k
,mν̃J

ℓ
)

m2
ν̃I

ℓ
− m2

ν̃J
ℓ

, for I 6= J ,

∂B0(mχ0
k
,mν̃I

ℓ
)

∂m2
ν̃I

ℓ

, for I = J .

(5.17)

and the CP-averaged sneutrino masses, mν̃I
ℓ
, are defined below eq. (4.16). As expected,

this contribution is finite and is explicitly lepton number violating, as it is proportional to

the matrix M2
LV . Eq. (5.16) is a generalization of eq. (7) of ref. [18] to the 3-flavor seesaw

model.20

The results given in section 5.1 can be used to estimate the bounds on the heavy

sneutrino soft parameters m2
N ,m2

B ,Xν imposed by the current experimental measurements

of neutrino masses and mixing. These bounds allow for a significant one-loop correction to

the light neutrino mass matrix, δM IJ
νℓ

, which could even compete with the corresponding

tree-level masses. Further details will be given in sections 5.3 and 5.4.

5.2 Radiative generation of neutrino masses and mixing

It is very tempting to explain the characteristics of the neutrino mass spectrum as a conse-

quence of radiative corrections. The most economical possibility is one in which the pattern

of neutrino masses is entirely radiatively generated by the loop corrections. However, in

the supersymmetric seesaw model this is not possible. If one sets mνℓI
= 0 (for all I) in

eq. (5.16), then mD = 0 (or equivalently, Yν = 0), in which case only the light sneutrino-

neutrino-gaugino interaction of eq. (5.5) survives. However, this interaction generates a

one-loop neutrino mass that is proportional to M2
LV [cf. eq. (5.16)], which vanishes in the

limit of mD = 0.

Here, we shall be less ambitious and investigate whether the hierarchy and/or the flavor

mixing of neutrinos can be generated entirely by loop effects. As we shown below, such a

scenario seems to be possible. However, in order to obtain the correct values of the light

neutrino mixing matrix elements, a fine-tuning of sneutrino parameters may be required.

To be more specific, consider the following scenario. At tree level we assume the

Yukawa coupling matrix Yν to be real, non-negative and flavor diagonal, i.e. Y IJ
ν = Y I

ν δIJ

(with Y I
ν ≥ 0). Consequently, the tree level neutrino mass matrix [eq. (3.8)] is also real,

non-negative and diagonal so that U tree
MNS = i1. Then, the one-loop correction to the

neutrino mass matrix [eq. (5.16)] is proportional to:

αIJ ≡ 1

32π2

4∑

i=1

mχ0
i
(g1Z

1i
N − g2Z

2i
N )2

(
∆B0

∆m2

)

iIJ

. (5.18)

If one assumes that the flavor splitting of the light sneutrino masses is small, then the

ratio
(
∆B0/∆m2

)
iIJ

is approximately constant with the respect to the indices I, J , so

20We correct here a typographical in eq. (7) of ref. [18] where (g2Z
2i
N − g1Z

1i
N )2 is incorrectly written as

|g2Z
2i
N − g1Z

1i
N |2.
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that αIJ ≈ α is roughly constant. Therefore, the one-loop corrected neutrino mass matrix

[eq. (5.11)] can be written as

m(1−loop)
νℓ

≃ −mDM−1mD + Re
(
αM2

LV

)
. (5.19)

Since we have assumed above that Yν is diagonal, it follows that mD ≡ v2Yν/
√

2 is also

diagonal, in which case there is no need to distinguish between mD and its transpose. For

simplicity, we shall further assume that m2
N ≪ M2. Then, using eq. (3.40) for M2

LV , in

which only the leading O(vM−1) terms are kept [under the assumption that m2
B ∼ O(vM)

as suggested by eq. (2.14)], we may express eq. (5.19) in the following form:

m(1−loop)
νℓ

≃ −[1− Re(αXν)]mDM−1mD [1− Re(αXT
ν )]

−2mD
1

M
Re(αm2

B)
1

M
mD + Re(αXν)mDM−1mD Re(αXT

ν ) . (5.20)

To achieve the correct hierarchy of neutrino masses and mixings, one possible strategy

is to demand that the sum of the last two terms on the right hand side of eq. (5.20) is

negligible, in which case the first term yields the correct physical neutrino masses and the

mixing matrix. Then, using eq. (2.5), we perform a Takagi-diagonalization to identify the

physical (loop-corrected) neutrino masses and mixing matrix elements:

−[1− Re(αXν)]mDM−1mD [1− Re(αXT
ν )] = (Uphys

MNS)
∗ mphys

νℓ
(Uphys

MNS)
† , (5.21)

where mphys
νℓ is the (non-negative) diagonal physical neutrino mass matrix. One can solve

eq. (5.21) analytically for Re(αXν), which yields:

Re(αXν) = 1− i(Uphys
MNS)∗(mphys

νℓ
)1/2RM1/2m−1

D , (5.22)

where R is a complex orthogonal matrix, subject to the restriction that the right hand

side of eq. (5.22) is real. Thus, starting from any hierarchy of the tree-level diagonal,

non-vanishing Yukawa couplings Y I
ν , the special choice of Xν given in eq. (5.22) allows us

to reproduce the correct neutrino mass hierarchy and the mixing matrix.

Clearly, the scenario just presented is not very realistic from the phenomenological

point of view. To achieve the desired result, a specific form of the Xν parameter, very close

to perturbativity limit of Yν and the charged slepton masses is required, as well as a rather

precise cancellation between the last two terms of eq. (5.20). Nevertheless, our example

above provides an analytical existence proof for a radiative mixing scenario. In general,

for given Yν and M , many choices of sneutrino parameters leading to the correct pattern

of neutrino masses and mixing at the one-loop level exist, but they need to be determined

numerically. Presumably, all successful scenarios require a certain degree of fine-tuning,

but perhaps some solutions would be deemed acceptable.

5.3 Universal parameters at the scale M

The magnitudes of the parameters Aν , m2
B and m2

N that govern the behavior of the

heavy sneutrino sector are connected with the mechanism of supersymmetry breaking [cf.
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eq. (2.6)]. These parameters decouple at the scale M ≫ MZ where the sneutrino superfield

N̂ decouples. If the scale M is close to the GUT scale then soft SUSY breaking parameters

are restricted by GUT symmetry considerations. Further assumptions on the minimality

of the Kähler potential in supergravity simplify our input parameters considerably, at the

scale M ∼ MGUT ,

Aν = A0 Yν , m2
B = m0 M , m2

N = xM2 , (5.23)

where A0 is a complex number, m0 and x are real numbers, M is a diagonal 3×3 Majorana

neutrino matrix [cf. eq. (2.5)] and Yν is the neutrino Yukawa coupling [cf. eq. (2.1)].

Under the universality assumptions of eq. (5.23), the matrices M2
LC and M2

LV assume

the following simple forms at the GUT scale:

M2
LC = m2

L +
1

2
M2

Z cos 2β +
x

1 + x
m∗

DmT
D , (5.24)

M2
LV =

2Mνℓ

1 + x

(
A0 + µ∗ cot β − m0

1 + x

)
, (5.25)

where the light tree-level neutrino mass matrix Mνℓ
is given in eq. (3.8). As parameters

“run” from the GUT scale to low energies, m2
L receives renormalization from other Yukawa

and gauge interactions. In contrast, all the parameters associated with the superfield N̂

are hardly affected since M ∼ MGUT . Moreover, the neutrino mass matrix Mνℓ
and the

superpotential parameter µ are both multiplicatively renormalized. Hence, just above the

scale of low-energy supersymmetry breaking, the low-energy value of M2
LV is still given by

eq. (5.25), with the parameters on the right-hand side defined at the low scale. At the

low-energy supersymmetry-breaking scale the DR running neutrino mass matrix Mνℓ
(µR)

[or its diagonal form mνI
ℓ
(µR)] receives finite threshold corrections from the neutralino-

sneutrino loop in figure 2(a). The one-loop correction to the neutrino mass matrix given

in eq. (5.16) is proportional to the diagonal tree-level neutrino mass matrix.21 Hence, the

one-loop corrected neutrino masses assume the very simple and suggestive form

m
(1−loop)

νℓ
I = mνℓ

I

[
1 + 2Re

α

(1 + x)

(
A0 + µ∗ cot β − m0

1 + x

)]
, (5.26)

where α is defined in eq. (5.18) and all parameters are now defined at the scale µR = MZ .

