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ABSTRACT: The seesaw-extended MSSM provides a framework in which the observed light
neutrino masses and mixing angles can be generated in the context of a natural theory
for the TeV-scale. Sneutrino-mixing phenomena provide valuable tools for connecting the
physics of neutrinos and supersymmetry. We examine the theoretical structure of the
seesaw-extended MSSM, retaining the full complexity of three generations of neutrinos
and sneutrinos. In this general framework, new flavor-changing and CP-violating sneutrino
processes are allowed, and are parameterized in terms of two 3 x 3 matrices that respectively
preserve and violate lepton number. The elements of these matrices can be bounded by
analyzing the rate for rare flavor-changing decays of charged leptons and the one-loop
contribution to neutrino masses. In the former case, new contributions arise in the seesaw
extended model which are not present in the ordinary MSSM. In the latter case, sneutrino-
antisneutrino mixing generates the leading correction at one-loop to neutrino masses, and
could provide the origin of the observed texture of the light neutrino mass matrix. Finally,
we derive general formulae for sneutrino-antisneutrino oscillations and sneutrino flavor-
oscillations. Unfortunately, neither oscillation phenomena is likely to be observable at
future colliders.
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1. Introduction

The Standard Model of particle physics provides a remarkable description of the funda-
mental interactions of elementary particles at energy scales of order 100 GeV and below.
Precision tests at LEP, the Tevatron and other lower energy colliders have detected no
significant deviations from the predictions of observed electroweak phenomena [fJl. Al-
though the scalar sector responsible for electroweak symmetry breaking has not yet been
discovered, the precision electroweak data is consistent with the Standard Model including
a scalar Higgs boson of mass 114 GeV < my, < 182 GeV at 95% CL. Despite its successes,
the Standard Model is widely acknowledged to be only a low-energy effective theory, to
be superseded (most likely at the TeV energy scale) by a more fundamental theory that
can explain the puzzling large hierarchy between the energy scale that governs electroweak
symmetry-breaking and the Planck scale [J].

Numerous proposals for a more fundamental theory that supersedes the Standard
Model have been advanced over the last thirty years [[J]. Low-energy supersymmetric
theories (in which supersymmetry breaking effects of order the TeV scale are ultimately re-
sponsible for electroweak symmetry breaking) are perhaps the most well-studied framework
for TeV-scale physics beyond the Standard Model []—f]. The simplest supersymmetric ex-
tension consists of the particle content of the two-Higgs-doublet extension of the Standard
Model and its supersymmetric partners. In addition to the supersymmetric interactions of
the particle supermultiplets, one adds the most general set of soft-supersymmetry-breaking
terms, which parameterizes the unknown dynamics responsible for supersymmetry break-
ing [, B]. The resulting minimal supersymmetric Standard Model (MSSM) yields a rich
phenomenology of new superpartners and interactions, which if present in nature is poised
for discovery at the Tevatron and/or Large Hadron Collider (LHC).

Although no significant deviations from Standard Model predictions have been ob-
served at colliders, there is of course one definitive set of observations that are in conflict
with (the minimal version of) the Standard Model — the observation of neutrino mixing
and its implications for neutrino masses [. Since neutrinos are strictly massless in the
Standard Model, the latter must be modified in order to incorporate the observed phe-
nomena of neutrino oscillations. The simplest approach is to introduce a gauge invariant
dimension-five operator [I(]!

L5 = —ﬁTK(eijL{Hj)(eMLfﬂg) +He., (1.1)
where H; is the complex Higgs doublet and L! = (v!, 1) is the SU(2)-doublet of two-
component lepton fields,? where I and K label the three generations.

After electroweak symmetry breaking, the neutral component of the doublet Higgs
field acquires a vacuum expectation value, and a Majorana mass matrix for the neutri-
nos is generated. The dimension-five term [eq. ([L.1])] is generated by new physics beyond
the Standard Model at the scale A. Current bounds on light neutrino masses suggest

1Following refs. [ﬂ] and [ﬂ], we employ a convention where €12 = —1 = —e21.
2To translate the two-component spinor product L! LE into four-component spinor notation, see E



that v2/A < 1 eV [, [[Z], or A > 10'3 GeV. A possible realization of eq. ([L.) is based
on the seesaw mechanism, which was independently discovered by a number of different
authors [[[3, [[4]. In the seesaw extension of the Standard Model [[[4], one simply adds
SU(2)xU(1) gauge singlet neutrino fields ¢/ and writes down the most general renormal-
izable couplings of v¢! to the Standard Model fields:

1
Lseesaw = _einVIJHiL]I‘VEJ - §MIJVEIVEJ + H.c. (12)

If || M]|| > v, then at energy scales below M a dimension-five operator of the form given by
eq. (1) is generated.

The MSSM is a minimal extension of the Standard Model. Nevertheless, there is
a potential source for lepton-number violation and hence neutrino masses. Unlike the
Standard Model, it is possible to construct renormalizable operators that violate lepton
number and baryon number [[5]. In their most generic forms, such operators would lead
to extremely fast proton decay in conflict with the observations. The traditional solution
is to introduce a discrete symmetry called R parity [[[§] that distinguishes Standard Model
particles and their superpartners. In the R-parity-conserving (RPC) MSSM, neutrinos are
massless just as in the Standard Model. Thus, one way to incorporate massive neutrinos
in the RPC-MSSM is to formulate a minimal supersymmetric extension of the seesaw-
extended Standard Model [[[7—R1]. An alternative approach is to choose a different discrete
symmetry that preserves baryon number but violates lepton number [P4]. In such an R-
parity-violating (RPV) MSSM, a Zs baryon triality guarantees that baryon number is
conserved by the renormalizable operators of the model (hence preventing fast proton
decay). This approach has the advantage that no new fields beyond those of the MSSM
need to be introduced. However, certain RPV (lepton-number-violating) couplings must
be taken to be quite small in order to explain the scale of neutrino masses [23-R3].

In this paper, we shall consider the minimal supersymmetric extension of the seesaw-
extended Standard Model [[]—-RJ)]. In this model, neutrino masses and mixing are governed
by the same seesaw mechanism originally introduced into the (non-supersymmetric) Stan-
dard Model. In the supersymmetry-extended model, new lepton-violating phenomena enter
due to additional effective lepton-violating operators generated by soft-supersymmetry-
breaking. Such effects govern the behavior of the neutrino superpartners — the sneutrinos.
Thus, the supersymmetric seesaw model provides new sources for lepton-number-violating
phenomena. For example, sneutrinos and antisneutrinos can mix due to effective AL = 2
operators [[L§, Pf]. Although such mixing effects are expected to be quite small, there are
some scenarios in which sneutrino mixing phenomena could be observed in future collider
experiments [[I§, 7). Sneutrino mixing also contributes a significant one-loop correction
to neutrino masses and could be partially responsible for the observed pattern of neutrino
masses and mixing [[§, B§, B§]. The supersymmetric seesaw can also introduce lepton-
flavor-violation and CP-violating effects due to the non-trivial flavor structure of the see-
saw interactions [[9, R4, R9. Such phenomena are exhibited in the flavor oscillations of the
charged sleptons [B{] and the sneutrinos, respectively. Moreover, new one-loop processes
contribute to £1 — £7~ and electric dipole moments, and provide interesting constraints
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Table 1: Fields of the supersymmetric seesaw model.

on the model parameters.

In section [}, we introduce the Lagrangian for the three-generation supersymmetric
seesaw model, focusing on the interaction of the lepton and Higgs superfields. Our nota-
tion for fermion fields are described in []. In section [J, we derive the mass matrices for
neutrinos and squared-mass matrices for the sneutrinos. In the limit of M > v, one can
use perturbation theory to obtain accurate analytical expressions for the diagonalization of
the effective mass and squared-mass matrices for the light and heavy neutral fermion and
scalar states, respectively. The origin of a non-decoupling contribution to sneutrino masses
noted in section [ is provided in [H. In section ], we examine the constraints on the lepton-
number conserving parameters of the model due to the observed g — 2 of the muon, the
(unobserved) electric dipole moment of the electron, and the unobserved radiative decays
of charged leptons. In section [, constraints on the lepton-number violating parameters of
the model are obtained based on observed neutrino mass and mixing data. The general
theory and phenomenology of sneutrino oscillations and mixing are addressed in section [f.
Our conclusions are given in section [, Although the neutrino are most easily treated as
two-component spinor fields, it is convenient to present the Feynman rules of the model
using four-component spinor notation. In [A], we demonstrate how to translate between
two-component and four-component spinor notation in the interaction Lagrangian. The
relevant Feynman rules needed for the computations of this paper are listed in [d. Fi-
nally, some order of magnitude estimates for the contributions to one-loop neutrino masses
(relevant for the discussion of section p.1) are provided in [J.

2. Lagrangian and the scalar potential

In this section, we examine the terms of the Lagrangian that contribute to the masses and
the non-gauge interactions of the neutrinos and sneutrinos. That is, we focus on terms
that involve the charged leptons, neutrinos, charged sleptons, sneutrinos and the Higgs
fields. The relevant superfields (denoted with hats above the corresponding field symbol)
are specified in table [.

The electric charge (in units of e) is given by Q = T3+Y/2, where Y is the hypercharge
specified above. The index j labels components of the SU(2) doublets with 75 = £1/2 for
j = 1,2 respectively (and T35 = 0 for the SU(2) singlets). The fermionic partners can
be viewed either as two-component fermion fields or the left-handed projections of four-



component fermion fields, as explained in [Al The index I = 1,2,3 labels three possible
generations of charged lepton and neutrino superfields. The notation for the scalar field
components of the hypercharge zero superfield is motivated by the fact that in the lepton-
number—conservmg limit, R and N possess the same lepton number (which is opposite in
sign to that of L). Consequently, 7y, and vp possess identical lepton numbers [cf. eq. (f-3)].

The most general (renormalizable) form of the superpotential involving the lepton and
Higgs superfields in the R-parity-conserving extended MSSM is given by:

o~ o~ o~ 1 ~ o~
W = e;(uH}H? —V/'H!LIR? + V/'HILIN') + §M”NINJ, (2.1)

where Yy and Y, are complex 3 x 3 matrices, M is a complex symmetric 3 x 3 matrix and
p is a complex parameter.? In addition, there are soft-supersymmetry-breaking terms that
involve the scalar field components of the above superfields. Before writing these terms
explicitly, it is convenient to perform field redefinitions of the (charged and neutral) lepton
superfields:

'-vPr’, R'-VER), N VN, (2.2)
where V7, Vg and Viy are 3 x 3 unitary matrices. Note that the kinetic energy terms (and
the couplings of the lepton superfields to the gauge fields) are invariant under the above
unitary transformations. However, the coefficients of the terms of the superpotential are

modified:

Y, = VIV VR, Y, -VIYV,Vy, M—VIiMVy. (2.3)

We shall choose V7, Vi and Vi such that:
VEY Vg = diag(Ye, Y, Yz), (2.4)
VEMVy = diag(My, My, M), (2.5)

where the elements of the two diagonal matrices above are real and non-negative. It is
always possible to find unitary matrices Vz, and Vg such that eq. (R.4) is satisfied — this
is the singular value decomposition of an arbitrary complex matrix [BI]. Likewise, it is
always possible to find a unitary matrix Vy such that eq. (2.5) holds — this is the Takagi-
diagonalization of an arbitrary complex symmetric matrix [BI]-B3. Thus, the redefinition
of the lepton superfields [eq. (B-J)] implies that one can assume from the beginning without
loss of generality that Y, and M are real non-negative diagonal matrices.* Note that the
(transformed) V), is in general an arbitrary complex 3 X 3 matrix.

We next introduce the most general set of R-parity-conserving soft-supersymmetry
(SUSY)-breaking terms (following the usual rules of [B4]) involving the slepton, sneutrino
and Higgs fields:

VsorT = Tn%ﬁlﬁfl*ltf~1 + m%JQH‘z*H‘Q +(mP) LI L] + (my) R R + (m3y)" NT* N/
_ [( IVININY e (m12H H?+ Al H] LIRJ+A”H2LINJ) +HC] , (2.6)

3With the convention for ¢;; as specified in footnote ﬂ7 it is convenient to insert an extra minus sign in
front of Y7 in eq. (Ell) This ensures that in a basis where Y} is a real positive diagonal matrix, the charged
lepton masses are also positive. Note that this convention differs from the one adopted in [ﬂ]

4 After electroweak symmetry breaking, eq. (@) corresponds to working in a basis in which the charged
lepton mass matrices are (real) non-negative and diagonal.



where m%, m% and m?v are hermitian matrices, mZB is a complex symmetric matrix and

Ay and A, are complex matrices. In general, these 3 x 3 matrices do not take a simplified
form in the basis defined by eqgs. (R.4) and (R.§). The total scalar potential is made up
of three contributions: the F-terms, which are derived from eq. (R.1)), the D-terms, which
arise from the gauge interactions, and and the soft SUSY-breaking terms, which have been
specified in eq. (B.). The total scalar potential is then given by:

oW |2

0¢;

and the sum over i is taken over all scalar components of the corresponding superfields.

2.7)

V =Vr+Vp+ Vsorr, where Vi = Z ‘

The Yukawa couplings of the leptons and the Higgs fields and the corresponding fermion

mass terms are derived from eq. (R.1)) using the well-known formula [§, [:

| [0* W)
—Linass — Lyuk = = ———; + Hee.| 2.8
ass Yuk 2 ; |:8¢18¢] 1/%% + H.c ( )
where the ; are the two-component fermion field superpartners of the corresponding ¢;,
and W@ is the superpotential function with superfields replaced by their scalar com-
ponents. After electroweak symmetry breaking, the neutral Higgs fields acquire vacuum
expectation values,5

(H}) = % , (H3) = % (2.9)
where v? = v? + v3 = (246 GeV)? and tan 3 = va/v;. Inserting the Higgs field vacuum
expectation values into eqs. (R.7) and (R.§), one can isolate the terms of the Lagrangian
that are quadratic in the scalar fields and fermion fields, respectively. These terms yield
squared-mass matrices for the charged sleptons and sneutrinos and mass matrices for the
charged leptons and neutrinos. In the basis defined by eq. (R-4), the charged lepton mass
matrix is diagonal, with diagonal elements m,r = leZI JV2.

In general, the diagonalization of these mass matrices cannot be performed analyt-
ically, and one must resort to numerical techniques. However, the large hierarchy be-
tween neutrino masses and charged lepton masses strongly suggests that the parameters
M7 > v, in which case an analytic perturbative diagonalization permits one to isolate the
light (s)neutrino sector and integrate out the superheavy (s)neutrino sector, whose particle
masses are of order the Mj. This procedure was carried out for the CP-conserving one-
generation model in [[§]. In section [, we shall generalize this analysis to the most general
(potentially CP-violating) three-generation model.

First, we clarify the expected magnitudes of the parameters of the model:

1. We assume that the Yukawa couplings Y,// satisfy:6

1Y, [l < O1). (2.10)

5We define the overall phases of the neutral Higgs fields, Hi and H3, such that the corresponding vacuum
expectation values vl’g/\/i are real and positive.
5The Euclidean matrix norm is defined by ||A] = [tr(AJfA)] /2 = [ZZ j |a¢j|2] 72 for a matrix A whose

matrix elements are given by a;;.