We next examine the light sneutrino mass difference. Since the results of table 3 imply

that M2
LC is very close to diagonal form, it follows that Q0 ≃ 1 (cf. discussion above

eq. (3.48)]. Combining the results of eqs. (3.49), (3.52) and (3.66), we derive
(

∆mν̃ℓ

mνℓ

)

I

=
2

mν̃
ℓI

mν
ℓI

∣∣∣∣
(Mνℓ

)II

1 + x

(
A0 + µ∗ cot β − m0

1 + x

)∣∣∣∣ , (5.27)

21Indeed, assuming universal parameters at the GUT scale, and noting that x . O(10−2) [cf. eq. (4.18)], it

follows that M2
LC ≃ m2

LC1 at the GUT scale, where m2
LC is one of the approximately degenerate eigenvalues

of M2
LC . The positive square roots of the eigenvalues of M2

LC , evaluated at the low-energy scale, are identified

as the three CP-averaged light sneutrino masses. Although m2
L is no longer proportional to the identity

matrix at low-energies, this latter effect is formally of higher order in the loop expansion of δMIJ
νℓ

[cf.

eq. (5.16)]. Consequently, we can neglect the flavor splitting of the CP-averaged light sneutrino masses in

the evaluation of the ratio (∆B0/∆m2)iKM , in which case this ratio is roughly constant with respect to

the indices K and M as discussed below eq. (5.18).
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Input Parameters

Neutrino Sector SUSY Sector

mphys
νℓ1

10−14 A0 0

mphys
νℓ2

√
∆m2

sol m0 0

mphys
νℓ3

√
∆m2

atm µ 350

θ1 0.2+0.1 i tan β 10

θ2 0.3 MB̃ 95

θ3 0.1 + 0.5i MW̃ 189

M1 1014 x 0.0

M2 2 × 1014 mL 197

M3 5 × 1014 mR 135

Table 4: If not otherwise indicated, the input parameters that govern the neutrino and SUSY

sectors listed above have been employed in our numerical analysis. We take ∆m2
sol = (8.0+0.4

−0.3) ×
10−5 eV2 and ∆m2

atm = (2.45 ± 0.55) × 10−3 eV2 from ref. [11]. The values for θ1,2,3 above are

representative choices (as these angles are not fixed by the light neutrino data). All mass parameters

in the above table are in GeV units.

which is identical to the one flavor case found in eq. (3.68) and in ref. [18] if the neutrino

mass matrix Mνℓ
is diagonal. In the more general case of non-diagonal Mνℓ

, the diagonal

elements of the neutrino mass matrix do not coincide with the neutrino masses mν
ℓI

.

Consequently, the quantity (∆mν̃ℓ
/mνℓ

)I exhibits non-trivial dependence on the flavor

index I.

To produce quantitative results, we need to initialize the neutrino Yukawa couplings in

such a way that we always reproduce the “observed” MNS mixing matrix. Using eqs. (3.8)

and (3.10), it follows that

mD = iU∗
MNS (mphys

νℓ
)1/2 RT M1/2 , (5.28)

where R is an arbitrary complex orthogonal matrix [47], with three (complex) angles, θ1,2,3.

(As the sign of R is undetermined, one may choose det R = 1 without loss of generality.) In

the plots that follow, we assume a hierarchical spectrum for the neutrinos, and all relevant

input parameters are displayed in table 4. The value for mL adopted in table 4 is consistent

with a supersymmetric interpretation of the observed experimental excess for δaµ.

In figure 3 we plot the ratios (∆mν̃ℓ
/mνℓ

)I [upper panels] and (m
(1−loop)
νℓ /mνℓ

)I [lower

panels] as functions of the SUSY-breaking parameters m0 [left panels] and A0 [right panels].

When varying m0 we set A0 = 0 and when varying A0 we set m0 = 0. Otherwise, our input

parameters are as specified in table 4. In obtaining these results, we have incorporated the

full one-loop contribution to the neutrino masses. In the two lower panel plots, the ratios

(m
(1−loop)
νℓ /mνℓ

)I are nearly independent of the flavor I, and thus only one curve is shown.

Our numerical results confirm our analytical approximate formulae of eqs. (5.26) and (5.27)

and demonstrate that one must have m0 . 105 GeV (|A0| . 105 GeV) to guarantee that

the radiative corrections to neutrino masses are less than 80% of the tree level neutrino

mass. In this case, the sneutrino mass difference is at most ∆mν̃ℓ
<∼ 300∆matm ≃ 15 eV.
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Figure 3: Predictions for the ratios (∆mν̃ℓ
/mνℓ

)I and (m
(1−loop)
νℓ

/mνℓ
)I for the three neutrino

states (I = 1, 2, 3) as functions of the soft SUSY-breaking parameters m0 and A0. When varying

m0 [left panels] we set A0 = 0 and when varying A0 [right panels] we set m0 = 0.
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Figure 4: (a) In the left panel, the contribution to the muon anomalous magnetic moment from the

diagrams in figure 1 as a function of mL = mR is exhibited. (b) In the right panel, the prediction

for BR(ℓ J → ℓ Iγ) is shown as a function of the parameter x = m2
N/M2. The upper [lower] curves

correspond to τ → µγ [τ → eγ], and the middle curve to µ → eγ.

For completeness, we plot in figure 4 the results for gµ − 2 anomaly and the branching

ratios for the decays ℓ J → ℓ Iγ in the case of universal parameters at the SUGRA scale.

– 35 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
9

The results shown in figure 4 confirm our choices of a lower bound for mL [cf. table 2]

obtained in section 4.1 and an upper bound for x [cf. eq. (4.18)] obtained in section 4.3.

5.4 General case

So far we have dealt with universal boundary conditions for the supersymmetric parameters.

One can set general bounds for the lepton number violating matrix elements of M2
LV

from eq. (5.16) and the “naturalness” assumption of δmνℓ
. mνℓ

. In the general case,

appropriate bounds can be derived only numerically and depend on the particular form of

the MNS matrix. Analytical estimates can be obtained using the following approach. Let

us require that the one-loop corrections to the neutrino mass matrix do not significantly

affect the physical neutrino masses and their mixing. Combining eqs. (3.10) and (5.16),

one gets for any I, J :

|UMI
MNS (Mνℓ

)MN UNJ
MNS| ≥ (5.29)

∣∣∣∣
mχ0

i

32π2
Re

[
(g2Z

2i
N − g1Z

1i
N )2 UMI

MNSU
NJ
MNS

(
M2

LV

)
MN

](
∆B0

∆m2

)

iMN

∣∣∣∣ .

The structure of the UMNS factors on both sides of eq. (5.29) is identical, so roughly [barring

possible cancellations between terms and the effects of truncating a potential imaginary

part22 of UMI
MNS (Mνℓ

)MN UNJ
MNS], the condition above can be rewritten as:

| (Mνℓ
)MN | = |

(
mDM−1mT

D

)
MN

|

≥
∣∣∣∣
mχ0

i

32π2
Re

[
(g2Z

2i
N − g1Z

1i
N )2

(
M2

LV

)
MN

](
∆B0

∆m2

)

iMN

∣∣∣∣

≈ |αMN

(
M2

LV

)
MN

| , (5.30)

with αMN defined in eq. (5.18).

Further estimates depend on the particular choice of the mD (or Yν) and M and on

the neutralino sector parameters. For example, using the parameters specified in table 4,

one has αMN ≈ α ∼ 4 × 10−6 GeV−1, so that

|
(
M2

LV

)
MN

| ≤ 2.5 × 105 GeV | (Mνℓ
)MN | . (5.31)

Eq. (5.31) implies that in the general case one should expect the entries of the matrix

M2
LV to be no more than 5 or 6 orders of magnitude larger then the typical scales in the

effective neutrino mass matrix; i.e. of the order of a few MeV2. Bounds on M2
LV can be

also translated into bounds on Xν and m2
B. From eq. (3.40) one can see that, barring fine

tuning, we have approximate relations M2
LV ∼ Mνℓ

Xν or M2
LV ∼ Mνℓ

m2
B/M . Thus the

rough estimates we made above suggest that both Xν and m2
B/M should be smaller than

approximately 100 TeV.

22If the Higgsino mixing parameter µ and the lepton trilinear coupling Aℓ are real (the case of complex

µ and Aℓ has been extensively discussed in the literature, see e.g. [52]) then there is no bound on the

imaginary parts of the matrices M2
LC and M2

LV .
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Stronger bounds on the matrix elements of M2
LV can be obtained numerically after

assuming some particular form of the MNS matrix. As an example, under the assumption

of tri-bimaximal mixing of ref. [53] and the parameters given in table 4,

M2
LV .




2 × 10−9 . . . . . .

. . . 2 × 10−6 . . .

. . . . . . 10−5


 GeV2 , (5.32)

where the dots indicate elements with similar bounds as the diagonal ones. The significant

suppression of the lepton number violating matrix elements of M2
LV relative to the lepton

number conserving matrix elements M2
LC ∼ O(v2) is particularly noteworthy.

6. Sneutrino Oscillations

The theory behind sneutrino oscillations follows closely the very well known theory of

oscillations in the neutral Kaon-meson system. The light sneutrino state [cf. eq. (5.3)],

ν̃ℓ ≃ ν̃L − m∗
DM(M2 + m2

N )−1ν̃∗
R is to leading order in vM−1 the supersymmetric partner

of left-handed neutrino νL, and therefore couples to the W± and Z gauge bosons. For the

present discussion, it suffices to approximate: ν̃I
ℓ ≃ ν̃I

L, which we shall denote simply by ν̃I

in this section. The ν̃I can be produced, for example, in e+e− annihilation via s-channel

Z exchange:

e+ + e− → ν̃I + ν̃∗
I . (6.1)

When lepton number is conserved, the ν̃I (ν̃∗
I ) possess a definite lepton number equal to

−1 (+1) and they are produced in definite flavor eigenstates I = 1, 2, 3.

It is convenient to introduce a two-dimensional complex vector space spanned by a

basis of vectors consisting of the sneutrinos states of a given flavor I, |ν̃I〉 and |ν̃∗
I 〉. Two

important operators that act on this state are:

L̂ ≡
(
−1 0

0 1

)
, and CP ≡

(
0 1

1 0

)
, (6.2)

where L̂ is the lepton number operator and CP is the CP-operator in the {|ν̃I〉, |ν̃∗
I 〉} basis.