. The Majorana mass M is much heavier than the electroweak scale (seesaw mecha-

nism (L))

[ M| > v . (2.11)

. Although p is a supersymmetric parameter, we require it to be of a similar order to
the low-energy supersymmetry-breaking scale, Msusy [Bg]:

oo~ MSUSY . (212)

. The non-singlet soft SUSY-breaking squared-masses are of a similar order to the
supersymmetry-breaking scale:

I || ~ [lm ] ~ Mgysy - (2.13)

. The parameters mZB and A, are unconnected to electroweak symmetry breaking at
tree-level. However, these parameters generate a mass-splitting between sneutrinos
and antisneutrinos. The latter contributes via loop corrections to neutrino mass
splittings, which are experimentally constrained. One expects that [@]

Al £ Msusy, Im%|| < Msusy | M|, (2.14)

although these parameters could conceivably be larger by as much as a factor of
103 [@] Large A, also leads also to large corrections to charged slepton masses.
Thus, to avoid unnatural fine-tuning in order to prevent charged slepton masses from
being larger than about 1TeV, one again expects that A, cannot be much larger
than the supersymmetry-breaking scale. The impact of the one-loop effects of mQB on
charged lepton radiative decays and the Higgs mass parameters also yield constraints
and imply that the bound on mQB given by eq. (R.14) cannot be significantly relaxed.

. The singlet soft SUSY-breaking parameter m% is also unconnected to electroweak
symmetry breaking at tree-level. However, the one-loop corrections to the Higgs
mass parameters depend quadratically on m?\,, so to avoid unnatural fine-tuning of
the electroweak symmetry breaking scale, one expects that m?v cannot be much larger
than (1 TeV)?. This expectation is confirmed in [B, in which case

Im% |l S Miusy - (2.15)

If significant fine-tuning of the electroweak scale is allowed (as in the split-super-
symmetry [B7] approach), then the constraints on m3% are significantly relaxed. The
one-loop effects of m%; on physical observables are rather mild, even as ||m%|| ap-
proaches ||M?||. For example, in [Bg], the one-loop corrections to Higgs masses in the
seesaw-extended MSSM are found to be large and negative if |[m2 ||, [m%|| ~ || M2
However, these corrections become negligible once these soft-SUSY-breaking masses
are taken somewhat below the seesaw scale.



Thus, we shall present results in this paper that allow for the possibility that:
[mZ || ~ (M2 - (2.16)

If eq. (R.16]) holds, then remnants of the heavy neutrino/sneutrino sector can survive
in the effective theory of the light sneutrinos. The origin of this non-decoupling effect
is explored in [B.

Although naturalness demands that the scale of low-energy supersymmetry-breaking,
Msusy, should be (roughly) of O(v), the absence of observed supersymmetric phenomena
(and a light CP-even Higgs boson) suggest that Mgysy may be somewhat larger, of order
1TeV. Nevertheless, in egs. (2.12)—(2.15), one could substitute Mgysy with v; the results
of this paper are consistent with either choice.

3. The (s)neutrino (squared-)mass matrices

In this section, we examine in detail the neutrino mass matrix and the sneutrino squared-
mass matrix. In a three-generation model, the neutrino mass matrix is a 6 x 6 complex
symmetric matrix, which can be written in block (partitioned) form in terms of 3 x 3
matrix blocks. The sneutrino squared-mass matrix is a 12 x 12 hermitian matrix, which
can be written in block (partitioned) form in terms of 6 x 6 matrix blocks. Each of these
6 x 6 matrices can be further partitioned in terms of 3 x 3 matrix blocks. In order to
accommodate the proliferation of matrices of dimension 3, 6 and 12, we adopt a notational
device that allows the reader to instantly discern the dimension of a given matrix. Thus,
we use a boldface capital letter (M) to denote a 12 x 12 matrix, a calligraphic letter (M)
to denote a 6 x 6 matrix, and a Latin letter (M or m) to denote a 3 x 3 matrix. Latin
letters will also be used to denote (scalar) mass parameters, with appropriate identifying
subscript or superscript labels to distinguish these from the 3 x 3 matrices introduced in
sections f] and [|. Following the conventions of section fl, we shall employ subscript and
superscript upper case Latin indices I, J, K as generation labels that run from 1 to 3.
Lower case Latin indices i, j, k are employed for other purposes, either as SU(2) gauge
indices or as labels representing the six light sneutrino mass eigenstates. Other subscripts
appearing in this section will be used to distinguish among different matrix quantities.

3.1 The neutrino mass matrices

Working in a basis where M is a diagonal matrix [cf. eq. (B-F)], we begin by analyzing the
neutrino mass matrix. The resulting terms quadratic in the neutrino fields are given in
terms of two-component fermion fields” by:

C

1 1
L, =5 (0V2Y ) - MV b He) = S 0] DM, <L> + He,
vr

(3.1)

"In H, we show how to rewrite eq. (@) in terms of four-component neutrino fields. However, the
two-component formalism is more economical, so we adopt this notation in what follows.



The neutrino mass matrix M,, is a 6 x 6 complex symmetric matrix given in block form

by:
0 mp
3.2
(5 ) y

mp = v2Y,/V2 (3.3)

M,

where the 3 x 3 complex matrix

generalizes the neutrino Dirac mass term of the one-generation model [cf. eq. ([A.5)].

Provided that || M| > ||mp]| [as suggested by eq. (R.11)], M,, is of a seesaw type [[L3].
The neutrino mass matrix can be Takagi block-diagonalized [R1], B3, as follows. Intro-
duce the 6 x 6 (approximate) unitary matrix:

U — 1- %m’l‘)M*Qm% mH M1 (3.4)
—M~'m]) — sM ' mEmp, Mt )

where 1 is the 3 x 3 identity matrix.
One can check that:

m4 —4
u' = (1 oo ODM ) 1+ O(n(ii‘)M—“)) ' (35)

We define transformed (light and heavy) neutrino states vy and v}, by:

(Zi) = U <Zz) . (3.6)

By straightforward matrix multiplication, one can verify that

UM, U = (3.7)
—mpM~t*mE+0O(mt,M—3) O(m3,M~2)
O(m3,M~2) M—|—%(M_lm%mp—l—m%m*DM_l)—i—O(m%M_g)

At this stage, we can identify an effective (complex symmetric) mass matrix M,, for
the three light (left-handed) neutrinos with respect to the {v;}-basis:

M, ~ —mpM*m}. (3.8)

To identify the physical light neutrino states, we must perform a Takagi-diagonalization
of M,,. This is accomplished by introducing the unitary MNS matrix BY], Umns, via

v; = Uiihs (0] )P, (3.9)

where the (v/ )P [J = 1,2, 3] denote the physical light neutrino fields. Uyns is determined
by the Takagi-diagonalization of M,,:

Ul\:,/}NSMW Umns = dia‘g(ml’ll y Mgy ml’zs) ) (3.10)



where the m,,, are the (real non-negative) masses of the light neutrino mass eigenstates.

For completeness, we examine the effective mass matrix of the heavy neutrino states.
Although M is diagonal by assumption, the lower right-handed block in eq. (B.7) is no
longer diagonal due to the second-order perturbative correction. However, we do not
have to perform another Takagi-diagonalization, since the off-diagonal elements are of
O(m2,M~1), and would only affect the physical (diagonal) masses at order O(m%M—3),
which we neglect. The corresponding mixing angles would be of (’)(m%M ~2), which we
also neglect here. Thus, we identify the physical heavy neutrino mass eigenstates to leading
order by:

(v T)PRYs ~ gl (3.11)
with masses

1
My, = M <1 +2 > \m{jﬁ) : (3.12)
Iy

where the M are the diagonal elements of M in our chosen basis.

3.2 The sneutrino squared-mass matrices

We now turn to the sneutrino sector. It is convenient to separate out various pieces that
comprise the F-term contributions to the scalar potential [eq. (R.7)]:

VE=V, + Vu + Vother ) (313)

where V,, = Zi:Z{ N |OW /0¢;|* and V,, = |0W/OH3|? ultimately contribute to the sneu-
trino squared-mass matrix, whereas Viher (which involves derivatives of the superpotential
with respect to the other scalar fields) makes no contributions to tree-level sneutrino masses.

As a pedagogical exercise, we first analyze the supersymmetric limit. Although super-
symmetry-breaking is required in the MSSM to generate electroweak symmetry breaking,
one often finds supersymmetric-like relations between the fermion and sfermion sectors in
the limit of v; = vp and p = 0, i.e. for V), = Vp = 0. Thus, in the following computation
the supersymmetric limit corresponds to taking the total scalar potential [eq. (R.7)] to
be V = V,. To analyze the contributions of V, to sneutrino masses, we can employ the
following trick. Focus on the following two terms of the superpotential:

- H2Y,\ (L
(LIT NT) _0 N (R gy
azyr M N

Consistent with eq. (B.6), we redefine the neutrino superfields as follows:
L L
L) =u 2, (3.15)
N Ny,

,10,

|
w, =YHILINT + §M”NINJ =

DO =



where the unitary matrix ¢/ is given by eq. (B.4). Defining the matrix H = H 2Y,, the effect
of eq. (B.1§) is to transform W, into®

WV:%(HM_lHT)UE{ZE{[i—% M”+%(M‘1HTH+HTH*M_1)” N/ N{+oH* M3,

(3.16)
where there is an implicit sum over I and J. In deriving eq. (B.16)), we have used the fact
that M!7 is a non-negative diagonal matrix. Setting H2 = v2/v/2 and using eq. @), we
can directly make use of eq. (B.16) to isolate the contributions to the sneutrino squared-
mass matrix that arise from V,,:

—Linass = ngMg%rgilﬁ + N}IM}%Thﬁh ) (317)
where the 3 x 3 hermitian matrices M ng , and M, % , are given by:

MZ, = mh M 'mlmp M~ 'mE + O(m$M—1), (3.18)
1
M2, = M?+mbmp + 5(z\mﬁgm’;ﬂ\rl + M tmEmi M) + O(miHM~2). (3.19)

Moreover, the effective light and heavy neutrino mass matrices, M,, and M,,, can also
be derived by inserting eq. (B.16) into eq. (B.§). As expected, the resulting neutrino mass
matrices are related in a supersymmetric way to the sneutrino squared-mass matrices

obtained in egs. (B.1§) and (B.I9):
M, = M}, M, , My, = M}, M,, . (3.20)
In particular, in the supersymmetric limit,

T * .
UMNS M£2T£ UMNS = dlag (mg{l s m?,m s m3l3)7 (321)

which implies that the light neutrino and sneutrino masses coincide.

We now turn to the complete calculation of the sneutrino mass matrix. Although one
could perform the computation with respect to the basis of sneutrino states defined by
eq. (B.19), this basis is not especially convenient. This is due to the fact that the effec-
tive squared-mass matrix of the light sneutrinos is dominated by supersymmetry-breaking
effects. In particular, the supersymmetric contribution of O(m%M~2) [cf. eq. (B.1)] is
completely negligible relative to the supersymmetry-breaking contributions. Thus, there is
no advantage to performing in the sneutrino sector the same change of basis used to isolate
the effective mass matrix of the light neutrinos. Hence we will write the 12 x 12 hermitian
sneutrino squared-mass matrix in block form as:

_ _l Tt M%L M%N oL
Lmass — 92 (¢L ¢N) <(M%N)-|- M?VN> <¢N> ) (322)

8Strictly speaking, this is not a permissible transformation, since W must be holomorphic in the super-

fields, whereas eq. (B.16)) is a function of both 1:122 and ]?122 *. However, since we ultimately set H2 = vg/ﬂ
and only take derivatives of W, with respect to L1y and Nj, the procedure outlined here yields correct
results.
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where ¢, = (L1, LY)T and ¢ = (N, N*)T are six-dimensional vectors. The 6 x 6 her-
mitian matrices M2, M3,y and the 6 x 6 complex matrix M2\, can be written in block

partitioned form as:

2 2 *
My = | Mats Mats (3.23)
AB = M2 MZ* ’ .
ATB AtB

where the subscripts A and B can take on possible values L and N [this labeling allows

one to keep track of the origin of the various matrix blocks]. The M2, , are 3 x 3 hermitian

AtA
matrices and the MiT 4 are 3 X 3 complex symmetric matrices, for A = L, N. There are
no restrictions on the 3 x 3 complex matrices MiTB and MiTB for A # B.

Adding up the contributions of V,,, V,,, Vp and Vsopr to the sneutrino masses yields:

MZ, =mi + %M% cos 23 +mhmb (3.24)
My = M? +m3 +mhmp, (3.25)
M: = mphHM, (3.26)
M}y = —-X,mp, (3.27)
Mry = —2mbp, (3.28)
M., =0, (3.29)

where we have introduced the complex 3 x 3 matrix parameter X,, by the following defini-
tion: 1
X, mp = E (VA + p*v1Yy,) . (3.30)

A quick check of the supersymmetric limit confirms the expected relation between the

neutrino mass matrix and the sneutrino squared-mass matrix:

mmL m M
MIM, = PP D . 3.31
ve (MmTD M2+m;)mp (3:31)

As noted above, because of the dominance of supersymmetry-breaking contributions to the
light sneutrino masses, the diagonalization of the light neutrino mass matrix and the light
sneutrino squared-mass matrix are completely independent.

Under the assumptions of egs. (2.10)—(R.17), the 12 x 12 sneutrino mass matrix, written
in terms of 6 x 6 matrix blocks with estimated magnitudes,

_ M3 M3 [ O(@?*) O@WM)
Mg:((M%f)* M%ﬁi) ‘(%M) 0<M2>>’ (332)

also exhibits a seesaw type behavior, analogous to the seesaw type mass matrix [eq. (B.2)]
of the neutrino sector. Following the standard procedure for diagonalizing such matrices
(see [2H]), we introduce a 12 x 12 unitary matrix:

_M;\/N(M%N)T 71— EM;VN(M%N)TM%NM;VN
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where 7 is the 6 x 6 identity matrix. One can easily compute:

N (M%L—M%NMJV%AM%N)HO(#M2> OW*M ) ) (33

O@W3M—1) M3y + O(v?)
Hence, the effective 6 x 6 hermitian squared-mass matrix for the light sneutrinos reads:

M2, = M3 — MIy M (Miy) + o), (3.35)

[

analogous to the light effective neutrino mass matrix of eq. (B.§). Likewise, the effective
6 x 6 hermitian squared-mass matrix for the superheavy sneutrinos reads:

1 - —_ —
M3, = MRy + 2 M (MEN)TME N + (M%N)TM%NMN%V} +OW'M %), (3.36)

where for completeness, we have exhibited the O(v?) corrections to the leading term.
As expected, the masses of half of the sneutrino eigenstates are of order the electroweak
symmetry breaking scale, whereas the other half are superheavy, of order M.

Following the notation of table [, the (complex) sneutrino interaction eigenstates are
denoted by: vy, = L and vp = N*. The latter convention reflects the fact that in the
lepton-number conserving limit of M1/ = m?% = 0, the lepton numbers of 7y, and Ui are
identical, as previously noted. (Of course, the limit of interest in this paper, ||M| > v,
is very far from the lepton-number conserving limit.) In analogy to v, and vy, we define
transformed (light and heavy) sneutrino states 7, and 7y, by:

oL\ br
() v (%), o

where ¢y = (g, v;)T and ¢, = (v}, vp)7 are six-dimensional vectors. Sneutrino-
antisneutrino oscillations are a consequence of the AL = 2 elements in the light and heavy
sneutrino squared-mass matrices M%Z and M%h, and are governed by MJQ\[T y and MiT N
(note that MiT 1» which would also violate lepton number by two units, is zero).