That is, |ν̃I〉 and |ν̃∗
I 〉 are eigenstates of L̂:

L̂|ν̃I〉 = −|ν̃I〉 , L̂|ν̃∗
I 〉 = +|ν̃∗

I 〉 , (6.3)

and the charge-conjugate parity operator CP transforms particle states into antiparticle

states:

CP |ν̃I〉 = |ν̃∗
I 〉 , CP |ν̃∗

I 〉 = |ν̃I〉 . (6.4)

The eigenstates of CP are given by

|ν̃(+)
I 〉 ≡ 1√

2
(|ν̃I〉 + |ν̃∗

I 〉) , |ν̃(−)
I 〉 ≡ 1

i
√

2
(|ν̃I〉 − |ν̃∗

I 〉) , (6.5)

– 37 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
9

with definite eigenvalues

CP |ν̃(+)
I 〉 = +|ν̃(+)

I 〉 , CP |ν̃(−)
I 〉 = −|ν̃(−)

I 〉 . (6.6)

The CP-even sneutrino state of flavor I, |ν̃(+)
I 〉, and the CP-odd sneutrino state of flavor

I, |ν̃(−)
I 〉, are states of indefinite lepton number. Of course, these states are the real and

imaginary parts of the sneutrino field of definite lepton number,

ν̃I =
1√
2
(ν̃

(+)
I + iν̃

(−)
I ) . (6.7)

Inevitably, in a supersymmetric model with a mechanism that yields neutrino flavor

oscillations, the sneutrino flavor states should oscillate as well. The sneutrino mass eigen-

states, Sk, (k = 1, 2 . . . 6) are linear combinations of the CP eigenstates |ν̃(±)
I 〉, and for a

three flavor system (I = 1, 2, 3) they are related by:

|ν̃(+)
I 〉 = ZIk

ν̃ |Sk〉 , |ν̃(−)
I 〉 = Z(I+3)k

ν̃ |Sk〉 , (6.8)

where the real orthogonal 6 × 6 matrix with Zij
ν̃ has been introduced in eq. (3.75). The

|Sk〉 are states of definite CP unless the following CP-violating conditions hold:

ZI(J+3)
ν̃ 6= 0 , Z(I+3)J

ν̃ 6= 0 , I, J = 1, 2, 3 . (6.9)

In the presence of complex parameters in the Lagrangian (whose phases cannot be absorbed

by field redefinition), one expects the conditions specified in eq. (6.9) to be satisfied (even

in the case of a one-generation model).

Let us initially focus our analysis on the CP-conserving one-generation model. Consider

the time evolution of the sneutrino states. The time dependence of a sneutrino in the state

|ν̃(±〉 is governed by a definite frequency ω± = E±/~ where E± = (p2c2 + m2
±c4)1/2. where

m+ and m− are the masses of |ν̃(+)〉 and |ν̃(−)〉 respectively. If these masses are large

compared to momentum p then the corresponding energies are E± ≃ m±c2 (in which case,

ω± ≃ m± in units where ~ = c = 1). In addition to the time-dependent phase, we must

also account for the fact that the sneutrinos decay exponentially (e.g. into a chargino and

a lepton) with a lifetime of τ± (for ν̃± respectively). We exhibit this time dependence

explicitly by writing

Ψ+(t) = e
−iω+t− t

2τ+ |ν̃(+)〉 , Ψ−(t) = e
−iω−t− t

2τ− |ν̃(−)〉 , (6.10)

where the ν̃(± are time-independent state vectors, That is, starting at t = 0, the proba-

bility for finding particle in the sneutrino state ν̃(+) is given by |〈ν̃(+)|Ψ(t)〉|2 = e−t/τ+ , as

expected.

The well known striking effects of the K-system (e.g., K–K mixing and regeneration)

can also occur in the sneutrino system. For example, we demonstrate how sneutrinos

states |ν̃〉 can turn to states |ν̃∗〉. If we start off with a sneutrino state that is Ψ(0) = |ν̃〉 =
1√
2
(|ν̃(+)〉 + i|ν̃(−)〉) at t = 0, then it follows that at time t,

|Ψ(t)〉 =
1√
2

[
e
−iω+t− t

2τ+ |ν̃(+)〉 + ie
−iω−t− t

2τ− |ν̃(−)〉
]

. (6.11)

– 38 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
9

Then, the probability amplitude that the sneutrino |ν̃〉 is in state |ν̃∗〉 is

Pν̃→ν̃∗(t) = |〈ν̃∗|Ψ(t)〉|2 =
1

4

[
e−t/τ+ + e−t/τ− − 2 e

− 1
2

“
t

τ+
+ t

τ−

”

cos[(ω+ − ω−)t]

]
. (6.12)

The quantum interference effects can only be seen if t ≃ τ+ ≃ τ− and (m+ − m−) t ≡
(∆m)t = O(1). That is,

∆m

Γν̃
≃ O(1) , (6.13)

where Γν̃ is an average decay rate for the sneutrino, and ∆m is the mass difference of the

CP-even and CP-odd sneutrino states. Eq. (6.12) describes the oscillations of sneutrinos

into antisneutrinos, or equivalently the oscillation between states of definite CP quantum

number. We shall call this phenomena CP-driven oscillations.

Similarly, one may compute the probability that the initial state |ν̃〉 is in the state |ν̃〉
at time t. We find

Pν̃→ν̃(t) = |〈ν̃|Ψ(t)〉|2 =
1

4

[
e−t/τ+ + e−t/τ− + 2 e

− 1
2

“
t

τ+
+ t

τ−

”

cos[(ω+ − ω−)t]

]
. (6.14)

One can also easily verity that Pν̃∗→ν̃∗ = Pν̃→ν̃ and Pν̃∗→ν̃ = Pν̃→ν̃∗. However, the proba-

bility Pν̃→ν̃ is proportional to the number of negatively charged leptons (Nl−) due to the

decay ν̃ → l−+χ+ while Pν̃→ν̃∗ is proportional to the number of positively charged leptons

(Nl+) due to the decay ν̃∗ → l+ + χ−. Then the asymmetry,

Al =
Nl− − Nl+

Nl− + Nl+
, (6.15)

is proportional to the quantum interference term cos(∆mt) in eqs. (6.12) and (6.14). That

is, the lepton charge asymmetry Al oscillates in time and provides a possible method for

experimentally determining the value of ∆m.

The signal for sneutrino-antisneutrino oscillations can be interpreted as the observation

of a sneutrino that decays into a final state with a “wrong-sign” charged lepton. The

phenomenological implications of such wrong-sign charged lepton final states at future

colliders have been explored recently in ref. [54].

We now turn to the three-generation model (allowing for the possibility of CP-

violation) and consider the additional possibility of flavor metamorphosis. We pose the

following question: Given the state |ν̃I〉 at time t = 0, what is the probability that the

sneutrino at time t is in the state |ν̃∗
J〉 or |ν̃J〉? Following the arguments given above

eq. (6.11), we find that a sneutrino wave function involves with time according to

|ΨI(t)〉 =
1√
2

(ZIk
ν̃ + iZ(I+3)k

ν̃ ) e
−iωkt− t

2τk |Sk〉 . (6.16)
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Hence, the probabilities to be in the state |ν̃∗
J〉 or |ν̃J〉 at time t are given by:

Pν̃I→ν̃∗
J
(t) = Pν̃∗

I →ν̃J
(t) =

1

4

6∑

k,s=1

e
−t

h
1

2τk
+ 1

2τs

i

cos [(ωk − ωs)t] × (6.17)

(
ZJk

ν̃ ZIk
ν̃ ZJs

ν̃ ZIs
ν̃ + Z(J+3)k

ν̃ Z(I+3)k
ν̃ Z(J+3)s

ν̃ Z(I+3)s
ν̃ − 2ZJk

ν̃ ZIk
ν̃ Z(J+3)s

ν̃ Z(I+3)s
ν̃

+ ZJk
ν̃ Z(I+3)k

ν̃ ZJs
ν̃ Z(I+3)s

ν̃ + Z(J+3)k
ν̃ ZIk

ν̃ Z(J+3)s
ν̃ ZIs

ν̃ +2ZJk
ν̃ Z(I+3)k

ν̃ Z(J+3)s
ν̃ ZIs

ν̃

)
,

Pν̃I→ν̃J
(t) = Pν̃∗

I →ν̃∗
J
(t) =

1

4

6∑

k,s=1

e
−t

h
1

2τk
+ 1

2τs

i

cos [(ωk − ωs)t] × (6.18)

(
ZJk

ν̃ ZIk
ν̃ ZJs

ν̃ ZIs
ν̃ + Z(J+3)k

ν̃ Z(I+3)k
ν̃ Z(J+3)s

ν̃ Z(I+3)s
ν̃ + 2ZJk

ν̃ ZIk
ν̃ Z(J+3)s

ν̃ Z(I+3)s
ν̃

+ ZJk
ν̃ Z(I+3)k

ν̃ ZJs
ν̃ Z(I+3)s

ν̃ + Z(J+3)k
ν̃ ZIk

ν̃ Z(J+3)s
ν̃ ZIs

ν̃ −2ZJk
ν̃ Z(I+3)k

ν̃ Z(J+3)s
ν̃ ZIs

ν̃

)
.

Note that the probabilities in eqs. (6.17) and (6.18) are unchanged under the interchange

of flavor indices I and J , respectively. The three-generation model possesses both flavor

and CP-driven oscillations.

In the supersymmetric seesaw model, neutrino mixing and masses are governed by a

variety of parameters that contribute to the tree-level and one-loop neutrino mass matrix

(cf. section 5.2). Some of these parameters also are relevant for determining the struc-

ture of the real orthogonal sneutrino mixing matrix Zij
ν̃ , which controls the properties of

the sneutrino mixing as shown above. Consequently, the bounds on the model parame-

ters discussed in sections 4 and 5 can be used to significantly constrain the general form

of eqs. (6.17) and (6.18).