Using the form of M? 5 (A, B =L or N) given by eq. (B:23) with the M35 given in
egs. (B:24)-(B.29), the effective 6 x 6 hermitian squared-mass matrix for the light sneutrinos

leq. (B-33)] is given by:
M2 (M2 )*
M = LC MLV , 3.38
‘ <sz <Mzc>*> (338)

where the lepton-number-conserving (LC) and lepton-number-violating (LV) matrix ele-

ments are given by:

2
Mic

1
m2 + §M% cos 23 +mbhmb — mH M(M? +mi) ' MmE + O@w*M~?), (3.39)
M3y = mpM(M? +m3) " 'mEXT + X,mp(M? + m%) ' Mm}
—2mpM(M? + m3") " tm%L(M? + mi) "' Mm5 + 0@t M~?), (3.40)

under the assumption that m% and m3; can be as large as indicated in eqs. (R.14) and (2.14).
Note that M%C is a 3 x 3 hermitian matrix, and sz is a 3 X 3 complex symmetric matrix.
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Moreover, although M is a diagonal matrix with real positive entries [cf. eq. (R.5)], m%\,

can be any 3 x 3 hermitian matrix, not necessarily diagonal nor real. The M — oo
limit of egs. (B:39) and (B:40) is noteworthy. In this limit, M7, = 0 and the lepton-
number-violating effects completely decouple, as expected. If in addition m?\, = 0, then
Mgc = m% + %M% cos 23, which reproduces the well known 3 x 3 light sneutrino squared-
mass matrix of the MSSM. However, according to eq. (R.15), m% M 2 ~ O(1) is possible,
in which case M7, deviates from its MSSM value by a quantity of O(v?) even in the exact
decoupling limit of M — oco. The origin of this non-decoupling behavior is explained in [B.
As a result of this non-decoupling phenomenon, remnants of the heavy sector of the seesaw
mechanism may survive in the effective theory of light sneutrinos. These non-decoupling
effects can be detected in principle through measurements of the sneutrino and charged
slepton properties.

The physical light sneutrino states can be identified by diagonalizing Mge. Note that
if sz = 0, then the eigenvalues® of Mge are doubly degenerate, corresponding to the fact
that the conserved lepton number implies that the six light sneutrino states are comprised
of three sneutrino antisneutrino pairs. If sz # 0, then lepton number is violated and
the sneutrinos and antisneutrinos can mix. This mixing splits the degenerate pairs and
yields (in general) six non-degenerate light sneutrinos. In particular, the resulting sneutrino
mass-eigenstates are self-conjugate real fields, which we denote by 51,52, ..., Se.

To determine the S} in terms of the interaction sneutrino eigenstates, one must com-
pute the 6 x 6 unitary matrix W that diagonalizes Mge:

WTM?,ZW = diag (m%1 , m%Q e, mE ). (3.41)

Noting that EM%{E = /\/l,%z*, where ¥ = (9 ), it follows that if W satisfies eq. (B.41)
then so does XW*. However, the unitary matrix that diagonalizes M,Z;Z is unique up to
a multiplication on the right by a unitary matrix Up that is arbitrary within a subspace
of degenerate eigenvalues and is otherwise diagonal. Denote the set of all such unitary
matrices by S. Hence, one can conclude that XW* = WUp for some Up € S. Since W is
unitary, Up = WISW*, and it follows that UpUT, = 1. That is, Up must be a symmetric
unitary matrix. It then follows that the matrix W' = V\/Ull)/2 satisfies W' = R/ * 10
Thus, without loss of generality, we may drop the primed superscripts and impose the

constraint W = W* on the diagonalizing matrix that satisfies eq. (B.4]). It then follows

that W has the following form:
X iy
W= , 3.42
(v e

9Under the assumption that R-parity is not spontaneously broken, the (real) eigenvalues of the hermitian

matrix M?o are non-negative.

10We define Z/{},/Q € S to be the unique square root of Up that is symmetric and unitary. This is
accomplished by noting that there exists a (unique) real symmetric matrix H such that Up = exp(iH).
Then, U})/Q = exp(iH/2). Note that there is still some freedom left in the choice of W', which is unique up
to a multiplication on the right by a real orthogonal matrix that is arbitrary within a degenerate subspace

and is otherwise diagonal.
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where X and Y are 3 x 3 complex matrices that satisfy:

XXT4vyyl =1, XXt =vvyT, (3.43)

Re(XTX) = Re(YTY) = % Im(X'Y) =0, (3.44)

due to the unitarity of WW. Consequently, the relation between the sneutrino interaction-

eigenstate fields %I and the six self-conjugate sneutrino mass-eigenstate fields Si is given

by:
3

6
U= WS =3 (XS + iV Sieys) . (I=1,2,3). (3.45)
k=1 K=1

One can then invert eq. (B.4H) [using eqgs. (B.-43) and (B.44)] to obtain:

3
Sk =Y (X"l + X" @),
I=1
3
Siys = =iy (YUl - Y@, (K=1,2,3), (3.46)
I=1

Indeed, the Si are self-conjugate real fields as noted above.

Since M}, ~ O(v?) and M}, ~ O(v3M~1), the mass-splittings of the would-be
sneutrino-antisneutrino pairs are expected to be very small, of order a typical neutrino
mass. To compute the magnitude of the corresponding mass-splittings, we can employ per-
turbative techniques to evaluate the eigenvalues of ./\/ll%[ [eq. (B-3§)]. First, we diagonalize
the sub-matrix M]%C:

\M2 Qo = D = diag(dy , da, ds), (3.47)

where Qg is a 3 x 3 unitary matrix, and the eigenvalues d; are real. Note that Qg is not
unique. In section [.3, we will argue that the bounds on the radiative flavor-changing
charged lepton decay ¢/ — ¢!~ imply that matrix Mzc is very close to a diagonal form. In
the limit of diagonal Mzc, we shall take Q9 = 1. We can then determine the off-diagonal
elements of )y by writing M%C ~ diag(m? , m3, m%) + m%o, where m%c is a matrix made
up of the off-diagonal elements of M%C, and Qo ~ 1+ qg, where qg = —qp. By assumption,
the matrix elements of m%o are much smaller than the m%, and the matrix elements of gg
are much smaller than unity. Thus treating eq. (B.47) to first order in the small quantities,
we can solve for the off-diagonal elements of ¢y in terms of the elements of m%c and the
m% Since at first order m% = dj, it follows that:

(MEo)1s

(Qo)ry =~ 4 —d

I1#J. (3.48)
The diagonal elements of Q9 can then be determined to the same order by using the
unitarity of y. In the remainder of this section, we will not make any assumption regarding
the size of the off-diagonal elements of M2, in which case eq. (B.4§) does not apply and
Qo must be obtained numerically from eq. (B.47).
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In the following, it will be convenient to define

Q=QuT (3.49)
where T is a 3 x 3 diagonal matrix of phases given by:
T = diag <e_i¢1/2 e 92/2 e_i¢3/2) , o5 = arg (QE‘)FM%VQO) e (3.50)

Note that the right hand side of eq. (B.47) is unchanged when Qo — Qo7 so that the
unitary matrix @ can also be used to diagonalize Mgc. It then follows that:

(D B*\ (@' 0 M2, (M32,)* Q 0
-(55)- (¢ &) (DS 2) o

where B is the 3 x 3 complex symmetric matrix
B=Q"M?,Q. (3.52)

Due to the rephasing of Qg as specified by eqgs. (B.49) and (B.50)), the diagonal elements of
B are real and non-negative: Bj; = |By|. This is the motivation for our choice of @ in
the diagonalization of Mgc. Note that if Mzc is approximately diagonal, then Qg ~ 1,
in which case ¢; ~ arg[(M?,)ss]. Thus, unless the diagonal elements of M7, are non-
negative, @ ~ T # 1 in this limiting case.

Even though D ~ O(v?) and B ~ O(v3M 1), the unitary matrix that diagonalizes D
is not close to the identity matrix, due to the double degeneracy of the diagonal elements.
In order to perform a perturbative diagonalization of D, we first introduce the following
6 x 6 unitary matrix P, expressed in block form as:

1 (1 41
P=— , 3.53
V2 <11 —i]l) (3.53)
A straightforward computation yields:

— <D+ReB ~Im B ) (354)

—ImB D —ReB

which is a 6 x 6 real symmetric matrix.

If the elements of the diagonal matrix D are non-degenerate!! such that d;—d; ~ O(v?)
for all I # J, then the matrix P'D P can be diagonalized by a real orthogonal matrix R
that is close to the identity:

o <]l+ReR Im R

2372
Im R ]I_ReR)—i-O(vM ), (3.55)

"1n general, we would expect the d; (which are the eigenvalues of M7 ) to be non-degenerate. Even if
the parameters m?% and m?% were proportional to the identity matrix at the high energy scale due to some
flavor symmetry, this latter symmetry would not be respected by the corresponding low-energy parameters,
due to flavor-violating effects that enter the renormalization group running. Moreover, the matrix mp is
likely to reflect some of the flavor-violating effects of the model. Hence, any (near) degeneracy among the
dr would be purely accidental.
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where the 3 x 3 complex antisymmetric matrix R is of order O(vM ~1):

B*
Ryj=—-Rpy=-—— (I#J). (3.56)
dy—djp
One can check that:
RIPIDPR = diag(m%, , m%, , ..., ,m%,) + O@W*'M~?), (3.57)

where the squared-masses of the light sneutrinos are given by:

mg, =dy+|Bys| + O M~?), (J=1,2,3), (3.58)

,S743

and m%J > m%HS. Note that the perturbations due to the off-diagonal elements of B
contribute only to the O(v*M~2) terms of the squared-masses.

Combining the results of eqs. (B.51)), (B-53) and (B-5H), the light sneutrino mixing
matrix [defined in eq. (B.41))] is given by:

wo L (Qu+R) iQU-R)
V2 \Q (1 +RY) —iQ*(1 - RY)

Comparing with eq. (B.43), we identify:

) + OW*M™?). (3.59)

1 _ 1 _
X = EQ(]l +R)+Ow*M™2), and Y = %Q(]l —R)+O0(W*M™?). (3.60)

Inserting these results into egs. (B.49) and (B.46) yields the desired (approximate) relations
between the sneutrino mass eigenstates Si and the interaction eigenstates ﬁl{ .

For completeness, we briefly examine the modifications to eq. (B.5§) if some of the
d; are degenerate. In this case, the diagonalizing matrix R is not close to the identity
matrix, and the perturbative analysis above fails. Consider the case of df = dj # dg,
where {1, J, K} is some permutation of {1,2,3}. The first order shift in the eigenvalues of
D will depend on By as well as on the diagonal elements of B. However, the perturbations
due to Brx and Bji will only generate second-order shifts to the eigenvalues, which we
neglect here. Thus, it is sufficient to solve the characteristic equation of D in the limit of
di = dj and Brg = Bjg = 0. In this limit, the characteristic polynomial factors into a

product of two simpler polynomial factors:'2

[(A—dK)2 - yBKKﬂ [(A—df)‘*— (A=dn)? [|Brr + | By + 2By 2] + \B§J—B[IBJJ\2] .

(3.61)
The resulting sneutrino squared-masses are:
1 1/2
3, 54, = di {5 (Bl + 1By + 2B+ VA] L (3.62)
1 1/2
LOTNONESUE {5 [’BII’2 + By + 2B - \/K]} : (3.63)
m%’K ,Ski43z = di £ ‘BKK‘ ) (3.64)

2In the case of a near degeneracy where dr — dy < O(wM™'), the quartic polynomial factor of the
characteristic equation of D contains a term linear in A\— % (dr+dys). In this case, the resulting expressions for
mQSI .87, and m?gll .54 are significantly more complicated than those presented in egs. () and )
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where
2 2 272 2 2
A= |B[[| +|BJJ| +2|B[J| } —4|BIJ—B[[BJJ . (3.65)

The corresponding mixing matrix can be obtained by performing an exact diagonalization
within the two-dimensional degenerate subspace, although we shall omit the details.

Finally, in the very unlikely scenario where d; = dy = d3 = d, all of the matrix elements
of B contribute to the first order shifts of the eigenvalues of D. To determine these shifts,
put A = d + z in the characteristic equation of D to obtain a sixth order polynomial in z.
No further perturbative simplification is possible, since all the terms of this polynomial are
of the same order of magnitude.

As expected, the mass-splittings of the would-be sneutrino-antisneutrino pairs are
nonzero due to the presence of the lepton-number violating matrix M7, [cf eq. (B.53)]. If
we denote the three sneutrino mass-splittings by (Amy,) ; = |mgs, —msg,,| (for J = 1,2,3),
then in the non-degenerate case,

 |1ByJ|
(Amy,) ; ~ NI (3.66)
In the case of degenerate dj, the mass-splittings (Amg, ) ; also depend on the non-diagonal
elements of B.
It is instructive to examine the above results in a simplified one generation model. In
this case, D = Mgc and B = sz are just numbers. In particular, m?\, is a real parameter
and M?, , 18 a 2 x 2 hermitian matrix, with eigenvalues

m%l,SQ = MI%C + ‘M[Q/V‘

1 |mp|?m?% 2lmp|>M Mm?
2 2 N B
=m3 +-=M7cos23 + - — 3.67
LT o7z b M2 +m3 ~— M?+mi M? +m% (367)
The corresponding sneutrino mass-splitting, Amg, = |mg, — mg,|, is given by
Am; 2M? Mm?
My, _ — X, - B | (3.68)
My, mﬂz(M2+mN) M2+mN

where m,, = |mp|?/M is the mass of the light neutrino and my, = 1(mg, + msg,) is the

average light sneutrino mass. If my < M, then eq. (B.6§) coincides with the result given

in [[I§ after taking into account a slight difference in notation.'3

Assuming that mQB ~ O(vM), it follows that both terms on the right hand side of
eq. (B.6§) are of the same order, which implies that Amg, ~ O(m,,). However, as noted
below eq. (R.14)), it is possible that m2B could be as much as a factor of 10® larger than its
naive estimate [[[§], in which case the sneutrino-antisneutrino mass splitting could be three

orders of magnitude larger than the corresponding light neutrino mass.'*

131f we put m% = —M By and change the sign of A, (with the corresponding change in X, [cf. eq. ()])7
we recover the results of [B]

1A similarly enhanced sneutrino-antisneutrino mass splitting also arises in the supersymmetric triplet
seesaw model of [@]
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The same set of manipulations described above can be carried out to obtain the cor-
responding results for the effective 6 x 6 hermitian squared-mass matrix for the heavy

sneutrinos [eq. (B.3()]:

M2 —2(m2%)* _
M = (_2752 (5\423))* ) +O(WM™?), (3.69)
B H

where the 3 x 3 hermitian matrix M is defined by:

M¥ = M? +mi + mEmD + %(M2 +mi) T MmEm, M + %Mm%m’bM(M2 +m3) L.

(3.70)
The physical heavy sneutrino mass-eigenstates are determined by diagonalizing Ml%h. At
leading order, the mass-eigenstates are mass-degenerate sneutrino/antisneutrino pairs, with
masses and mixing angles (with respect to the basis in which M is diagonal) determined
by the diagonalization of m?\, The lepton-number violating off-block-diagonal matrix m2B
generates sneutrino-antisneutrino mixing, and yields mass-splittings between nearly degen-
erate heavy sneutrino pairs of order Amg, ~ O(m%M~1).

The complex elements of the sneutrino squared-mass matrix govern CP-violating sneu-
trino phenomena, due to the non-degeneracy of masses of the real and imaginary parts of
the sneutrino fields. Following the discussion of the CP-properties of the sneutrino fields
in section [}, we find it convenient to define a new basis of sneutrino interaction eigenstates
of definite CP. That is, we decompose the complex sneutrino fields into real and imaginary

parts:
R CORy ~<—>}
vp=—=\v, iU , 3.71
0= 5 | (3.71)
. Lo, ~<—>}
p=— |1, ' +iv , 3.72
where the [+, —] superscripts indicate that the corresponding sneutrino eigenstates are

CP-even and CP-odd. With respect to the CP-basis,

_(4) ~(+)

1 _ 1 _

—Lmass = g(ﬁlg—’—)Ta ﬁlg )T),PTM?/[,P <Ij%)> + g(ﬁi(z—’—)T’ D}(l )T)PTM’%hP* (7}(1)> ’
v, Vh

(3.73)
where P is the 6 x 6 unitary matrix introduced in eq. (8.53).
That is, with respect to the CP-basis, the effective squared-mass matrix for the light
sneutrinos is given by:

(3.74)

—2 9 Re(M?,+ M2,) —Im(MZ,+ M3,)
M, = PTMﬁeP - < LC LV LC Lv) )

Im(Mic — Miy)  Re(Mio— Miy)
This is a real symmetric matrix (which is easily checked by recalling that M/%C and sz

are, respectively, hermitian and complex symmetric matrices), as the CP-basis consists of
real self-conjugate scalar fields.
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If ImM%C = ImMj%V = 0, then the sneutrino mass-eigenstates are also definite eigen-
states of CP. If in addition Resz # 0, then the would-be sneutrino-antisneutrino pairs
are organized into CP-even/CP-odd pairs of nearly degenerate sneutrinos [Ig].

Since ﬂge is real symmetric, it can be diagonalized by a 6 x 6 real orthogonal matrix,
Z; via:

2T Mz 25 = (m, , m2,, ..., mE), (3.75)

and the corresponding physical sneutrino mass eigenstates, Sy (k =1,...,6), can be iden-
tified as linear combinations of the CP-even and the CP-odd sneutrino eigenstates:

Si

7%
¢ S

Matching with the notation employed by our discussion of sneutrino oscillations in section [,
we note that the sneutrino interaction eigenstates, oy, can be expressed in terms of the
physical (self-conjugate) sneutrino mass eigenstates Sy via:

6
1
~ ] 1k - Z1+3k
Uy = — Z5" +1Z777) Sy . 3.77
14 ﬂ];( U ) k ( )

Comparing eqs. (B.45) and (B.77), we can identify:
K 1 K K
I I . 5 I+3,
X = — <Zl~, +iZ, ) ,

V2
1K i ILK+3 | . ZI+3,K+3 .
Y = _E ( 1% + ZZ[, > ) (IaK = 1,2,3), (378)

which can be inverted to obtain:

ReX —-ImY
Zs =12 . .
V2 <Im X Re Y> (3.79)

One can easily verify that the orthogonality of Z; implies the unitarity of W defined in
eq. (B-42) [and vice versa]. In particular, egs. (B:4]) and (B.75) imply that Z; = PIW, in

which case

1
ﬁ%:W%WW:W%iOW:WW:L (3.80)

after using the explicit forms for W and P.

In summary, we have derived the light effective sneutrino squared-mass matrix by
exploiting the seesaw mechanism in the sneutrino as well as in the neutrino sector. Our
calculation is quite general under the parameter assumptions specified by eqgs. (B.1()—
[2.15). We found that ./\/ll%[ depends on two 3 x 3 matrix blocks, Mgc and Mgv, given
by eqs. (B:39) and (B40), respectively. In particular, M7, is responsible for the splitting
of the masses of would-be sneutrino-antisneutrino pairs, or equivalently the mass-splitting
of CP-even/CP-odd sneutrino pairs, ﬂéi), in the CP-conserving limit. As we shall see in
sections [ and [, the matrices M%C and M]%V provide a convenient parameterization for a
number of interesting physical observables, such as neutrino masses and radiative lepton
decays.
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4. Constraints on lepton number conserving parameters

The input parameters that govern sneutrino mixing phenomena and sneutrino decays are
encoded in matrices M2, and M?, given by eqgs. (B.40) and (B.39), respectively [or, alterna-
tively, in the physical sneutrino masses and the orthogonal matrix Z; defined in eq. (B.79)].
At present, apart from neutrino oscillations, only lepton number conserving processes are
observed in current experiments. These processes constrain the entries of the lepton num-
ber conserving matrix M/%C' In this section we investigate bounds on the structure of M%C
imposed by the measurements of the muon magnetic moment anomaly, the g, — 2, the
electric dipole moment (EDM) of the electron and the radiative flavor changing charged
lepton decays, ¢/ — ¢1~. The latter have also been worked out in detail in [2]. Additional
constraints due to £ — 6;6;6? decays and pu—e conversion in nuclei are also relevant and
have been analyzed in refs. [1, fI]. These constraints can yield further restrictions on the
structure of M%C, although we shall not present this analysis here.

We briefly summarize the constraints from current experiments relevant for the com-
putations presented in this section. The most recent experimental measurement of the
muon anomalous magnetic moment (a,,*) exhibits a slight discrepancy [[d] relative to the
predicted value of the Standard Model (azh). A recent theoretical review of the computa-
tion of the Standard Model prediction [i3] yiclded da,, = ap® — alf' = (2.94+0.89) x 1077,
where all theoretical and experimental errors are added in quadrature, corresponding to
a 3.30 effect. Thus, we roughly expect that the contribution to the muon anomalous
magnetic moment from new physics beyond the Standard Model to be no larger than
da, S 3% 107°. There is no experimental evidence of an nonzero EDM for the electron
(d¢). The most stringent upper bound, obtained in [, is d. < 1.6 x 10727 e cm at 90%
CL. Likewise, there is no experimental evidence for radiative flavor-changing charged lep-
ton decays. The 90% CL upper limits to the branching ratios for the muon and tau-lepton
radiative decays are given by: BR(u — ey) < 1.2 x 107!}, BR(7 — ey) < 1.1 x 1077 and
BR(7 — py) < 6.8 x 1078 [I].

4.1 Supersymmetric corrections to the lepton-photon vertex

The amplitudes for the processes of interest are obtained by evaluating triangle diagrams
that contribute to the one-loop correction to the lepton-photon ¢7¢1~ vertex. Supersym-
metric corrections to this vertex arise from the two topologies of diagrams depicted in fig-
ure fl. The corresponding Feynman rules required for the vertices are given in egs. ([C.3)
and (C.4) of [J. The anomalous magnetic moment and electric dipole moment (EDM) of
the leptons and the lepton flavor violating decays ¢£7 — £~ are derived from the following
terms of an effective Hamiltonian:

H = e(C1 1o P! + CF 110" Prt’) F,,, (4.1)

which can be extracted from the computation of the effective one-loop £1¢7~ vertex.
The computation of the Wilson coefficients Cp,, Cp is straightforward. After calculating
the contributions of diagrams (a) and (b) of figure [l| and expanding in momenta of external
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3: —ieqs(p — 2k)H 3: —ieqsy*

Figure 1: One-loop SUSY diagrams contributing to radiative, £/ — £1~, decays. In (a), the scalar
S is a charged slepton and the fermion f is a neutralino. In (b), the scalar S is a sneutrino and the
fermion f [f¢] is a positively [negatively] charged chargino (q; = 1).

particles, we find for their total Wilson coefficients
CZIJ Cii‘] + mglC + ng C4R 5
CZIJ Ci%‘] +m gIC4R + ngC4L 5 (42)

where the index i labels the contribution of diagrams i = a,b and the m,r (I =1,2,3) are
the lepton masses. For diagram (a) we obtain,

Oy’ = 2(4177)2 gsb""a’m;Cro(ms,my) ,  Cig' = 2(417r)2 gsa’"b'msCra(ms, my) ,

oyl = z(jTPanl*aJ023(ms,mf) : Cit’ = ﬁ%b[*b‘]@s(ms’mﬂ , (43)
and for the diagram (b),

cir’ = (4717)2 g™ a’myCri(my,ms), O = (471T)2 gra” b’ myCui(my, ms) |

chl = 2(4n)? gra’*a’ Cys(my,mg) Ciff = 2(47)? a0 b Coz(my,ms),  (4.4)

where m; and mg are the masses of the fermion f and scalar S, respectively, and all other
parameters are defined in figure [l The loop integrals appearing in egs. ({£.J) and (E4) are:

2 2 4
x4 — 3y Y
Cll(xay) = _4(2?2 — y2)2 + ($2 — y2)3 log
2 2 2,2
T +y 2x%y Y
012(1'73/) - _2($2 — y2)2 - (xz — y2)3 log ; )
1.4 _ 5.%'2y2 _ 2y4 1’2y4 y

Cos(w,y) = — (4.5)

12(22 — ¢2)3 (22 — y2)4 T
The full Wilson coefficients Cr, and Cr are obtained by summing over all relevant triangle
diagrams in the model. In our case just two of them contribute: diagram (a) with charged
slepton and neutralino exchange and diagram (b) with sneutrino and chargino exchange.
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4.2 (g — 2), and the electron EDM

The formalism described above leads easily to expressions for the EDM of the electron and
for the muon magnetic moment anomaly (g, —2)/2. For both processes I = J, so that the
flavor-diagonal piece of the effective Hamiltonian is given by

H = el'o,, |ReC{{ +mu (Cl{ + CE) —itmC{{vs | ¢/ FH (4.6)

where we used the relation Ci]R] = Ci]LJ* By matching to the standard form [, @]:15

_ id, -

H=——a0 o 0 F + G oyt P (4.7)
4ml.l 2

where aj = (g7 —2)/2 is the magnetic moment anomaly and d,s is the EDM of the lepton,

one can extract the expressions for the electron EDM, d., and for g, — 2,

d, = —2eImCy} | (4.8)
a, = —4my, [ReCH + m,(CH +CH)] .

In principle, both quantities can be used to set bounds on parameters such as M, m?\,,
m2B and X, that govern the heavy sneutrino sector. However, the one-loop contribution to
the C}1 from figure [[(b), which is sensitive to the sneutrino sector, is real if the chargino
parameters p and My are real. Hence, the electron EDM measurement does not yield
any constraints on sneutrino parameters at one loop. However, there can be sensitivity
due to potentially large two-loop corrections; for further details see ref. [29). Similarly,
the neutrino magnetic and/or electric dipole moments'® are also insensitive to the heavy
sneutrino sector at one-loop, since there is no possibility of attaching the photon to a
one-loop graph that involves the sneutrino-neutrino-neutralino vertex (see [J).

The amplitudes displayed in figure [| can give sizable contributions to the anomalous
magnetic moment of the muon. These contributions are flavor diagonal and are sensitive
mostly to the overall mass scale of the sleptons, gauginos and light sneutrinos — i.e. to the
diagonal entries of corresponding mass matrices. Thus, the measurement of a,, can be used
to set lower bound on these SUSY masses. Assuming that the discrepancy between the
experimentally observed muon anomalous magnetic moment and the theoretical prediction
of the Standard Model, da, < 3 X 1079, is due to new physics effects arising from the
diagrams of figure [I], one can deduce lower bounds on the magnitude of slepton squared-
mass parameter as a function of Ms and tan 3. Examples of such bounds are listed in
table f.

Note that potential contributions to M7, [cf. (B.39)] from the terms containing the
Dirac mass mp are suppressed by a quantity of (’)(m?VM ~2). As we will show in section [£.3,

151n eq. (@)7 the unit of electric charge e is taken positive, so that the electron charge is —e (which also
coincides with the convention adopted by refs. @] and [@]) Eq. (@) is consistent with the corresponding
effective Lagrangian of [@], by noting that Commins et al. define the anomalous magnetic moment of the
electron to be k = —a. (J.D. Jackson, private communication).

Note that for Majorana particles only transition dipole moments can be nonzero.
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My = 100 My = 200 My = 300

tan (3 (mg)m™n (mg)™" (mg)™"
5} 170 110 70
10 300 270 210
15 420 420 370
20 530 570 530
25 650 740 700

Table 2: Lower bounds on the square root of (m?% )2 from the measurement of a,. All masses are
in GeV.

this ratio can be at most of the order of 1072, otherwise the Dirac mass term mp would
generate unacceptably large contributions to rare £/ — ¢!~y decays. Thus, the muon
anomalous magnetic moment can be effectively used to set a lower bound on the diagonal
22 element of the soft slepton squared-mass matrix m% and on the gaugino mass parameter
My, as specified in table f. The dependence on m% and p is significantly weaker.

4.3 Radiative charged lepton decay: €7 — £1~
The ¢/ — ¢!~ decay width is given by

€2m3
L(e? = ely) = — (10T P + CF'P) - (4.10)

The corresponding branching ratio is obtained by dividing the result of eq. () by the tree
level decay width, I'(¢7 — ¢1p/p!) = m? ;G%/19273 (where we ignore W-propagator effects
and a very small correction due to the nonzero mass of the light final state charged lepton).
In particular, the branching ratios for the experimentally interesting decays pu — ey and

T — Wy are given by:

48722
BR(x — e) = o (CPP +CRP) . (411)
my, Gt
and
48722
BR(T — py) = 200 (]C%?’ 24 \0%3]2) . (4.12)
mzGy

At leading one-loop order, figure f(a) yields an amplitude that is proportional to the

off-diagonal terms of the slepton soft mass matrix m%, and thus not relevant for setting

17 The amplitude corresponding to figure f(b)

bounds on heavy sneutrino parameters.
depends directly on the lepton flavor conserving part of the light sneutrino mass matrix,
Mgc. This can be verified by using the Feynman rules collected in the | and employing the

70f course this diagram is relevant when Y, -dependent corrections to m2 entries are generated by the
renormalization group evolution of parameters. This effect has been studied extensively in the literature
(see e.g., [@]), and we will not repeat this discussion here.
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mass insertion approximation (MIA) expansion; for more details see e.g. ref. [ig]. Assume
(at least formally) that sneutrinos are closely degenerate in mass,

m%k = mi + 5mi~k , (4.13)

and then expand the functions C{’ or C%’ [denoted generically in eq. (£.14) by f], which
depend on the squared-massed m%k, up to the first order. This results in

of of of
f(m3,) = f(mg)+(m&, —mg) om? | = f(m§) —my om | mg, amZ | (4.14)
k mO k mO k mO

where there is an implicit sum over k. The advantage of this procedure is that it allows one
to perform the sum over the sneutrino flavor index k in evaluating eqs. (f.11)) and (f13).
For example, the neutrino squared-masses always appear multiplied by a pair of sneutrino

mixing matrices (due to the form of the sneutrino couplings given in [J). Using the inverse
2

of eq. (B.79), one obtains Zf;ngkm%k = (M;,)".