The mass splittings among sneutrinos of different flavors is typically much larger than

the sneutrino-antisneutrino mass splitting between sneutrino states of a given flavor. In

particular, due to the renormalization group evolution of parameters, ∆m2
IJ is generally

larger than few GeV2, even in the case of universality assumptions at the high scale, whereas

sneutrino-antisneutrino mass splittings are typically of order the light neutrino masses. The

observability of oscillations depends on the ratio ∆m/Γ [cf. eq. (6.13)]. Because the total

decay width, Γ, is universal for a given sneutrino, whereas the scales of the corresponding

mass splittings are so different, it follows that ∆m/Γ ∼ O(1) can be satisfied only for one

of the two oscillation phenomena. That is, at most one oscillation phenomenon, either

flavor oscillations or CP-driven oscillations, can be observed.

Consider first the CP-driven oscillations. These oscillations can be observed if the

lifetime of the sneutrinos is sufficiently long (the appropriate numerical requirements are

given later in this section). In this case, flavor-driven oscillations are much faster and

have a very short “baseline”, so these oscillations are unobservable in collider experiments.

Therefore, one can take a time average over flavor-changing terms in the sums in eqs. (6.17)

and (6.18), setting them effectively to zero, and retain only those terms where the mass

splitting is CP-driven and not flavor-driven (i.e. keep only those terms with s = k or
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s = k + 3). Now, the sum over s can be performed, and eqs. (6.17) and (6.18) simplify to:

Pν̃I→ν̃∗
J

=
3∑

K=1

(
e−t/τK+

∣∣XIKXJK
∣∣2 + e−t/τK−

∣∣Y IKY JK
∣∣2

)

−2

3∑

K=1

e
−t

»
1

2τK+

+ 1
2τK−

–

cos [∆Kt] Re
(
XIKXJKY IKY JK

)
, (6.19)

Pν̃I→ν̃J
=

3∑

K=1

(
e−t/τK+

∣∣XIKXJK
∣∣2 + e−t/τK−

∣∣Y IKY JK
∣∣2

)

+2

3∑

K=1

e
−t

»
1

2τK+

+ 1
2τK−

–

cos [∆Kt] Re
(
XIKXJKY IKY JK

)
, (6.20)

where ∆K ≡ ωK − ωK+3 and we have used eq. (3.79) to express the 6 × 6 matrices Zν̃ in

terms of the 3 × 3 matrices X and Y .

Eqs. (6.19) and (6.20) are easily interpreted. For “long baseline” oscillations, one

needs first to project flavor I onto some K (via the XIK , Y IK factors), then the CP-driven

oscillation takes place between the would-be sneutrino-antisneutrino states SK and SK+3,

and finally the result is projected back onto flavor J .

Further simplification is possible if we exploit the bounds on the parameters due to the

ℓ J → ℓ Iγ decays obtained in section 4.3 to conclude that the matrix M2
LC is very close to

diagonal form. In this case, the matrix Q0 that diagonalizes M2
LC [cf. eq. (3.47)] is close to

the identity matrix. Moreover, the matrix elements of R [cf. eq. (3.59)] are suppressed by

the ratio of ∆mν̃/mν̃ , and are therefore negligible. It then follows that X ≃ Y ≃ T/
√

2,

where T ≡ diag(e−iφ1/2 , e−iφ2/2 , e−iφ3/2) and φJ ≃ arg(M2
LV )JJ [cf. eq. (3.50)]. If we

consider flavor conserving (i.e. I = J) sneutrino-antisneutrino oscillations, then there is

one large contribution in eq. (6.19) in the sum over K for I = K, whereas the contributions

of I 6= K are strongly suppressed by the squares of mixing angles. Therefore, the dominant

contribution to the probability for sneutrino-antisneutrino oscillations is given by:

Pν̃I→ν̃∗
I
≈ 1

4

[
e−t/τI+ + e−t/τI− − 2 e

−t

»
1

2τI+
+ 1

2τI−

–

cos(∆It) cos(2φI)

]
, (6.21)

which coincides exactly with the formula obtained previously for the one generation case

[cf. eq. (6.12)] in the CP-conserving limit (where M2
LV is a real matrix so that cos 2φI = 1).

Similarly, for Pν̃I→ν̃I
, one reproduces eq. (6.14) in the same limiting case.

To complete the analysis of the sneutrino oscillation formulae, we must compute the

total sneutrino decay width, Γk ≡ Γ(Sk → anything) = 1/τSk
. Supposing that the neu-

tralino is the lightest supersymmetric particle (LSP), the sneutrino decay width is the sum
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of the partial widths of the following two kinematically available decay chains,23

Γ(Sk → ℓ∓ I + χ±
i ) = g2

2

mSk

32π

(
1 −

m2
χi

m2
Sk

)3/2

|Z1i
+ |2

(
|ZIk

ν̃ |2 + |Z(I+3)k
ν̃ |2

)
, (6.22)

Γ(Sk → νI + χ0
i ) =

g2
2

c2
W

mSk

64π

(
1 −

m2
χ0

i

m2
Sk

)3/2

×

×|Z1i
N sW − Z2i

N cW |2
3∑

J=1

∣∣∣(ZJk
ν̃ − iZ(J+3)k

ν̃ )UJI
MNS

∣∣∣
2

. (6.23)

In deriving the formulae above, we have used the Feynman Rules eqs. (C.1) and (C.4)

from C and have taken the lepton masses to zero. Eqs. (6.22) and (6.23) agree with

ref. [18] in the limit UMNS = Zν̃ = 1. Writing Zν̃ in terms of X and Y [cf. eq. (3.79)], it

easily follows that the decay rates of the sneutrinos Sk with k = 1, 2, 3 [k = 4, 5, 6] depend

on X [Y ] alone. Since X and Y differ only by the “small” R matrix [cf. eq. (3.60)], it follows

that τI+ ≃ τI− , which can be used to further simplify the expression given by eq. (6.21).

The total sneutrino decay width is given by:

Γk =
3∑

I=1

2∑

i=1

Γ(Sk → ℓ∓ I + χ±
i ) +

3∑

I=1

4∑

i=1

Γ(Sk → νI + χ0
i ) (6.24)

= g2
2

mSk

32π




2∑

i=1

(
1 −

m2
χi

m2
Sk

)3/2

|Z1i
+ |2 +

1

2c2
W

4∑

i=1

(
1 −

m2
χ0

i

m2
Sk

)3/2

|Z1i
N sW − Z2i

N cW |2

 ,

where the summation over the lepton indices can be performed in the limit of vanishing

lepton masses, with the use of the orthogonality [unitarity] relations for the matrices Zν̃

[UMNS].

How can one observe sneutrino CP-oscillations? Consider the following scenario: sup-

pose that the LHC finds sneutrinos with masses that are accessible at a future Inter-

national Linear Collider (ILC). Then, at the ILC, the sneutrinos are produced through

the annihilation process of eq. (6.1), and subsequently decay into [leptons + charginos]

and [neutrinos + neutralinos] following the decay widths given by eqs. (6.22) and (6.23),

respectively. Sneutrino CP-oscillations will then be observed only if the asymmetry Al

defined in eq. (6.15), is appreciable, i.e., Al ∼ O(1), which can be realized if both ∆mk

is small (providing a long enough oscillation base) and the sneutrino decay rate is suffi-

ciently slow such that ∆mk/Γk ∼ O(1). This scenario is impossible if the sneutrinos are

sufficiently heavy compared to the neutralinos and/or charginos, in which case (neglecting

the phase space suppression in eq. (6.24) and performing the summation over the chargino

and neutralino indices) the sneutrino decay rate is approximately given by:

Γk ≈ g2
2

mSk

32π

[
2∑

i=1

|Z1i
+ |2 +

1

2c2
W

4∑

i=1

|Z1i
N sW − Z2i

N cW |2
]

= g2
2

mSk

32π

(
1 +

1

2c2
W

)
.

(6.25)

23Γ(Sk → ℓ∓ I + χ±
i ) indicates the sum of the sneutrino partial widths to the lepton-chargino and its

charge-conjugated final states.
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The expression above depends only on the sneutrino mass and cannot be suppressed by a

particular choice of mixing angles of the Zν̃ , Z+ or ZN matrices. Thus, using the results of

section 5, one can check that the ratio ∆mk/Γk is always much too small for the sneutrino

oscillations to be observed. As an example, in the case of universal parameters discussed

in section 5.3, for the lightest sneutrino and m0, |A0| . 105 GeV we obtain

∆mS

ΓS
. 2.7 × 10−6 , (6.26)

which is very far from the value O(1) required for the observability of sneutrino oscillations.