It is possible to relax the assumption of approximately degenerate sneutrino masses.
In particular, it can be shown diagrammatically that it is better to use appropriate ratios
in place of the derivatives of eq. (fL.I4) in the MIA expansion. Thus, for J > I (corre-
sponding to the decay of a heavier lepton £7 into a lighter lepton £!) and neglecting terms

proportional to the lighter lepton mass, one arrives at the simple result:

ctl~o, (4.15)

CH ~ Y +my Ch7
~ Mt e? M2 N 172 AC _ V2 M lix 72ix ACn
~ 4 2 9 2 ( LC) ‘ + ‘ A P} 3 M 4 _ A 3 s
(4m)? 25y, m* )iy cos 3 My m=/irg

where the Z. are the chargino mixing matrices defined in [ff],

Cij(m v, myr) = Cig(m, +,mgy)

, for I #J,
AC;\ N ’ 4.16
Am2 — ) 9Cij(m_+,m;r) (4.16)
k1T axg L for I =J.
m-
7

and mg1 are the three “CP-averaged” sneutrino masses, given by the positive square roots

of the eigenvalues of M7, [cf. egs. (B.47) and (B.53)].
Clearly, our approximate expression for C{%‘] given by eq. ({.15), which enters the

decay rates in eq. (.1(), is proportional to the lepton number conserving squared-mass
matrix, Mgc, defined in eq. (B.39). Even in the case where m% is diagonal, contributions
to radiative lepton decays arise from the off-diagonal elements of Mzc governed by the
general form of the matrices mp and m3; [cf. the third term in eq. (B:39)]. Notice that the
flavor dependence disappears completely in the limit of diagonal m% and m?v = 0 in which
case M%C is diagonal.

The effect of the seesaw contribution to the lepton number conserving part of the sneu-
trino squared-mass matrix, M%C, has not been previously noticed in the literature. This
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tan 3 10 20

>2702 <42 <112 > 5702 <8 <452
M3, S 22707 <312 .. 25707 <1502
> 2702 .. 25707

Table 3: Bounds on the structure of the matrix elements of M7, for My = p = 200GeV. All
masses in the table are given in GeV.

yields an extra contribution to the decay branching ratios BR(£7 — ¢7v). Consequently,
for a fixed set of chargino sector parameters (i, Ms and tan 3) and soft slepton squared-
mass matrix (m? ), the experimental bounds on the radiative lepton branching ratios can
be used [via egs. ({.11)), ({.12) and (§.15)] to determine upper limits on the off-diagonal
matrix elements of Mgc. Examples of such bounds for My = p = 200 GeV and two sets of

tan 3 and m7“" (previously exhibited in table f) are shown in table f|. In obtaining these
bounds, we assumed that m% is diagonal so that figure f[(a) does not contribute to the decay
amplitude.'® We then varied the matrix elements of Mgc until the constraints from mea-
surements were violated. Moreover, we incorporated the full numerical one loop calculation
for £/ — ¢1~, presented in section 7] rather than the approximate expressions given, e.g.,
in eq. (.17). Notice that there exist lower bounds for the diagonal elements of M%C from
(g9 — 2),, but upper bounds for the off-diagonal elements of M? from BR(¢7 — ¢1 + ).

The results of table [ illustrate that the bounds on the square roots of the off-diagonal
elements of Mzc are at least 10-100 times smaller than the square roots of the diagonal
elements. It is convenient to rewrite eq. (B.39) in the following form:

1
Mio, =m2 + §M% cos 28 + mp M ImA (1 + M72m3) M~ tmE + O M?)
1
= m%—i—iM% cos 20 + mEM_lm%VM_lmF]S—{—O(#M_Z) + O(vaZ}VM_Zl) , (4.17)

where we have expanded out the quantity (1 + M 2m3%,)~! under the assumption that
|M~2m%|| < 1 (to be justified shortly). Eq. (-17) implies that the off-diagonal elements
of M/%C are roughly of order mQDm%V/M 2 (barring any accidental cancellations). If we
assume that mp is of order the electroweak scale, then the bounds on the off-diagonal
elements given in table [ imply that

[l
[[M2]]

x <0(107?), (4.18)

1/2 cannot

with the strongest bound given by 1 — ey decay. This result suggests that ||m%||
be larger than about 10% of the Majorana mass scale M. Hence, M? + m%\, ~ M? and for
the estimates of the magnitude of the entries of the lepton number violating mass matrix

M]%V in the next section we henceforth set m?v =0.

8Non-vanishing off-diagonal elements of m? should in most cases tighten the bounds on M?%, barring
accidental cancellations between the amplitudes obtained from figure (a) and (b).
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5. Neutrino masses and the lepton number violating parameters

In this section we examine the constraints on the lepton number violating sneutrino
squared-mass matrix M7, from our knowledge of the physical (light) neutrino masses

and mixing angles.

5.1 One-loop contributions to neutrino masses

The effective operator that describes the light neutrino mass matrix is given by:
—Lp,, = MUW v; + H.c. (5.1)

Note that VZI Vé] is a AL = 2 operator, since it changes lepton number by two units. In
section B.1, we evaluated the tree-level contribution to M,, [cf. eq. (B.§)]. However, one-
loop contributions to the light neutrino mass matrix can be significant, and in some cases
these can be as or more important than the tree-level contribution [1§, B§]. The dominant
one-loop graph involves a loop containing neutralinos and light sneutrinos, as shown in
figure fl(a). Due to the presence of the lepton number-violating sneutrino squared-mass
matrix sz, which violates lepton number by two units, figure fJ(a) can contribute signifi-
cantly to the light neutrino mass matrix. Other one-loop contributions shown in figure f(b),
yield corrections to the light neutrino mass matrix of at most a few percent, and thus can
be neglected.

In order to establish the results just quoted, we begin by reviewing the relevant in-
teractions that govern the one-loop contributions to the light neutrino masses. The light
neutrino couplings arise from eq. (.§) and the supersymmetric sneutrino-neutrino-neutral
gaugino interactions. After isolating the interaction terms containing one neutrino field,

one arrives at

L,=-v! <1/LVCJH2 + H21/L R+ HQVEJVF) + %(92/‘473 — g Bis £ He, (5.2)

where W3 and B are the SU(2) and U(1) neutral (two-component) gaugino fields, and
g2 and g; are the corresponding gauge couplings. Using egs. (B.4) and (B.6), it follows
that vy ~ vy + mEM_ll/fL and v§ ~vp — M_lmgug. Likewise, it follows from eqgs. (B.33)
and (B.37) that

vp =~ g+ mhM(M? +m%) 1o, (5.3)
U =~ vp — (M? +m%) " 'Mmbp, .

Thus, the effective interaction involving (at least) one light neutrino field is given by:
Ly, =~ —YVU{HQWVh + v HY — (mpM 1) <f722’/é vy Hz)
[(M2+mN) 1M ]JKH2 K}

+£(92W3 — glé) [u{ﬂg[* + mDM(M2 + m?v*) vy uh] 4+ H.c. (5.5)
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x?

Figure 2: One-loop corrections to light neutrino masses. (a) The loop consisting of light sneutri-
nos (Sk, k =1...6) and neutralinos (x?, ¢ = 1...4) is the dominant contribution. (b) The loop
consisting of a neutral Higgs (or Goldstone) boson and a heavy neutrino contributes a relative cor-
rection to the light neutrino mass of at most a few percent. The contributions of the corresponding
graphs (not shown) in which the light sneutrinos in (a) are replaced by heavy sneutrinos and the
heavy neutrinos in (b) are replaced by light neutrinos are suppressed by an additional powers of
O(vM ™) as explained in .

In order to perform the explicit loop computations, it is convenient to rewrite eq. (f.9)
in terms of mass eigenstate fields. The Higgs field Hj is expressed as [[[):

1
H3 = 7 [v2 + h% cos a + Hsin v + i(cos BA° + sin BG)] , (5.6)
in terms of the CP-even Higgs fields h° and H? (where myo < mypo), the CP-odd Higgs field
A% and the Goldstone field GV, where tan 3 = vs/v1 and « is the CP-even Higgs mixing

angle. We also define two-component mass-eigenstate neutralino fields /g? (j=1,...,4)
following [ by

v = %H?, where W = (—iB, —iW?, H!, H3), (5.7)

and Zy is a unitary matrix that governs the Takagi-diagonalization of the complex sym-
metric 4 x 4 neutralino mass matrix, Mo via Z}\;MX()ZN = diag(MX(l) Y e ng).

Before presenting the explicit computations, let us first estimate the order of magnitude
of the loop-contributions to the neutrino mass due to the loop graphs of figure f(a) and (b),
and the corresponding graphs (not shown) in which the light sneutrinos [heavy neutrinos]
in graph (a) [(b)] are replaced by heavy sneutrinos [light neutrinos|. This analysis is
presented in [D—the results obtained there imply that the graphs of figure PJ(a) and (b)
both yield contributions to the one-loop light neutrino mass matrix of order the tree-level
light neutrino masses, multiplied by the appropriate vertex couplings and a typical loop
factor. Other one-loop contributions not shown in figure f] are suppressed by additional
powers of O(vM~1!) and are utterly negligible.

We begin with an examination of the loop amplitude of figure f(b), which is governed
by the light neutrino-heavy neutrino-Higgs interaction term of eq. (B.). The internal
heavy neutrino line is marked with an x to indicate the lepton-number violating propagator
proportional to its (diagonal) mass M§%*. Summing over all the internal neutral Higgs and
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Goldstone states, the leading O(M) term vanishes, leaving a subleading term of O(v2M 1),
which is the magnitude of the light neutrino mass. We find that figure Pl(b) yields a leading
contribution to the light neutrino mass that is proportional to the tree-level light neutrino
mass matrix [cf. eq. (B.§)]:

M,, g% M

oM,, ~

— = , 5.8
3272 C%V my (58)
where M and My denote average heavy neutrino and Higgs boson masses. This correction

turns out to be of the order of at most few percent. Additional corrections can also arise
that modify the flavor structure of M,,

,,» but these are not logarithmically enhanced and

are thus even smaller.

Hence, the possibility of a significant one-loop contribution to the light neutrino mass
matrix can only arise from figure fi(a), which is governed by the light sneutrino-neutrino-
gaugino interaction term of eq. (B.5). In the following, we examine the corresponding loop
graph in which the external light neutrino fields are mass eigenstates (/)P [cf. eq. (B.9)].
Using four-component spinor methods, the amplitude for this graph (with incoming four-

momentum p) will be denoted by
—i[(p= + =) P+ (P + 247 PRl (5.9)

where the generic self energies E{,{S(pQ) of the Majorana neutrino must be symmetric in its
indices I, J. To evaluate this graph, we express the neutrino-sneutrino-gaugino interaction
Lagrangian in terms of the four-component self-conjugate Majorana neutrino fields V]IV[ and
the Majorana neutralino fields x? [cf. [A]]:'?

1 4 4 . .
Lywr = =3 (9223 — r Z3) (2L — i 2" o6 X0 P, Sy + Hee. (5.10)

where the neutralino mixing matrix Zy is defined in eq. (@) The resulting DR-
renormalized neutrino mass matrix at one-loop order is given by:

_ . 1 . 1 .
(M0 =y, () 677 + Re (S (2, + S, S (72,) + 5, S0 (2,

vy vy 2 2 vy
(5.11)
where the loop diagrams are regularized by dimensional reduction and the tree level di-
agonal mass, m,,,, is defined at the renormalization scale pg. In addition, mi{, is some

average neutrino mass scale, which to a very good approximation can be taken to be zero
in the explicit loop calculations presented below.

In order to determine the masses of the light neutrinos at one-loop accuracy, it is usually
sufficient to calculate the diagonal matrix elements of the self energies (i.e., by setting I = J
in eq. (b.11))), assuming that the tree-level neutrino masses are non-degenerate. However,
in some cases Eé"]‘/ can be numerically large for I # J. If the latter holds, then one

¥More explicitly, the non-zero components of Prvi, are the two-component neutrino fields (y,f )thy ®, and
the non-zero components of Prx° are the two-component neutralino fields 9 introduced in eq. (@)

,29,



. . . . -1
must re-diagonalize the neutrino mass matrix, (Mg, °P)!/

, in order to obtain the loop-
corrected physical neutrino masses and corresponding mixing matrix Uyng (more details
of a similar procedure in the context of R-parity violating models can be found, e.g., in

refs. [B0] and [3]).

An explicit calculation of the diagram shown in figure fi(a), in the limit 72 , — 0, yields

—1.,,0

SY = fim 2R - 2B (3 iz (20 iz (a2)
x UninsUnins Bo(m,0,ms, ),

S = s 128 - 2N (25 12 (204 iz
x UninsURING Bi(m,0,ms, ), (5.13)

with an implicit sum over repeated indices, where m,o and mg, are the neutralino and
7

X
sneutrino masses, respectively, and By, B; are the standard 2-point loop-integrals [51]

evaluated at p? =0,

a? +y?

2
Y
— 5 log

x
Bo(z,y) = A —log +1- -, 5.14
(¢.9) 1 s (514)
1 1 zy 3 y? x? 1 T
Bi(z,y) = —=A+ Zlog— — — — +< ——)log—, (5.15
(wy)=—gatgle s~y oy @ 2) 15, BB

with A =2/(4 —d) — v+ Indr set to A = 0 in the minimal subtraction renormalization
scheme. Note that g is finite, i.e. in the sum over k the dependence on A and ugr cancels
exactly due to the orthogonality of Z. Likewise, E{/J is finite for I # J, which is easily
verified after using the orthogonality of Z and the unitarity of Uyng. This is to be expected
since in the mass basis there are (by definition) no tree-level off-diagonal neutrino mass
matrix elements. In contrast, E‘J/‘] is divergent, and after minimal subtraction it is here
that the pr dependence resides.

We now examine the relative magnitudes of the various contributions in eq. (5.11)
to the loop-corrected neutrino mass. First, we observe that ¥y [given by eq. (b.13)] is
dimensionless and has a magnitude of the order of a typical electroweak correction (this has
been numerically confirmed). Thus, the one loop contribution of the terms proportional to
the minimally subtracted Yy in eq. (5.11]) is at most a few percent of the tree-level neutrino
mass. Given the current experimental accuracy of neutrino data, this latter correction can
be neglected, as it does not provide any constraints on sneutrino parameters. Thus, we
focus on Xg [given by eq. (b-13)], which can be simplified by employing the MIA expansion
described in section [£.3 The end result is:

sM) = (M) — i, 67 (5.16)
—1 21 1iN\2 77K1 MJ 2 ABO
~ 352 E m,oRe (9225 — 912Z5)° UninsUnins (Mzv) seas) A2 )
4 i, K, M M=/ ikM

,30,



where in analogy to (4.16) we define

Bo(m.o,mzr) — Bo(m,o,mzr)

Xl Y Xl L for T4 J,
ABoy ENE 5.17
Am?2 - 0By(m. o, mzr) (5.17)
kiJ — X W for I =J.
8m127[ ’
4

and the CP-averaged sneutrino masses, myr, are defined below eq. (.16). As expected,
this contribution is finite and is explicitly lepton number violating, as it is proportional to

A

the matrix M?,,. Eq. (5-1§) is a generalization of eq. (7) of ref. [[§ to the 3-flavor seesaw
model.?°

The results given in section p.] can be used to estimate the bounds on the heavy
sneutrino soft parameters m%\,, mQB, X, imposed by the current experimental measurements
of neutrino masses and mixing. These bounds allow for a significant one-loop correction to
the light neutrino mass matrix, 5ML{ZJ , which could even compete with the corresponding

tree-level masses. Further details will be given in sections and 4.

5.2 Radiative generation of neutrino masses and mixing

It is very tempting to explain the characteristics of the neutrino mass spectrum as a conse-
quence of radiative corrections. The most economical possibility is one in which the pattern
of neutrino masses is entirely radiatively generated by the loop corrections. However, in
the supersymmetric seesaw model this is not possible. If one sets m,,, = 0 (for all I) in
eq. (b.16), then mp = 0 (or equivalently, Y;, = 0), in which case only the light sneutrino-
neutrino-gaugino interaction of eq. (@) survives. However, this interaction generates a
one-loop neutrino mass that is proportional to M?,, [cf. eq. (b.10)], which vanishes in the
limit of mp = 0.

Here, we shall be less ambitious and investigate whether the hierarchy and/or the flavor
mixing of neutrinos can be generated entirely by loop effects. As we shown below, such a
scenario seems to be possible. However, in order to obtain the correct values of the light
neutrino mixing matrix elements, a fine-tuning of sneutrino parameters may be required.

To be more specific, consider the following scenario. At tree level we assume the
Yukawa coupling matrix Y, to be real, non-negative and flavor diagonal, i.e. Y,// = Y/§!/
(with Y,/ > 0). Consequently, the tree level neutrino mass matrix [eq. (B-§)] is also real,
non-negative and diagonal so that U = il. Then, the one-loop correction to the

neutrino mass matrix [eq. (p.16)] is proportional to:

1 < AB
= ZN — g2 Z31)? o). 1
= oo ;mxg(gl N — 92ZN) (AmQ . (5.18)

If one assumes that the flavor splitting of the light sneutrino masses is small, then the
ratio (ABO / AmQ)i ;18 approximately constant with the respect to the indices I,.J, so

20We correct here a typographical in eq. (7) of ref. ] where (g2Z3% — g1Z3)? is incorrectly written as
l92Z% — 1 ZN |*.
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that ayy &~ « is roughly constant. Therefore, the one-loop corrected neutrino mass matrix

[eq. (B-11))] can be written as

m{71P) ~ i M~ mp + Re (aMiy) . (5.19)

Vy

Since we have assumed above that Y, is diagonal, it follows that mp = v2Y},/ V2 is also
diagonal, in which case there is no need to distinguish between mp and its transpose. For
simplicity, we shall further assume that m3, < M?2. Then, using eq. (B.40) for Mgv, in
which only the leading O(vM ~1) terms are kept [under the assumption that m% ~ O(vM)
as suggested by eq. (R.14))], we may express eq. (p.19) in the following form:

m(710P) ~ _[1 — Re(aX,)]mpM ‘mp [1 — Re(aX )]

Vy

1 1
-2 mDMRe(amQB)MmD + Re(aX,)mpMtmpRe(aXl) . (5.20)
To achieve the correct hierarchy of neutrino masses and mixings, one possible strategy
is to demand that the sum of the last two terms on the right hand side of eq. (5.20) is
negligible, in which case the first term yields the correct physical neutrino masses and the
mixing matrix. Then, using eq. (B.§), we perform a Takagi-diagonalization to identify the
physical (loop-corrected) neutrino masses and mixing matrix elements:
_ h; h;
—[1 —Re(aX,)mpM 'mp [1 —Re(aX])] = (USN) mbMv (USRS)T . (5.21)
where mﬁ?ys is the (non-negative) diagonal physical neutrino mass matrix. One can solve

eq. (b.21) analytically for Re(aX, ), which yields:
Re(aX,) = 1 — i(UNRe)* (mbv) Y2 RMY2m ! (5.22)

where R is a complex orthogonal matrix, subject to the restriction that the right hand
side of eq. (p.29) is real. Thus, starting from any hierarchy of the tree-level diagonal,
non-vanishing Yukawa couplings Y/, the special choice of X, given in eq. (F:22) allows us
to reproduce the correct neutrino mass hierarchy and the mixing matrix.

Clearly, the scenario just presented is not very realistic from the phenomenological
point of view. To achieve the desired result, a specific form of the X, parameter, very close
to perturbativity limit of Y, and the charged slepton masses is required, as well as a rather
precise cancellation between the last two terms of eq. (5.2(). Nevertheless, our example
above provides an analytical existence proof for a radiative mixing scenario. In general,
for given Y,, and M, many choices of sneutrino parameters leading to the correct pattern
of neutrino masses and mixing at the one-loop level exist, but they need to be determined
numerically. Presumably, all successful scenarios require a certain degree of fine-tuning,
but perhaps some solutions would be deemed acceptable.

5.3 Universal parameters at the scale M

The magnitudes of the parameters A,, mQB and m?v that govern the behavior of the
heavy sneutrino sector are connected with the mechanism of supersymmetry breaking [cf.
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eq. (.6)]. These parameters decouple at the scale M >> M where the sneutrino superfield
N decouples. If the scale M is close to the GUT scale then soft SUSY breaking parameters
are restricted by GUT symmetry considerations. Further assumptions on the minimality
of the Ké&hler potential in supergravity simplify our input parameters considerably, at the
scale M ~ Mgy,

A, = AY, , my = mgM , mk = zM?, (5.23)

where A is a complex number, my and x are real numbers, M is a diagonal 3 x 3 Majorana
neutrino matrix [cf. eq. (R.5)] and Y, is the neutrino Yukawa coupling [cf. eq. (R.1])].

Under the universality assumptions of eq. (5.29), the matrices Mgc and Mgv assume
the following simple forms at the GUT scale:

1 T N
2MV mo
M3, = (A *cot f — 5.25
Lv 1+m<°+“ cot§ 1+x>’ (5:25)

where the light tree-level neutrino mass matrix M,, is given in eq. (B.§). As parameters
“run” from the GUT scale to low energies, m% receives renormalization from other Yukawa
and gauge interactions. In contrast, all the parameters associated with the superfield N
are hardly affected since M ~ Mgyr. Moreover, the neutrino mass matrix M, and the
superpotential parameter p are both multiplicatively renormalized. Hence, just above the
scale of low-energy supersymmetry breaking, the low-energy value of sz is still given by
eq. (p.29), with the parameters on the right-hand side defined at the low scale. At the
low-energy supersymmetry-breaking scale the DR running neutrino mass matrix M, (ug)
[or its diagonal form m,r(ur)] receives finite threshold corrections from the neutralino-
sneutrino loop in figure PJ(a). The one-loop correction to the neutrino mass matrix given

in eq. (p.16) is proportional to the diagonal tree-level neutrino mass matrix.2! Hence, the
one-loop corrected neutrino masses assume the very simple and suggestive form

(1-loop) « * L
m, i = My,1 [1 + 2R67(1 ) <A0 + p* cot B I x)] , (5.26)

where « is defined in eq. (p.1§) and all parameters are now defined at the scale ur = M.
We next examine the light sneutrino mass difference. Since the results of table |§ imply
that M7 is very close to diagonal form, it follows that Qo ~ 1 (cf. discussion above

eq. (B-49)]. Combining the results of egs. (B-49), (B.53) and (B-66), we derive

Amg 2 M,
< mw> _ ( uz)H (AO—F/L*COtﬁ— mo )
My, )4 M, My,

1+ 14+
*'Tndeed, assuming universal parameters at the GUT scale, and noting that z < O(1072) [cf. eq. ()], it
follows that M?o ~ m3 -1 at the GUT scale, where m? ¢ is one of the approximately degenerate eigenvalues

, (5.27)

of M?.. The positive square roots of the eigenvalues of M?, evaluated at the low-energy scale, are identified
as the three CP-averaged light sneutrino masses. Although m? is no longer proportional to the identity
matrix at low-energies, this latter effect is formally of higher order in the loop expansion of 6MVI€J [cf.
eq. ()] Consequently, we can neglect the flavor splitting of the CP-averaged light sneutrino masses in
the evaluation of the ratio (ABO/AmQ)iKM, in which case this ratio is roughly constant with respect to
the indices K and M as discussed below eq. ()
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Input Parameters
Neutrino Sector SUSY Sector

mgflys 10~14 A 0

mEfQYS Am? | mo 0

mﬁfgs VAm2 w 350

01 0.2+0.11 tan 10

0 0.3 Mg 95

03 0.1 4 0.51 My, 189

My 101 T 0.0

My 2 x 104 mr, 197

M 5x 1014 mg 135
Table 4: If not otherwise indicated, the input parameters that govern the neutrino and SUSY
sectors listed above have been employed in our numerical analysis. We take Am2 | = (8.0f8:§) X
1075 eV? and Am2,, = (2.45 % 0.55) x 1073 eV? from ref. [L1]. The values for 6; 3 above are

representative choices (as these angles are not fixed by the light neutrino data). All mass parameters
in the above table are in GeV units.

which is identical to the one flavor case found in eq. (B.6§) and in ref. [[§] if the neutrino
mass matrix M,, is diagonal. In the more general case of non-diagonal M,,, the diagonal
clements of the neutrino mass matrix do not coincide with the neutrino masses my,; .
Consequently, the quantity (Amg,/m,,); exhibits non-trivial dependence on the flavor
index I.

To produce quantitative results, we need to initialize the neutrino Yukawa couplings in
such a way that we always reproduce the “observed” MNS mixing matrix. Using egs. (B.§)

and (B.10), it follows that
mp = iUfng (mB*)Y2 RT MYV (5.28)

where R is an arbitrary complex orthogonal matrix [i7], with three (complex) angles, 8; 2 3.
(As the sign of R is undetermined, one may choose det R = 1 without loss of generality.) In
the plots that follow, we assume a hierarchical spectrum for the neutrinos, and all relevant
input parameters are displayed in table . The value for my, adopted in table [ is consistent
with a supersymmetric interpretation of the observed experimental excess for da,,.

In figure Bl we plot the ratios (Amg,/m,,); [upper panels] and (m,(,i_hmp) /my,); [lower
panels| as functions of the SUSY-breaking parameters myg [left panels] and A [right panels].
When varying mg we set Ag = 0 and when varying Ay we set mg = 0. Otherwise, our input
parameters are as specified in table [ In obtaining these results, we have incorporated the
full one-loop contribution to the neutrino masses. In the two lower panel plots, the ratios
(ml%*loolo) /my,); are nearly independent of the flavor I, and thus only one curve is shown.
Our numerical results confirm our analytical approximate formulae of eqs. (5.24) and (5.27)
and demonstrate that one must have mg < 10° GeV (|4g| < 10° GeV) to guarantee that
the radiative corrections to neutrino masses are less than 80% of the tree level neutrino

mass. In this case, the sneutrino mass difference is at most Amy, < 300 Amgy, ~ 15€V.
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Figure 3: Predictions for the ratios (Amg,/m,,); and (m,(,e OOp)/mw)l for the three neutrino

states (I = 1,2,3) as functions of the soft SUSY-breaking parameters mgo and Ag. When varying
mo [left panels] we set Ag = 0 and when varying A [right panels] we set mg = 0.
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Figure 4: (a) In the left panel, the contribution to the muon anomalous magnetic moment from the
diagrams in figure [[] as a function of my = mpg is exhibited. (b) In the right panel, the prediction
for BR(¢7 — £1v) is shown as a function of the parameter z = m3,;/M?. The upper [lower] curves
correspond to 7 — p7y [T — ev], and the middle curve to u — e.

For completeness, we plot in figure ff the results for g, — 2 anomaly and the branching
ratios for the decays £/ — ¢!~ in the case of universal parameters at the SUGRA scale.
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The results shown in figure [| confirm our choices of a lower bound for my, [cf. table [
obtained in section [i.1 and an upper bound for z [cf. eq. (l.1§)] obtained in section [i.3.

5.4 General case

So far we have dealt with universal boundary conditions for the supersymmetric parameters.
One can set general bounds for the lepton number violating matrix elements of Mgv

from eq. (p.16) and the “naturalness” assumption of dm,, < m,,.

appropriate bounds can be derived only numerically and depend on the particular form of

In the general case,

the MNS matrix. Analytical estimates can be obtained using the following approach. Let
us require that the one-loop corrections to the neutrino mass matrix do not significantly
affect the physical neutrino masses and their mixing. Combining eqs. (B.10) and (F.14),
one gets for any 1, J:

|UniNs (My,) prn UniRs| 2 (5.29)
M0 2 1iN2 7 MI 7rNJ 2 ABy
39,2 Re (9225 — 91 Z3)* UninsUniks (M7v) 0] am2) |

The structure of the Uyins factors on both sides of eq. (5.29) is identical, so roughly [barring
possible cancellations between terms and the effects of truncating a potential imaginary
part?? of UMK (M,,) yyn UdlRgl, the condition above can be rewritten as:

| (Mvz)MN | = | (mDM_lmg)MN |
M0 ‘ ‘ A By
2 |55,2 Re (9223 — 91 Z8)* (MEy) yn) N
iMN

with apsn defined in eq. (p.1§).

Further estimates depend on the particular choice of the mp (or Y,) and M and on
the neutralino sector parameters. For example, using the parameters specified in table [,
one has ayny ~a ~4 x 1076 GeV_l, so that

| (MEy) yyn | <25 x10° GeV [ (My,) x| - (5.31)

Eq. (b.31) implies that in the general case one should expect the entries of the matrix
M/%V to be no more than 5 or 6 orders of magnitude larger then the typical scales in the
effective neutrino mass matrix; i.e. of the order of a few MeV?2. Bounds on M%V can be
also translated into bounds on X,, and m%. From eq. (B.4() one can see that, barring fine
tuning, we have approximate relations sz ~ M, X, or sz ~ MwmQB/M. Thus the
rough estimates we made above suggest that both X, and mQB /M should be smaller than
approximately 100 TeV.

221f the Higgsino mixing parameter p and the lepton trilinear coupling A, are real (the case of complex
p and Ay has been extensively discussed in the literature, see e.g. [@]) then there is no bound on the
imaginary parts of the matrices M7~ and M7, .
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Stronger bounds on the matrix elements of M%V can be obtained numerically after
assuming some particular form of the MNS matrix. As an example, under the assumption
of tri-bimaximal mixing of ref. [FJ] and the parameters given in table fi,

2% 1079

M2, < . 2x1078 . GeV? (5.32)

~ )

107°

where the dots indicate elements with similar bounds as the diagonal ones. The significant
suppression of the lepton number violating matrix elements of Mgv relative to the lepton
number conserving matrix elements M7, ~ O(v?) is particularly noteworthy.

6. Sneutrino Oscillations

The theory behind sneutrino oscillations follows closely the very well known theory of
oscillations in the neutral Kaon-meson system. The light sneutrino state [cf. eq. (F-3)],
vp ~ v, —mpM(M 24+ m?v)*lﬁ}k% is to leading order in vM ~! the supersymmetric partner
of left-handed neutrino vy, and therefore couples to the W+ and Z gauge bosons. For the
present discussion, it suffices to approximate: %f ~ ﬁj{, which we shall denote simply by vy
in this section. The 7y can be produced, for example, in ete™ annihilation via s-channel

Z exchange:
et +e = v+ (6.1)

When lepton number is conserved, the vy (Iy) possess a definite lepton number equal to
—1 (+1) and they are produced in definite flavor eigenstates I = 1,2, 3.