In the case of 2-body decays, the decay width Γk can be only suppressed by choosing

an appropriate hierarchy of particle masses. Most of the decay channels in eqs. (6.22)

and (6.23) would have to be closed kinematically, with the open channels strongly sup-

pressed either by the very small phase space factors (which requires rather unnatural de-

generacy between sneutrino and neutralino or chargino masses), or by sufficiently small

mixing angles for the relevant channel. An alternative possibility is one where the sneu-

trinos are lighter then all charginos and neutralinos, so that all 2-body decay channels are

closed, but heavier than some charged slepton. In this case, ν̃ → ℓ̃±W∓, and assuming

that the W is produced off-shell the end result is a 3-body decays that can produce an

observable charged lepton. Three-body phase space significantly suppresses the sneutrino

decay rate (relative to the two-body decay rates discussed above), and can yield observable

sneutrino-antisneutrino oscillations, as shown in ref. [18]. However in such a scenario, ei-

ther the charged slepton is the LSP, which is strongly disfavored by astrophysical data, or

the charged slepton decays to some new lighter supersymmetric particle, which requires ex-

tending the model beyond the seesaw-extended MSSM considered in this paper [55]. As we

have shown, the oscillations in the three-generation case does not differ much from the one-

generation case, where the flavor indices are summed over [cf. eqs. (6.21) and (6.24)]. Thus,

the results of ref. [18] can also be used without significant changes in the three-generation

case discussed in this paper.

Finally, we discuss the case of sneutrino flavor oscillations. These oscillations are

described by eqs. (6.17) and (6.18) with indices I 6= J . For any choice of I 6= J , both

equations can be significantly simplified using the bounds on the structure of sneutrino

mixing matrices derived in sections 4 and 5. These bounds imply that the off-diagonal

elements of matrices Q and R [defined in eqs. (3.49) and (3.56)] are small, which then

imply [via eqs. (3.60) and (3.79)] that the off-diagonal elements of the matrices X, Y and

Zν̃ are likewise small. Thus, to a good approximation one can keep in eqs. (6.17) and (6.18)

only terms at most quadratic in the non-diagonal elements of Zν̃ . For example, in the sum

of the first term of the product of four Zν̃ ’s in eq. (6.17), it is sufficient to keep only terms

with s, k = I, I + 3, J, J + 3. Assuming that the lifetimes of all eigenstates are very similar

(i.e., τ ≃ τk), all the dominant terms can be summed to give a simple final expression valid

for I 6= J ,

Pν̃I→ν̃J
≈ e−

t
τ

{
|QIJQJJ∗|2 + |QJIQII∗|2 + 2Re

(
QIJQJJ∗QJI∗QII

)
cos ∆mIJ t

}
,

(6.27)
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where ∆mIJ ≡ mν̃I
− mν̃J

.

The analogous expression for the sneutrino-antisneutrino oscillation probability Pν̃I→ν̃∗
J

is bilinear in the matrix elements of R [cf. eq. (3.56)]. The latter are at most of

O(105mν/v) <∼ 10−6 and thus lead to completely negligible sneutrino-antisneutrino transi-

tion rates.24

The form of eq. (6.27) is explicitly invariant with respect to rephasing, QIJ → QIJeiφJ .

Thus, without loss of generality, we may replace Q by Q0 [cf. eq. (3.49)] in eq. (6.27),

where the off-diagonal matrix elements of the unitary matrix Q0 are given approximately

by eq. (3.48) and the diagonal elements of Q0 are fixed by unitarity. As Q0 is close to the

identity matrix, the following approximations are valid: QJJ
0 ≃ 1 and QJI∗

0 ≃ −QIJ
0 for

I 6= J . In this approximation, eq. (6.27) simplifies for I 6= J to:

Pν̃I→ν̃J
≈ 2e−t/τ

[
|QIJ

0 |2 − Re(QIJ
0 )2 cos ∆mIJt

]
. (6.28)

If one uses the approximate expression given in eq. (3.48), QIJ
0 ≃ (M2

LC)IJ/(m2
ν̃J

− m2
ν̃I

),

then eq. (6.28) yields the oscillation probabilities directly in terms of the sneutrino squared-

mass matrix elements. As expected, the sneutrino flavor-transition depends on the flavor-

conserving matrix M2
LC .

Defining the oscillation length by L = ct we can write

∆mIJt = 5.06 × ∆mIJ (GeV)L( fm) . (6.29)

As in neutrino oscillations, it is useful to define ∆mIJ L = 2πL/L0 where L0 is the char-

acteristic length of the oscillation :

L0 = 1.24 fm × 1

∆mIJ (GeV)
. (6.30)

If the sneutrino mass difference is of O(1 GeV), the characteristic oscillation length is of

order 1 fm. Of course, the characteristic length of oscillation must be smaller than or at

most comparable to the decay length of the particle for oscillations to be observable. In

the case of the sneutrino, the decay length is [using eq. (6.25)]:

Lν̃ = cτ ≃ 28 (fm)

mν̃ (GeV)
. (6.31)

Hence, the condition Lν̃ >∼ L0 requires that

∆mIJ

mν̃
&

1

25
. (6.32)

Such a mass splitting between the sneutrino states of different flavors is sensible. Thus, the

likelihood of observing flavor sneutrino oscillations at colliders depends primarily on the

24An accurate estimate of Pν̃I→ν̃∗
J

should also take into account similarly small effects produced by the

admixture of the heavy sneutrino states in the definition of the ν̃I , which were neglected in derivation

of eqs. (6.17) and (6.18). However, given the extremely small transition probabilities, we do not present

the full analysis here.

– 44 –



J
H
E
P
1
1
(
2
0
0
7
)
0
5
9

degree of suppression caused by the mixing angles in the matrix Q. It is instructive to input

some representative numbers in eq. (6.27). Thus, for ∆m12 = 10 GeV,mν̃ = 270 GeV,

tan β = 10 and taking into account the bounds of table 3, we obtain for ν̃µ → ν̃e oscillations

at time t = τ = Γ−1 [cf. eq. (6.24)]:

Pν̃µ→ν̃e ≈ 1.25 × 10−5 [1 − cos(∆m12τ)] , (6.33)

Thus, as a consequence of the bounds from neutrino masses and radiative flavor changing

decays obtained in sections 4 and 5, we conclude that in the see-saw extended MSSM,

sneutrino flavor oscillations are difficult to observe at colliders.

If the bounds of sections 4 and 5 could be avoided, say with some cancellation mech-

anism (which in the absence of such a mechanism would appear unnatural), then it may

be possible to find regions of the supersymmetric parameter space where flavor oscillations

are observable. Then, at the ILC, one can define a flavor asymmetry for the number of

muons vs. electrons in the final state, analogous to eq. (6.15). A time-variation of this

flavor asymmetry would indicate the presence of flavor oscillations.

7. Conclusions

In this paper, we have studied sneutrino mixing phenomena in the seesaw-extended MSSM,

allowing for the full complexity of the three-generation model (which includes both flavor-

changing and CP-violating effects). We have focused primarily on the soft-SUSY-breaking

matrix parameters m2
N ,m2

B and Aν , which govern the structure of the sneutrino squared-

mass matrices. We have found a convenient parameterization of the sneutrino sector, where

all relevant physical observables depend analytically on a pair of 3× 3 mass matrices M2
LV

and M2
LC given in eqs. (3.40) and (3.39), respectively. The elements of M2

LV violate lepton

number by two units, whereas elements of M2
LC are lepton-number conserving parameters.

Within this framework, we have analyzed the constraints arising from one-loop neutrino

masses and mixings, from radiative flavor-changing charged lepton decays, and from the

electron electric dipole moment (EDM). We discovered new and potentially significant

contributions to radiative lepton decays ℓ J → ℓ I + γ due to the dependence of m2
N which

modifies the MSSM value of M2
LC . We also observed that although the (g−2)µ measurement

places non-trivial constraints on the SUSY-breaking parameters, the electron EDMs do not

yield any additional constraints (at one loop) on the seesaw-extended MSSM parameters.

All conclusions presented here are based on a complete numerical analysis of the processes

described above.25 In all cases, we have also provided useful analytic approximations,

which have served as a check of our numerical work.

Sneutrino mixing phenomena takes on two different forms. The mixing of sneutrinos

and antisneutrinos violates lepton number by two units, whereas sneutrino flavor mixing is

a lepton-number conserving process. Both forms of mixing are in present in principle in the

three-generation seesaw-extended MSSM. In this paper, we have generalized the sneutrino-

antisneutrino mixing formalism, originally presented in a one-generation model [18], to

25Fortran-77 and Maple-10 numerical codes are available from the authors.
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the three-generation model. This sneutrino-antisneutrino mixing then acts back on the

neutrino sector, and provides an important loop correction to the neutrino mass matrix. In

this paper, we examined the possibility that starting from a diagonal neutrino mass matrix

at tree-level, the nontrivial flavor structure of the neutrino mass matrix is generated entirely

by the one-loop diagram that directly involves the sneutrino-antisneutrino transition. Our

analysis shows that this is indeed possible, although in practice certain fine-tunings among

SUSY breaking parameters in the leptonic sector seem to be unavoidable.

Returning to the sneutrino sector, we have derived analytical expressions for

both sneutrino-flavor oscillations and sneutrino-antisneutrino oscillations in eqs. (6.17)

and (6.18). We determined that if the constraints analyzed above are combined with the as-

sumption that sneutrinos can decay into two-body final states, then sneutrino-antisneutrino

oscillations are not observable at colliders. This is consistent with a similar result of the

one-generation model obtained in ref. [18]. This conclusion is easily understood, by noting

that the sneutrino-antisneutrino mass difference, ∆mν̃ , is proportional to the neutrino mass

and is at most of the order of 1 keV. This is much smaller than the corresponding width

of the sneutrino, Γν̃ , of order 1GeV or larger. The observability of sneutrino-antisneutrino

oscillations at colliders requires that ∆mν̃ ∼ Γν̃ . A sneutrino width of order 1 keV or less is

possible only if there are no kinematically allowed two-body final states in sneutrino decay.

In the seesaw-extended MSSM, this scenario is possible only if a charged slepton is the light-

est supersymmetric particle, a possibility strongly disfavored by astrophysical data. Other

possibilities exist if one introduces new degrees of freedom beyond the seesaw-extended

MSSM, but this lies beyond the scope of this paper.

Sneutrino flavor oscillations are more likely to be observable at colliders, since the

mass splitting between sneutrinos of difference flavors can be of order 1GeV or larger.

We have derived simple approximate formulae for such oscillations and have estimated

their magnitudes. Unfortunately, in the seesaw-extended MSSM, after imposing bounds

on bounding sneutrino mixing angles determined from the analysis of radiative charged

lepton decays, the resulting probabilities for sneutrino flavor oscillations are likely to be

too small to be observed directly at colliders.

At present, within the seesaw framework for neutrino masses, few handles exist for

probing the physics at the seesaw scale. At most, one can hope to measure the MNS mixing

angles, and determine neutrino mass differences (and with a little luck, the absolute scale of

neutrino masses). In the seesaw-extended MSSM, some of the physics of the seesaw scale is

imprinted on parameters that govern the properties of the light sneutrinos. With a precision

program at future colliders for measuring sneutrino observables, there are new opportunities

to explore the fundamental physics that is responsible for the origin of neutrino masses.
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A. Notation for fermion fields

Fermion fields in quantum field theory can be described by employing either two-component

or four-component fermion notation [56]. In models where lepton number is not conserved,

two-component fermion notation is generally simpler and more efficient. In this appendix,

we briefly discuss the relation between the two treatments.

In table 1, the fermionic fields associated with the lepton and Higgs sectors of the

seesaw-extended MSSM are listed. These fermion fields can be viewed either as two-

component fermion fields or the left-handed projections of four-component fermion fields,

with ΨL ≡ 1
2(1 − γ5)Ψ and

Ψc ≡ CΨ
T

, Ψc = −ΨTC−1 , (A.1)

where Ψ ≡ Ψ†γ0 and C = −CT is the charge conjugation matrix.

For example, in four-component notation, given a four-component (anticommuting)

Dirac spinor νD, we define the following four-component spinors:

νL ≡ PLνD , νc
L ≡ PLνc

D , νR ≡ PRνD , and νc
R ≡ PRνc

D , (A.2)

where PL,R ≡ 1
2(1∓ γ5), respectively. The corresponding two-component (anticommuting)

fields are given by the non-zero components of νL ≡ PLνD and νc
L ≡ PLνc

D. Consequently,

we shall use the same symbols νL and νc
L for the corresponding two-component neutrino

fields. However, one must be careful to note that in our notation

νc
L = CνR

T , νc
R = −νT

LC−1 , (A.3)

since, e.g., νc
L ≡ PLCνT

D = C(PRνD)T . The same notation also applies to charged fermion

fields. Our conventions for left and right-handed charged conjugated fields follow those

of ref. [57]. Note that eq. (A.3) implies that anticommuting fermion fields satisfy:

νc
Rνc

L = νRνL , νc
Lνc

R = νLνR . (A.4)
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In the text, the effective Lagrangians for fermion mass and interaction terms are

given in terms of two-component fermion fields. These terms can be easily translated

into the four-component spinor notation . As a first example, the dimension-five oper-

ator that governs the standard seesaw mechanism [eq. (1.1)] contains a product of two-

component fermion fields, LI
i L

K
k . In terms of four-component spinors, this product is given

by −(LT )Ii C
−1LK

k = (Rc)Ii L
K
k , where LK

k ≡ (νK
L , ℓK

L ) is now interpreted as a doublet of

four-component fermion fields as described above and (Rc)Ii ≡ (νcI
R , ℓ cI

R ).

As a second example, we derive the four component version of eq. (3.1) in the one-

generation model. One can redefine the phases of the neutrino fields such that mD and

M are real and non-negative. The two-component spinor product νLνc
L + H.c. translates

to the product of four-component spinors: −νT
LC−1νc

L + H.c. = νRνL + νLνR, which is the

usual Dirac mass term. Similarly, the two-component spinor product νc
Lνc

L translates to the

four-component spinor product −νcT
L C−1νc

L = νRνc
L. Hence, if the Majorana mass term

M 6= 0 in eq. (3.1), one cannot identify the physical mass eigenstates as Dirac fermions.

For example, the mass terms of the one-generation neutrino Lagrangian, which in terms of

two-component fermion fields is given by −Lmass = mDνLνc
L + 1

2Mνc
Lνc

L + H.c., translates

in four-component notation to

−Lmass =
1

2
mD(νLνR + νRνL + νc

Lνc
R + νc

Rνc
L) +

1

2
M(νRνc

L + νc
LνR)

=
1

2

(
νc

R νR

) (
0 mD

mD M

) (
νL

νc
L

)
+

1

2

(
νL νc

L

) (
0 mD

mD M

) (
νc

R

νR

)

= −1

2

(
νT

L νc T
L

)
C−1

(
0 mD

mD M

) (
νL

νc
L

)
+ H.c. , (A.5)

where we have used eq. (A.4) to write the first line of eq. (A.5) in a symmetrical fashion

and eq. (A.3) to obtain the final form above.

The Takagi-diagonalization of the neutrino mass matrix yields two (self-conjugate) Ma-

jorana fermion mass-eigenstates. This is accomplished by introducing a unitary matrix U ,

(
νL

νc
L

)
= U

(
PLνℓ

PLνc
h

)
, (A.6)

such that

UT

(
0 mD

mD M

)
U =

(
mνℓ

0

0 mνh

)
, (A.7)

where mνℓ
≃ m2

D/M and mνh
≃ M + m2

D/M . The resulting neutrino mass Lagrangian is:

−Lmass = −1

2

[
mνℓ

νT
ℓ C−1PLνℓ + mνh

νc T
h C−1PLνc

h

]
+ H.c. (A.8)

We can define four-component self-conjugate Majorana fields by:

ψM ≡ PLνℓ + PRCνT
ℓ , ψM ≡ νℓPR − νT

ℓ C−1PL , (A.9)

ΨM ≡ PLνc
h + PRCνc T

h , ΨM ≡ νc
hPR − νc T

h C−1PL . (A.10)
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Thus, eq. (A.8) reduces to the expected form:

−Lmass =
1

2

[
mνℓ

ψMψM + mνh
ΨMΨM

]
. (A.11)

B. A non-decoupling contribution to sneutrino masses when

m2

N
∼ O(M2)

B.1 Non-decoupling effects when m2

N ≫ v2

In section 3.2, we noted below eq. (3.40) non-decoupling in the limit of ‖M‖ → ∞ with

‖m2
NM−2‖ fixed. The lepton-number conserving 3 × 3 squared-mass matrix of the light

sneutrinos [eq. (3.39)] can be written as:

M2
LC = m2

L +
1

2
M2

Z cos 2β + m∗
DM−1m2

NM−1mT
D + O(v4M−2) + O(v2m4

NM−4) , (B.1)

after expanding the quantity (1+ M−2m2
N )−1 under the assumption that ‖M−2m2

N‖ < 1.

Thus, we have a non-decoupling correction to the usual MSSM result of O(m2
NM−2) as

previously noted.

To understand the origin of this non-decoupling phenomenon, we use eq. (5.4) which

relates the original right-handed sneutrino with the light and heavy sneutrino states after

block diagonalization of the sneutrino mass matrix. To formally integrate out the heavy

sector and obtain the effective theory of the light sneutrinos, we must write:

Ñ I = ν̃I
h − ǫkn[(M2 + m2

N )−1MY T
ν ]IJ L̃J

nH2
k , (B.2)

before electroweak symmetry breaking, where we have used Ñ I ≡ ν̃I ∗
R . Note that when H2

2

is replaced by its vacuum expectation value v2/
√

2, we recover eq. (5.4) after using mD ≡
v2Yν/

√
2. In addition, we have used L̃J

1 ≃ ν̃J
ℓ +O(vM−1) and have worked consistently to

leading order in vM−1.

Consider the contribution of |dW/dNJ |2 to the scalar potential, where W is given by

eq. (2.1). Then,
dW

dNJ
= MJKNK + ǫijY

KJ
ν H2

i LK
j . (B.3)

After squaring, and including the soft-SUSY-breaking term Ñ∗m2
N Ñ (where m2

N is hermi-

tian), we find:

Ñ∗m2
N Ñ +

(
dW

dNJ

)(
dW

dNJ

)∗
= ǫijǫknY KJ

ν Y IJ ∗
ν H2

i H2 ∗
k L̃K

j L̃I ∗
n

+
[
ǫij(YνM)KIÑ I ∗H2

i L̃K
j + H.c.

]
+ (M2 + m2

N )KJÑK ∗ÑJ . (B.4)

To obtain the relevant operator that survives in the low-energy effective theory, we insert

eq. (B.2) for Ñ I in eq. (B.4), and then take the limit as ‖M‖ → ∞, In addition, we set

ν̃h = 0. The end result is:

ǫknǫij

[
Y ∗

ν Y T
ν − Y ∗

ν M(M2 + m2
N )−1MY T

ν

]JK
L̃J ∗

n L̃K
j H2 ∗

k H2
i . (B.5)
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Note that this is a dimension-4 (hard) SUSY-violating operator [58] which vanishes if

m2
N = 0 [as m2

N is the only SUSY-breaking source in eq. (B.5)]. If m2
N < M2, one can

expand (M2 + m2
N )−1 in eq. (B.5), which yields:

ǫknǫij[Y
∗
ν M−1m2

NM−1Y T
ν + O(m4

NM−4)]JK L̃J ∗
n L̃K

j H2 ∗
k H2

i . (B.6)

We now replace H2
2 → v2/

√
2. If m2

N ∼ O(v2), then the hard SUSY-breaking operator is of

O(v2M−2), which is the expected result. Such corrections are extremely small, assuming

that v ≪ ‖M‖, and can be be dropped from the low-energy effective field theory of the

light O(v) degrees of freedom. On the other hand, if x ≡ ‖m2
N‖/‖M2‖ is held fixed to a

finite positive value as M → ∞, then the hard SUSY-breaking operator is of O(x), which

must be kept in the low-energy effective theory if x is not too small.