It is convenient to introduce a two-dimensional complex vector space spanned by a
basis of vectors consisting of the sneutrinos states of a given flavor I, |77) and |7}). Two
important operators that act on this state are:

f)z<_1 0), and CPE(O 1), (6.2)
0 1 1 0

where L is the lepton number operator and C'P is the CP-operator in the {|#7;), |7%)} basis.
That is, |77) and |7}) are eigenstates of L:

Liry = —lor) ,  Llof) = +|7p) (6.3)

and the charge-conjugate parity operator C'P transforms particle states into antiparticle
states:

CPlor) =|p7) , CPlog) =|ir). (6.4)
The eigenstates of CP are given by

) = e o+ o B = o) 1)) (63
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with definite eigenvalues
cPr)y =+t |, CcPp)) =) (6.6)

The CP-even sneutrino state of flavor I, ]ﬁ§+)>, and the CP-odd sneutrino state of flavor
I, \5}7)% are states of indefinite lepton number. Of course, these states are the real and
imaginary parts of the sneutrino field of definite lepton number,

oo L) o)

v =—(v; ' 4w . 6.7

= 504 ) (6.7

Inevitably, in a supersymmetric model with a mechanism that yields neutrino flavor

oscillations, the sneutrino flavor states should oscillate as well. The sneutrino mass eigen-

states, Sk, (k = 1,2...6) are linear combinations of the CP eigenstates |17§i)>, and for a
three flavor system (I = 1,2,3) they are related by:

7y = 2lRs ) = 20 Rs) (6.8)

where the real orthogonal 6 x 6 matrix with Zéj has been introduced in eq. (B.75). The
|Sk) are states of definite CP unless the following CP-violating conditions hold:

ZI g 20 20, 17=1,23. (6.9)

In the presence of complex parameters in the Lagrangian (whose phases cannot be absorbed
by field redefinition), one expects the conditions specified in eq. (f.9) to be satisfied (even
in the case of a one-generation model).

Let us initially focus our analysis on the CP-conserving one-generation model. Consider
the time evolution of the sneutrino states. The time dependence of a sneutrino in the state
|7(+) is governed by a definite frequency wy = E1 /h where Ex = (p>c® + m3.c*)'/2. where
my and m_ are the masses of [7(t)) and |7()) respectively. If these masses are large
compared to momentum p then the corresponding energies are E1 ~ m4c? (in which case,
wt ~ my in units where h = ¢ = 1). In addition to the time-dependent phase, we must
also account for the fact that the sneutrinos decay exponentially (e.g. into a chargino and

+

a lepton) with a lifetime of 74 (for U= respectively). We exhibit this time dependence

explicitly by writing

—ilw_t—

LU (f) = e I )y (6.10)

Ui (t) = e T )
where the 7+ are time-independent state vectors, That is, starting at ¢ = 0, the proba-
bility for finding particle in the sneutrino state () is given by [(Z(H) U (2))|? = e/, as
expected.

The well known striking effects of the K-system (e.g., K—K mixing and regeneration)
can also occur in the sneutrino system. For example, we demonstrate how sneutrinos
states |) can turn to states |0*). If we start off with a sneutrino state that is U(0) = |7) =
%(W(”} +i[7())) at t = 0, then it follows that at time t,

w_t—

—dwyt—t— —1 A
W(t)) = — |e 77 7)) 4 de 7 [py| (6.11)
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Then, the probability amplitude that the sneutrino |7) is in state |7*) is
~x 2 1 —t/T —t/1 _1<L+L>
Py 5= (t) = (TF|W(t))|* = 1€ e T —2e 2\ T/ cos[(wy —wo)t]| . (6.12)

The quantum interference effects can only be seen if t ~ 7, ~ 7 and (my —m_)t =
(Am)t = O(1). That is,

Am
I's

~ O(1), (6.13)

where I'; is an average decay rate for the sneutrino, and Am is the mass difference of the
CP-even and CP-odd sneutrino states. Eq. (B.13) describes the oscillations of sneutrinos
into antisneutrinos, or equivalently the oscillation between states of definite CP quantum
number. We shall call this phenomena CP-driven oscillations.

Similarly, one may compute the probability that the initial state |7) is in the state |7)
at time t. We find

t

Py p(t) = [(#|W())* = i et et 42 eié(éjLi) cos[(wy —w_)t]| . (6.14)

One can also easily verity that Py« .3« = Py_,5; and Py«_,; = Py_,;«. However, the proba-
bility Py, is proportional to the number of negatively charged leptons (N;-) due to the
decay 7 — [~ +xT while P;_ 3+ is proportional to the number of positively charged leptons
(N;+) due to the decay o* — I + x~. Then the asymmetry,

N - N3

_ 7 6.15
Ni- + Ny (6.15)

l

is proportional to the quantum interference term cos(Amt) in egs. (6.19) and (f.14). That

is, the lepton charge asymmetry A; oscillates in time and provides a possible method for
experimentally determining the value of Am.

The signal for sneutrino-antisneutrino oscillations can be interpreted as the observation
of a sneutrino that decays into a final state with a “wrong-sign” charged lepton. The
phenomenological implications of such wrong-sign charged lepton final states at future
colliders have been explored recently in ref. [54].

We now turn to the three-generation model (allowing for the possibility of CP-
violation) and consider the additional possibility of flavor metamorphosis. We pose the
following question: Given the state |Py) at time ¢t = 0, what is the probability that the
sneutrino at time ¢ is in the state |#}) or |7;)? Following the arguments given above
eq. (Bb.11)), we find that a sneutrino wave function involves with time according to

() = % (2 iz ) (6.16)
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Hence, the probabilities to be in the state |0%) or |77) at time ¢ are given by:

6 1 1
Z eit[ﬁjLE] cos [(wy, — ws)t] x (6.17)

k,s=1
Jk zIk zJs =1 J+3)k (I+3)k 5(J+3 I+3) Jk =Tk ~(J+3) I+3
(Zﬁ 2250250 +Z£ b z(I+3) Zé )SZ,S DY ALY A zg SZé )s

Ry

Py (t) = Porp, (t) =

v

n ngzlgpr?,)kzgszépr?))s 4 ZEJ+3)kZ£kZéJ+3)szgs+22’51kzéf+3)kz(=7+3)5258> ’

6
1 Y B S
Py, (t) = Porps(t) = 1 g e [27k+278] cos [(w — ws)t] X (6.18)
k,s=1

(Z{;]kZékZl‘;]SZés n Zlgj+3)kZél+3)kZéJ+3)sZél+3)s n 2Zb]kzgkzéJ+3)sZéI+3)s

U

n ngzlg[-i-g)kzgszél-i-fi)s I Z(J+3)kzékZéJ+3)sng _2215”“25”3)’“25‘”3)821{3) )

Note that the probabilities in eqgs. (f.17) and (f.1§) are unchanged under the interchange
of flavor indices I and J, respectively. The three-generation model possesses both flavor

and CP-driven oscillations.

In the supersymmetric seesaw model, neutrino mixing and masses are governed by a
variety of parameters that contribute to the tree-level and one-loop neutrino mass matrix
(cf. section p.9). Some of these parameters also are relevant for determining the struc-
ture of the real orthogonal sneutrino mixing matrix Zf;/j , which controls the properties of
the sneutrino mixing as shown above. Consequently, the bounds on the model parame-
ters discussed in sections [ and ] can be used to significantly constrain the general form
of eqs. (b.17) and (b.19).

The mass splittings among sneutrinos of different flavors is typically much larger than
the sneutrino-antisneutrino mass splitting between sneutrino states of a given flavor. In
particular, due to the renormalization group evolution of parameters, Am% 7 is generally
larger than few GeV?, even in the case of universality assumptions at the high scale, whereas
sneutrino-antisneutrino mass splittings are typically of order the light neutrino masses. The
observability of oscillations depends on the ratio Am/T" [cf. eq. (p.13)]. Because the total
decay width, I', is universal for a given sneutrino, whereas the scales of the corresponding
mass splittings are so different, it follows that Am/I" ~ O(1) can be satisfied only for one
of the two oscillation phenomena. That is, at most one oscillation phenomenon, either
flavor oscillations or CP-driven oscillations, can be observed.

Consider first the CP-driven oscillations. These oscillations can be observed if the
lifetime of the sneutrinos is sufficiently long (the appropriate numerical requirements are
given later in this section). In this case, flavor-driven oscillations are much faster and
have a very short “baseline”, so these oscillations are unobservable in collider experiments.
Therefore, one can take a time average over flavor-changing terms in the sums in eqs. (.17)
and (6.1§), setting them effectively to zero, and retain only those terms where the mass
splitting is CP-driven and not flavor-driven (i.e. keep only those terms with s = k or
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s =k +3). Now, the sum over s can be performed, and eqgs. (p.17) and (p.1§) simplify to:

3
Py = ) (e‘t/% | XTK XK 4 et/ \YIKYJK\Z)
K=1

1

) P
i, 271(,}(;05 [Axt] Re (XK X/ By IEY7EY 0 (6.19)

3
Py = 3 (77 |XTRXTE[ et/ [y TRy 7K )

3. 4|t o4 1
+2 Z e t{2TK++2TK*} cos [Agt] Re (XTEXTRY IRy TKY 0 (6.20)

where Ax = wg — wk 13 and we have used eq. (B.79) to express the 6 x 6 matrices Z; in
terms of the 3 x 3 matrices X and Y.

Egs. (p.19) and (6.20) are easily interpreted. For “long baseline” oscillations, one
needs first to project flavor I onto some K (via the X% YK factors), then the CP-driven

oscillation takes place between the would-be sneutrino-antisneutrino states Sk and Sk 3,

and finally the result is projected back onto flavor J.

Further simplification is possible if we exploit the bounds on the parameters due to the
¢’ — ¢1~ decays obtained in section [ to conclude that the matrix Mzc is very close to
diagonal form. In this case, the matrix Qo that diagonalizes M2, [cf. eq. (B.47)] is close to
the identity matrix. Moreover, the matrix elements of R [cf. eq. (B.59)] are suppressed by
the ratio of Am;/m;, and are therefore negligible. It then follows that X ~ Y ~ T/v/2,
where T = diag(e™%1/2, e792/2  ¢7193/2) and ¢; ~ arg(M?,) s [cf. eq. (B5Q)]. If we
consider flavor conserving (i.e. I = J) sneutrino-antisneutrino oscillations, then there is
one large contribution in eq. (f.19) in the sum over K for I = K, whereas the contributions
of I # K are strongly suppressed by the squares of mixing angles. Therefore, the dominant
contribution to the probability for sneutrino-antisneutrino oscillations is given by:

1 1

e
e e LTl 9, [2”+ 2”—} cos(Ajt) cos(2¢1)] . (6.21)

FN-

Py —pr =

which coincides exactly with the formula obtained previously for the one generation case
[cf. eq. (F-IZ)] in the CP-conserving limit (where M7, is a real matrix so that cos 2¢; = 1).
Similarly, for Py, _5,, one reproduces eq. (6.14) in the same limiting case.

To complete the analysis of the sneutrino oscillation formulae, we must compute the
total sneutrino decay width, I'y, = I'(Sp — anything) = 1/7s,. Supposing that the neu-
tralino is the lightest supersymmetric particle (LSP), the sneutrino decay width is the sum
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of the partial widths of the following two kinematically available decay chains,?3

mz_ 3/2 A
D(Se— 671 +x) = g3 5o (1—m; 2P (12512 + 1200 (6.22)
Sk

ng m20 3/2
I'(S I Oy — 22 5% [ _ X X
(S — v +x7) c%V 64r m%

k

x| Zhisw — 2w |? Z( 2l i ZUHIR I (2 . (6.23)

In deriving the formulae above, we have used the Feynman Rules egs. ([C.J]) and ([C.4)

from [J and have taken the lepton masses to zero. Egs. ((.29) and (p.23) agree with

ref. [[§ in the limit Uyns = 25 = 1. Writing 25 in terms of X and Y [cf. eq. (B:79)], it

easily follows that the decay rates of the sneutrinos Sy with k = 1,2,3 [k = 4,5, 6] depend

on X [Y] alone. Since X and Y differ only by the “small” R matrix [cf. eq. (B.60)], it follows

that 77, ~ 77_, which can be used to further simplify the expression given by eq. (.21).
The total sneutrino decay width is given by:

3 2 3 4
=3 3 TSk = FTHx) + D) TSk — v +x7) (6.24)

=1 i=1 =1 i=1
2 9 3/2 3/2
9 Mg, my, 1412 i 1 2% 12
1 - —* Z 1-— ZNSw — e
_ g z( m) 297 4 222( m) Zhisw - Zienl?|

where the summation over the lepton indices can be performed in the limit of vanishing
lepton masses, with the use of the orthogonality [unitarity] relations for the matrices Z;
[Unins]-

How can one observe sneutrino CP-oscillations? Consider the following scenario: sup-
pose that the LHC finds sneutrinos with masses that are accessible at a future Inter-
national Linear Collider (ILC). Then, at the ILC, the sneutrinos are produced through
the annihilation process of eq. (6.1]), and subsequently decay into [leptons + charginos]
and [neutrinos + neutralinos| following the decay widths given by eqs. (p.22) and (6.29),
respectively. Sneutrino CP-oscillations will then be observed only if the asymmetry A;
defined in eq. (B.1§), is appreciable, i.e., 4; ~ O(1), which can be realized if both Amy
is small (providing a long enough oscillation base) and the sneutrino decay rate is suffi-
ciently slow such that Amyg /Ty ~ O(1). This scenario is impossible if the sneutrinos are
sufficiently heavy compared to the neutralinos and/or charginos, in which case (neglecting
the phase space suppression in eq. () and performing the summation over the chargino
and neutralino indices) the sneutrino decay rate is approximately given by:

4
. mg 1
Sl Y~ et | < (1 )

2CW

Iy ~ 92 32

(6.25)

BP(Sy — £FT 4+ Xli) indicates the sum of the sneutrino partial widths to the lepton-chargino and its
charge-conjugated final states.
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The expression above depends only on the sneutrino mass and cannot be suppressed by a
particular choice of mixing angles of the Zj;, Z or Zy matrices. Thus, using the results of
section [f, one can check that the ratio Amy /Ty is always much too small for the sneutrino
oscillations to be observed. As an example, in the case of universal parameters discussed
in section .3, for the lightest sneutrino and my, |4| < 10° GeV we obtain

AMS < 97 %1076 | (6.26)
I's
which is very far from the value O(1) required for the observability of sneutrino oscillations.