In the latter case, we see the presence of a non-decoupling effect in the low-energy

effective field theory of the O(v) degrees of freedom as M → ∞. We identify this as

a hard SUSY-breaking effect described by the dimension-4 operator given by eq. (B.6).

Ultimately, this non-decoupling effect can be traced to the fact that although νL [νc
L] and

ν̃L [ν̃∗
R] are superpartners, it is not quite true that νℓ [νh] and ν̃ℓ [ν̃h] are superpartners.

Explicitly [cf. eqs. (5.3) and (5.4)], whereas

νc
h ≃ νc

L + M−1mT
DνL , (B.7)

to leading order in vM−1, we have:

ν̃∗
h ≃ ν̃∗

R + (M2 + m2
N )−1MmT

Dν̃L . (B.8)

Clearly, with m2
N 6= 0, there is a slight discrepancy between ν̃h and the superpartner of νh.

If we replace H2
2 with its vacuum expectation value v2/

√
2 in eq. (B.5) and again make

use of L̃J
1 ≃ ν̃J

ℓ + O(vM−1), we obtain a contribution to M2
LC : Then eq. (B.5) becomes:

[m∗
DmT

D − m∗
DM(M2 + m2

N )−1MmT
D]JK ν̃J ∗

ℓ ν̃K
ℓ , (B.9)

which correctly reproduces the last two terms of M2
LC given in eq. (3.39). Of course, the

non-seesaw MSSM result of M2
LC derives from the soft-SUSY-breaking term, L̃∗

i m
2
LL̃i, and

the D-term contribution, 1
2M2

Z cos 2β. As expected, in the M → ∞ limit (with x → 0), the

low-energy effective theory reproduces the non-seesaw MSSM result. In this appendix, we

have explained the origin of the non-decoupling correction to the non-seesaw MSSM result

in the M → ∞ limit with x held fixed to a finite positive value.

Finally, we address the question of the allowed size of the matrix parameter m2
N . Does

it make sense to have x close to O(1)? In [38], it is shown that for values of x ∼ 1,

there is a very large negative shift in the mass of the lightest CP-even Higgs boson due

to radiative corrections from the heavy neutrino/sneutrino sector of the seesaw-extended

MSSM. If we demand that there should be no unusually large radiative correction to a

physical observable generated as a result of mN 6= 0, we can apply the results of [38] for

the radiatively-corrected physical Higgs masses to conclude that x <∼ 0.1. Note that this

upper bound is less severe than the bound of x <∼ 0.01 given in eq. (4.18). The latter was

obtained in section 4.3 from the bounds on rare charged lepton radiative decay rates, which

imply that the matrix M2
LC should be close in form to a diagonal matrix.
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B.2 Naturalness constraints on the magnitude of m2

N

It seems that phenomenological constraints allow for the possibility that ‖m2
N‖ is signifi-

cantly larger than O(v2), in which case the non-decoupling contribution to M2
LC may be

significant (perhaps as large as a few percent of the non-seesaw MSSM result). However, if

one imposes the usual fine-tuning (or naturalness) requirements for the stability of the elec-

troweak scale, one can show that ‖m2
N‖ cannot be significantly larger than O(v2). This can

be verified by computing the one-loop correction to the H2
2 self-energy. The computation

in the supersymmetric limit is performed explicitly in appendix E, section 7 of ref. [6] for

the Wess-Zumino model. This computation is easily adapted to the present case of interest

(in which the Higgs boson couples the the neutrino/sneutrino system). We then modify the

supersymmetric computation in the case of the one-generation seesaw model by setting the

boson (heavy sneutrino) squared-mass to M2 +m2
N and the fermion (heavy neutrino) mass

to M . [Here, we are dropping terms of O(v2).] If m2
N 6= 0 (which softly breaks the super-

symmetry), the quadratic divergence does not cancel exactly. The surviving contribution

to the sqaured-mass term of H2
2 is of the form

m2
N |Yν |2I(M2,m2

N )|H2
2 |2 , (B.10)

where I is a logarithmically divergent integral (that can be regularized by dimensional

reduction [59]).

We now add this one-loop result to the corresponding tree-level contribution to the

scalar potential:

(m2
H2

+ |µ|2)|H2
2 |2 . (B.11)

In order to achieve successful electroweak symmetry breaking with v = 246 GeV, the com-

plete coefficient multiplying |H2
2 |2 must be of O(v2). By assumption, we take µ ∼ O(v)

[cf. eq. (2.12)]. If m2
N ≫ v2, the correct scale of electroweak symmetry breaking can

be achieved only by an unnatural fine-tuning of the parameter m2
H2

. Thus, naturalness

requires that m2
N ∼ v2. We have not distinguished between O(v2) and O(M2

SUSY) in the

above discussion. It is likely that there is a slight separation of scales with MSUSY <∼ 1 TeV.

By imposing the naturalness condition on the dynamics of electroweak symmetry breaking

(which ultimately is the motivation for TeV-scale supersymmetry in the first place), we

conclude that the expected natural order of magnitude for ‖m2
N‖ is:

‖m2
N‖ ∼ O(MSUSY) , (B.12)

as indicated by eq. (2.15).

For completeness, we note that the same conclusion can be drawn by considering the

one-loop effective scalar potential, V (1)(φ). In particular, if we introduce a hard momentum

cutoff Λ, one obtains a one-loop contribution of [60]

V (1)(φ) =
Λ2

32π2

∑

i

Str M2
i (φ) +

1

64π2
Str

{
M4

i (φ)

[
ln

M2
i (φ)

Λ2
− 1

2

]}
, (B.13)

where M2
i (φ) are the contributing squared-mass matrices of particles whose masses origi-

nate from their couplings to the Higgs boson, with the vacuum expectation values replaced
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by the corresponding Higgs fields, φ, and

Str {· · · } =
∑

i

(−1)2Ji(2Ji + 1)Ci {· · · } . (B.14)

In eq. (B.14), Ci counts the electric charge and color degrees of freedom of particle i (e.g.,

C = 2 for the W± gauge boson and C = 6 for a colored quark, since we count both particle

and antiparticle). It is convenient to absorb the factor of 1/2 in the last term on the right

hand side of eq. (B.13), by defining µ such that:

ln
M2

i (φ)

Λ2
− 1

2
≡ ln

M2
i (φ)

µ2
. (B.15)

Using the results of eqs. (3.12), (3.69) and (3.70), we focus on the contributions to the

supertraces from the heavy neutrinos and sneutrinos. Indeed,

∑

i

StrM2
i (φ) = 2Tr m2

N + O(v2) , (B.16)

although m2
N is field independent and thus contributes only to the vacuum energy. Here,

we are interested in the implications of naturalness associated with electroweak symmetry

breaking (and not the cosmological constant). Thus we focus on the field-dependent part

of the scalar potential that is quadratic in the Higgs fields. To do this, we simply replace

mD with H2
2Yν . For simplicity, we shall examine the one generation seesaw model. In this

case, we obtain the following scalar field-dependent squared-masses:

m2
νh

≃ M2 + 2|Yν |2|H2
2 |2 , (B.17)

m2
ν̃h

≃ M2 + m2
N + |Yν |2|H2

2 |2
[
1 +

M2

M2 + m2
N

]
. (B.18)

Inserting these results into the last term on the right hand side of eq. (B.13), and using

eq. (B.15) to replace Λ with µ, we end up with the following terms in V (1)(φ) that contribute

to the coefficient of |H2
2 |2

2
{
(M2 + m2

N )2 + 2(2M2 + m2
N )|Yν |2|H2

2 |2
}

ln




M2 + m2
N + |Yν |2|H2

2 |2
(

2M2+m2
N

M2+m2
N

)

µ2




−2
{
(M4 + 4M2|Yν |2|H2

2 |2
}

ln

[
M2 + 2|Yν |2|H2

2 |2
µ2

]
, (B.19)

where we have dropped terms of O(v2|H2
2 |2). Expanding out the logarithms, the above

expression reduces to

2
{
(M2 + m2

N )2 + 2(2M2 + m2
N )|Yν |2|H2

2 |2
}{

ln

[
M2 + m2

N

µ2

]
+ |Yν |2|H2

2 |2
2M2 + m2

N

(M2 + m2
N )2

}

−2
{
(M4 + 4M2|Yν |2|H2

2 |2
}{

ln
M2

µ2
+

2|Yν |2|H2
2 |2

M2

}
. (B.20)
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If we keep only terms proportional to |H2
2 |2, we end up with:

4|Yν |2|H2
2 |2

{
2M2 ln

(
1 +

m2
N

M2

)
+ m2

N

[
ln

(
M2 + m2

N

µ2

)
+

1

2

]
+ O(v2)

}
. (B.21)

One can check that the coefficient of |Yν |2|H2
2 |2 is precisely m2

NI(M2,m2
N ), where I is the

integral appearing in eq. (B.10) after DR subtraction [59].

C. Feynman rules

We exhibit here the relevant Feynman rules for the calculation of ℓ → ℓ ′γ presented in

section 4.3. These rules are based on four-component fermion notation (see A) and employ

the conventions of ref. [7] for sfermion, chargino and neutralino masses and mixing matrices.

The neutrinos νI are (self-conjugate) Majorana fermions [cf. eq. (A.9)]. In the basis defined

in section 2 we obtain:

Sk χ0
i

νI
i

2

[
(g1Z

1i
N − g2Z

2i
N )(ZJk

ν̃ − iZ(J+3)k
ν̃ )UJI

MNS PL

+ (g1Z
1i∗
N − g2Z

2i∗
N )(ZJk

ν̃ + iZ(J+3)k
ν̃ )UJI∗

MNS PR

]
,

(C.1)

L+
k

χi

νI −i
(
g2Z

Jk
L Z1i

− − Y J
ℓ Z

(J+3)k
L Z2i

−

)
UJI

MNS PL ,

(C.2)

L+
k χ0

i

ℓI

i

[(
g2√
2cW

ZIk
L (Z1i

N sW +Z2i
N cW )−Y I

ℓ Z
(I+3)k
L Z3i

N

)
PL

+
(
−g1

√
2 Z

(I+3)k
L Z1i∗

N −Y I
ℓ ZIk

L Z3i∗
N

)
PR

]
,

(C.3)

Sk χC
i

ℓI

− i√
2

[
g2Z

1i
+ (ZIk

ν̃ − iZ(I+3)k
ν̃ ) PL

−Y I
ℓ Z2i∗

− (ZIk
ν̃ − iZ(I+3)k

ν̃ ) PR

]
.

(C.4)
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(a) ×

νI
ℓ νJ

ℓ

ν̃I
ℓ ν̃J

ℓ

B̃ , W̃ 3 B̃ , W̃ 3

(b)

νI
ℓ νJ

ℓ

H2
2 H2

2

×νcK
h νcL

h

Figure 5: One-loop corrections to light neutrino masses. The × marks the location of the ∆L = 2

transition. (a) The loop consisting of light sneutrinos and gauginos. The × indicates the location of

light sneutrino-antisneutrino mixing, and the solid dot indicates a factor of the gaugino Majorana

mass in the numerator of the fermion-number-violating gaugino propagator. (b) The loop consisting

of the neutral Higgs field H2
2 and a heavy neutrino. The × indicates the lepton-number-violating

heavy neutrino propagator, which is proportional to MδKL, and the solid dot indicates a mass

insertion of the form (H2 ∗
2 )2. The contributions of the corresponding graphs (not shown) in which

the gauginos in (a) are replaced by the Higgsino H̃2
2 , the light sneutrinos in (a) are replaced by

heavy sneutrinos, and the heavy neutrinos in (b) are replaced by light neutrinos are all suppressed

by an additional powers of O(vM−1) as explained in the text.

D. Order of magnitude estimates for contributions to one-loop neutrino

masses

In this appendix, we estimate the order of magnitude of the one-loop contributions to the

neutrino masses due to the graphs of figure 2(a) and (b), and the corresponding graphs

(not shown) in which the light sneutrinos [heavy neutrinos] in graph (a) [(b)] are replaced

by heavy sneutrinos [light neutrinos].

In the case of graph (a), the dominant contribution involves the light sneutrino-

neutrino-gaugino interaction term26 of eq. (5.5). We can estimate the leading contribution

of this graph by replacing the internal lines by the interaction eigenstate fields that appear

in eq. (5.5), as depicted in figure 5. That is, we first replace the Sk with the ν̃I
ℓ , which

must point away from both external vertices, as shown in figure 5(a). The latter is possible

only in the presence of light sneutrino-antisneutrino mixing, which is indicated by the × in

figure 5(a). Using the expected magnitudes of the model parameters given by eqs. (2.11)

and (2.14), the × in figure 5(a) produces a factor ∆m2
ν̃ℓ

∼ O(v3M−1). The neutralino line

can be treated perturbatively. In the lowest order approximation, we take the neutralino

to be a gaugino (either B̃ or W̃ 3, with Majorana masses M1 and M2, respectively), and

we treat the mixing of the gauginos with the neutral higgsino states (H̃1
1 and H̃2

2 ) as a

perturbation. The corresponding gaugino propagators (with internal four-momentum q)

shown in figure 5(a) are fermion-number-violating propagators (indicated by the clashing

arrows), and are given by iMk/(q
2−M2

k ) for k = 1, 2. We denote the presence of the gaug-

26Of the three light sneutrino-neutrino-neutralino interactions of eq. (5.5), the two sneutrino-neutrino-

higgsino interaction terms are suppressed by a factor of O(mDM−1) relative to the sneutrino-neutrino-

gaugino interaction, and can be neglected.
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ino mass [which is of O(v)] in the numerator by the solid dot in figure 5(a). Not including

this explicit factor of the gaugino mass, the loop in graph (a) then consists of two mas-

sive scalar propagators [with mass of O(v)] and one fermion-number-violating propagator;

hence the loop integral has a mass dimension of −2. Thus, the corresponding loop integral

is of O(v−2). Combining the above results, the order of magnitude of the contribution of

graph (a) is:

CL
v3

M
· 1

v2
· v = CL

v2

M
, (D.1)

which is indeed of order the tree-level neutrino mass multiplied by the product of the

relevant vertex coupling constants and a typical loop factor of 1/16π2 (denoted by CL

above).

Suppose we replace the light sneutrinos of graph (a) with heavy sneutrinos. In this

case, the effect of heavy sneutrino-antisneutrino mixing is ∆m2
ν̃h

∼ O(m2
B) ∼ O(vM). From

eq. (5.5), we see that there are potentially two contributions — one involving the gauginos

and one involving the higgsino H̃2
2 . In the case of the gaugino loop graph, each vertex

introduces a O(vM−1) suppression. Thus, following the analysis above, we conclude that

the order of magnitude of the heavy-sneutrino loop is suppressed by a factor of O(v2M−2)

as compared with the light-sneutrino loop. In the case of the loop graph involving H̃2
2 ,

we note that there is no diagonal Majorana mass term for this higgsino field. Moreover,

H̃1
1 does not couple to the external neutrinos, so we cannot use the off-diagonal Majorana

mass term µH̃1
1 H̃2

2 for the fermion-number-violating neutralino propagator. Therefore, the

heavy-sneutrino loop can be neglected.

In the case of graph (b), the propagator of the heavy neutrino (with internal four-

momentum q) is given by iMδKL/(q2 − M2), due to the presence of the lepton-number

violating mass M (indicated by the ×). Since the loop integral is dimensionless, it naively

appears that the resulting loop integral should be of O(M). However, an explicit compu-

tation of the graph of figure 2(b) demonstrates that the coefficient of the leading O(M)

term vanishes exactly after summing over the internal neutral Higgs and Goldstone states.

The subleading term does not vanish and is of O(v2M−1), which is the magnitude of the

light neutrino mass. This cancellation can be easily understood by noting that the two

vertices of figure 2(b) arise from interactions of eq. (5.5) that involve H2
2 . Thus we re-

place the neutral Higgs and Goldstone lines of figure 2(b) by the H2
2 field [cf. eq. (5.6)].

According to the interaction Lagrangian of eq. (5.5), the H2
2 field must point into both

external vertices, as shown in figure 5(b). This requires a mass insertion on the H2
2 line

of the form (H2
2 )2 + H.c. In fact, such a term exists in the MSSM Higgs potential [49]

after shifting the neutral field H2
2 → H2

2 + v2/
√

2, which results in a term of the form
1
4m2

Z sin2 β(H2
2 )2 + H.c. Thus, in the mass insertion approximation, graph (b) consists of

the lepton-number-violating heavy neutrino propagator, two massive scalar field lines27

27In the MSSM Higgs sector, after shifting the neutral Higgs fields by their vacuum expectation values and

applying the potential minimum conditions, there is a mass term of the form ( 1

2
m2

Z sin2 β+m2
A cos2 β)|H2

2 |2,
where m2

A ≡ −m2
12/ sin β cos β [and m2

12 defined in eq. (2.6)]. In evaluating graph (b) of figure 5, we treat

the |H2
2 |2 mass term exactly, and incorporate the (H2

2 )2 +H.c. and H1
1H2

2 +H.c. mass terms perturbatively

(via the mass insertion approximation).
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and an insertion of O(v2). After extracting the factor of M from the numerator of the

heavy neutrino propagator, the remaining loop integral now has a mass dimension of −2,

which yields a result of O(M−2). Combining these result, the order of magnitude of the

contribution of figure 5(b) is given by:

C ′
L

1

M2
· M · v2 = C ′

L

v2

M
, (D.2)

which is again of order the tree-level neutrino mass multiplied by the product of the relevant

vertex coupling constants and a typical loop factor (denoted above by C ′
L). This result

confirms our previous argument above. A careful evaluation of the leading behavior of the

loop integral (in the limit of M ≫ v) then reproduces the result obtained in eq. (5.8). Note

that the factor of sin2 β ≡ v2
2/v

2 that arises in the mass insertion on the H2
2 line cancels

out a similar factor of v2
2 that appears in C ′

L ∝ Y 2
ν .

If the heavy neutrinos in figure 5(b) are replaced by light neutrinos, the resulting

contribution is suppressed by an additional factor of O(v2M−2) due to the suppression of

the νI
ℓ νK

ℓ H2
2 interaction of eq. (5.5).
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