In the case of 2-body decays, the decay width I'y can be only suppressed by choosing
an appropriate hierarchy of particle masses. Most of the decay channels in eqs. (6.23)
and (f.23) would have to be closed kinematically, with the open channels strongly sup-
pressed either by the very small phase space factors (which requires rather unnatural de-
generacy between sneutrino and neutralino or chargino masses), or by sufficiently small
mixing angles for the relevant channel. An alternative possibility is one where the sneu-
trinos are lighter then all charginos and neutralinos, so that all 2-body decay channels are
closed, but heavier than some charged slepton. In this case, v — fl&W{ and assuming
that the W is produced off-shell the end result is a 3-body decays that can produce an
observable charged lepton. Three-body phase space significantly suppresses the sneutrino
decay rate (relative to the two-body decay rates discussed above), and can yield observable
sneutrino-antisneutrino oscillations, as shown in ref. [[[§]. However in such a scenario, ei-
ther the charged slepton is the LSP, which is strongly disfavored by astrophysical data, or
the charged slepton decays to some new lighter supersymmetric particle, which requires ex-
tending the model beyond the seesaw-extended MSSM considered in this paper [B]. As we
have shown, the oscillations in the three-generation case does not differ much from the one-
generation case, where the flavor indices are summed over [cf. eqs. (6.21]) and (B.24)]. Thus,

the results of ref. [[[§] can also be used without significant changes in the three-generation
case discussed in this paper.

Finally, we discuss the case of sneutrino flavor oscillations. These oscillations are
described by eqs. (6.17) and (6.1§) with indices I # J. For any choice of I # J, both
equations can be significantly simplified using the bounds on the structure of sneutrino
mixing matrices derived in sections [| and . These bounds imply that the off-diagonal
elements of matrices Q and R [defined in eqgs. (-49) and (B.50)] are small, which then
imply [via eqs. (B.60) and (B.79)] that the off-diagonal elements of the matrices X, Y and
Z; are likewise small. Thus, to a good approximation one can keep in eqs. (6.17) and (f.19)
only terms at most quadratic in the non-diagonal elements of Z;. For example, in the sum
of the first term of the product of four Z;’s in eq. (6.17), it is sufficient to keep only terms
with s,k =1I,1+3,J,J+ 3. Assuming that the lifetimes of all eigenstates are very similar

(i.e., T ~ 71), all the dominant terms can be summed to give a simple final expression valid
for I # J

Py, ™ e r {|QIJQJJ*|2 + |QJIQH*|2 + 92Re (QIJQJJ*QJI*QH) COS Amut},
(6.27)
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where Amy; = my, — my,.

The analogous expression for the sneutrino-antisneutrino oscillation probability PDI"DS
is bilinear in the matrix elements of R [cf. eq. (B.56])]. The latter are at most of
O(10%m,, /v) < 1076 and thus lead to completely negligible sneutrino-antisneutrino transi-
tion rates.?*

The form of eq. (p.27) is explicitly invariant with respect to rephasing, QY — Qe
Thus, without loss of generality, we may replace Q by Qo [cf. eq. (B-49)] in eq. (6-27),
where the off-diagonal matrix elements of the unitary matrix Qg are given approximately
by eq. (B.-4§) and the diagonal elements of )y are fixed by unitarity. As Q) is close to the
identity matrix, the following approximations are valid: Q“OI J ~ 1 and le * o~ —Q{)J for

I # J. In this approximation, eq. (f.27) simplifies for I # .J to:
Ps, i, = 2077 [|Q(I)J|2 — Re(Qb7)? cos Ampt] . (6.28)

If one uses the approximate expression given in eq. (B:45), Q{7 ~ (MIQIC)U/(m%J - mlg,]),
then eq. (p.29) yields the oscillation probabilities directly in terms of the sneutrino squared-
mass matrix elements. As expected, the sneutrino flavor-transition depends on the flavor-
conserving matrix M/%C'

Defining the oscillation length by L = ¢t we can write
Am[ﬁf = 5.06 x Am[J (GGV) L( fm) . (6.29)

As in neutrino oscillations, it is useful to define Am;; L = 2nL/Lg where Ly is the char-
acteristic length of the oscillation :

1
Ly = 124fmx ———— . 6.30
0 m Am IJ (GeV) ( )
If the sneutrino mass difference is of O(1 GeV), the characteristic oscillation length is of
order 1fm. Of course, the characteristic length of oscillation must be smaller than or at
most comparable to the decay length of the particle for oscillations to be observable. In
the case of the sneutrino, the decay length is [using eq. (p.25)]:

28 (fm)
Ly=cr~—1—"—. 6.31
v 7 myp (GGV) ( )
Hence, the condition L; = Lg requires that
Amyry 1
z— . 6.32
o~ 35 (6.32)

Such a mass splitting between the sneutrino states of different flavors is sensible. Thus, the
likelihood of observing flavor sneutrino oscillations at colliders depends primarily on the

24 An accurate estimate of P, 5= should also take into account similarly small effects produced by the
admixture of the heavy sneutrino states in the definition of the Iy, which were neglected in derivation
of egs. () and (6.1§). However, given the extremely small transition probabilities, we do not present
the full analysis here.

— 44 —



degree of suppression caused by the mixing angles in the matrix (). It is instructive to input
some representative numbers in eq. (6.27). Thus, for Amis = 10 GeV,m; = 270 GeV,
tan 3 = 10 and taking into account the bounds of table [J, we obtain for v, — U, oscillations
at time t = 7 =T~ [cf. eq. (p.24)]:

Py 5. ~ 125 x107° [I — cos(AmiaT)] , (6.33)

Thus, as a consequence of the bounds from neutrino masses and radiative flavor changing
decays obtained in sections f| and [|, we conclude that in the see-saw extended MSSM,
sneutrino flavor oscillations are difficult to observe at colliders.

If the bounds of sections f] and fj could be avoided, say with some cancellation mech-
anism (which in the absence of such a mechanism would appear unnatural), then it may
be possible to find regions of the supersymmetric parameter space where flavor oscillations
are observable. Then, at the ILC, one can define a flavor asymmetry for the number of
muons vs. electrons in the final state, analogous to eq. (B.15). A time-variation of this

flavor asymmetry would indicate the presence of flavor oscillations.

7. Conclusions

In this paper, we have studied sneutrino mixing phenomena in the seesaw-extended MSSM,
allowing for the full complexity of the three-generation model (which includes both flavor-
changing and CP-violating effects). We have focused primarily on the soft-SUSY-breaking
matrix parameters m?\,, mQB and A,, which govern the structure of the sneutrino squared-
mass matrices. We have found a convenient parameterization of the sneutrino sector, where
all relevant physical observables depend analytically on a pair of 3 x 3 mass matrices M%V
and M3 given in eqs. (B-40) and (B-39), respectively. The elements of M?,, violate lepton
number by two units, whereas elements of M%C are lepton-number conserving parameters.

Within this framework, we have analyzed the constraints arising from one-loop neutrino
masses and mixings, from radiative flavor-changing charged lepton decays, and from the
electron electric dipole moment (EDM). We discovered new and potentially significant
contributions to radiative lepton decays £/ — ¢! + ~ due to the dependence of m%\, which
modifies the MSSM value of M7 .. We also observed that although the (g—2),, measurement
places non-trivial constraints on the SUSY-breaking parameters, the electron EDMs do not
yield any additional constraints (at one loop) on the seesaw-extended MSSM parameters.
All conclusions presented here are based on a complete numerical analysis of the processes

described above.2°

In all cases, we have also provided useful analytic approximations,
which have served as a check of our numerical work.

Sneutrino mixing phenomena takes on two different forms. The mixing of sneutrinos
and antisneutrinos violates lepton number by two units, whereas sneutrino flavor mixing is
a lepton-number conserving process. Both forms of mixing are in present in principle in the
three-generation seesaw-extended MSSM. In this paper, we have generalized the sneutrino-

antisneutrino mixing formalism, originally presented in a one-generation model [[f, to

ZFortran-77 and Maple-10 numerical codes are available from the authors.

,45,



the three-generation model. This sneutrino-antisneutrino mixing then acts back on the
neutrino sector, and provides an important loop correction to the neutrino mass matrix. In
this paper, we examined the possibility that starting from a diagonal neutrino mass matrix
at tree-level, the nontrivial flavor structure of the neutrino mass matrix is generated entirely
by the one-loop diagram that directly involves the sneutrino-antisneutrino transition. Our
analysis shows that this is indeed possible, although in practice certain fine-tunings among
SUSY breaking parameters in the leptonic sector seem to be unavoidable.

Returning to the sneutrino sector, we have derived analytical expressions for
both sneutrino-flavor oscillations and sneutrino-antisneutrino oscillations in eqs. (6.17)
and (p.18). We determined that if the constraints analyzed above are combined with the as-
sumption that sneutrinos can decay into two-body final states, then sneutrino-antisneutrino
oscillations are not observable at colliders. This is consistent with a similar result of the
one-generation model obtained in ref. [1§]. This conclusion is easily understood, by noting
that the sneutrino-antisneutrino mass difference, Amj, is proportional to the neutrino mass
and is at most of the order of 1 keV. This is much smaller than the corresponding width
of the sneutrino, 'y, of order 1 GeV or larger. The observability of sneutrino-antisneutrino
oscillations at colliders requires that Am; ~ I';. A sneutrino width of order 1 keV or less is
possible only if there are no kinematically allowed two-body final states in sneutrino decay.
In the seesaw-extended MSSM, this scenario is possible only if a charged slepton is the light-
est supersymmetric particle, a possibility strongly disfavored by astrophysical data. Other
possibilities exist if one introduces new degrees of freedom beyond the seesaw-extended
MSSM, but this lies beyond the scope of this paper.

Sneutrino flavor oscillations are more likely to be observable at colliders, since the
mass splitting between sneutrinos of difference flavors can be of order 1GeV or larger.
We have derived simple approximate formulae for such oscillations and have estimated
their magnitudes. Unfortunately, in the seesaw-extended MSSM, after imposing bounds
on bounding sneutrino mixing angles determined from the analysis of radiative charged
lepton decays, the resulting probabilities for sneutrino flavor oscillations are likely to be
too small to be observed directly at colliders.

At present, within the seesaw framework for neutrino masses, few handles exist for
probing the physics at the seesaw scale. At most, one can hope to measure the MNS mixing
angles, and determine neutrino mass differences (and with a little luck, the absolute scale of
neutrino masses). In the seesaw-extended MSSM, some of the physics of the seesaw scale is
imprinted on parameters that govern the properties of the light sneutrinos. With a precision
program at future colliders for measuring sneutrino observables, there are new opportunities
to explore the fundamental physics that is responsible for the origin of neutrino masses.
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A. Notation for fermion fields

Fermion fields in quantum field theory can be described by employing either two-component
or four-component fermion notation [5f]. In models where lepton number is not conserved,
two-component fermion notation is generally simpler and more efficient. In this appendix,
we briefly discuss the relation between the two treatments.

In table [, the fermionic fields associated with the lepton and Higgs sectors of the
seesaw-extended MSSM are listed. These fermion fields can be viewed either as two-
component fermion fields or the left-handed projections of four-component fermion fields,
with U7 = (1 — v;)¥ and

=00, Te=_vwlo?, (A.1)

where ¥ = ¥i70 and C = —C7 is the charge conjugation matrix.
For example, in four-component notation, given a four-component (anticommuting)

Dirac spinor vp, we define the following four-component spinors:
vy, = Prvp, vi = Prvg, vr = Prvp, and vy = Prrp, (A.2)

where P, p = %(1 T 75), respectively. The corresponding two-component (anticommuting)
fields are given by the non-zero components of v, = Prvp and v§ = Prvf. Consequently,
we shall use the same symbols v, and v§ for the corresponding two-component neutrino
fields. However, one must be careful to note that in our notation

vi =Crg", v =-viC', (A.3)

since, e.g., Vf = PLC'?F]S = C(Prvp)T. The same notation also applies to charged fermion
fields. Our conventions for left and right-handed charged conjugated fields follow those
of ref. [57]. Note that eq. (A.3) implies that anticommuting fermion fields satisfy:

%l/i =TVRVL, Vévh =ULVR . (A.4)
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In the text, the effective Lagrangians for fermion mass and interaction terms are
given in terms of two-component fermion fields. These terms can be easily translated
into the four-component spinor notation . As a first example, the dimension-five oper-
ator that governs the standard seesaw mechanism [eq. ([L.1)] contains a product of two-
component fermion fields, LZ-I Lf . In terms of four-component spinors, this product is given
by —(LDICTLE = (RO)ILE, where LE = (vE, (/) is now interpreted as a doublet of
four-component fermion fields as described above and (R°)! = (v§! , ¢5).

As a second example, we derive the four component version of eq. (@) in the one-
generation model. One can redefine the phases of the neutrino fields such that mp and
M are real and non-negative. The two-component spinor product vy v + H.c. translates
to the product of four-component spinors: —VfC"ll/i + H.c. = Ugvy, + UpvR, which is the
usual Dirac mass term. Similarly, the two-component spinor product v§v§ translates to the
four-component spinor product —VETC’_lyi = Vgv{. Hence, if the Majorana mass term
M # 0 in eq. (B.1), one cannot identify the physical mass eigenstates as Dirac fermions.
For example, the mass terms of the one-generation neutrino Lagrangian, which in terms of
two-component fermion fields is given by —Lyass = mprrvy + %M vivi + H.c., translates
in four-component notation to

__ S 1 S
_Lmass — mD(ﬁ”R"’ﬁ”L‘*’”i”}%"’”}%”ﬁ)_F§M(ﬁyi+1/zy3)

— 0 mp vy, l — = 0 mp Vf%

(”R ”R) <mD M) <ug>+2<”L ”L) <mD M) (VR>

_ L -1 0 mp v

— 5 (vFu")c (mD M) (Vz>+H.c., (A.5)

where we have used eq. (A.4) to write the first line of eq. (A.§) in a symmetrical fashion
and eq. (|A.3)) to obtain the final form above.
The Takagi-diagonalization of the neutrino mass matrix yields two (self-conjugate) Ma-

N = N =

jorana fermion mass-eigenstates. This is accomplished by introducing a unitary matrix U,

vy Prvy

T 0 mp my, 0
= A7
u (mD M ) u < 0 my, |’ (A7)

where m,, ~ mQD/M and m,, ~ M + m%/M. The resulting neutrino mass Lagrangian is:

such that

1
_ﬁmass = -3

5 [mwl/gc_lle/g + myhquTC’_lPLyﬁ] + H.c. (A.8)

We can define four-component self-conjugate Majorana fields by:

Yy = PLI/g—l-PRCﬁg, EM =v,Pr — I/Z‘CilpL, (AQ)
Uy = PLIJFCL—FPRCWET, WM EﬁZPR—VﬁTC_lpL. (A.IO)
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Thus, eq. (A.§) reduces to the expected form:

1 — —
—ﬁmass = 5 [mwlel/JM +myh\I/M\I’Mj| . (All)

B. A non-decoupling contribution to sneutrino masses when
m2, ~ O(M?)

B.1 Non-decoupling effects when m%\, > v?

In section B.9, we noted below eq. (B.4() non-decoupling in the limit of ||M| — oo with
|m3, M ~2|| fixed. The lepton-number conserving 3 x 3 squared-mass matrix of the light
sneutrinos [eq. (B.39)] can be written as:

1
M%C = m% + §M% cos 283 + mj‘jM_lm?VM_lm}S + (9(1)4M_2) + O(UijlvM_4) , (B.1)

after expanding the quantity (1 + M ~?m3;)~! under the assumption that ||[M —2m3|| < 1.
Thus, we have a non-decoupling correction to the usual MSSM result of O(m3% M ~2) as
previously noted.

To understand the origin of this non-decoupling phenomenon, we use eq. (@) which
relates the original right-handed sneutrino with the light and heavy sneutrino states after
block diagonalization of the sneutrino mass matrix. To formally integrate out the heavy
sector and obtain the effective theory of the light sneutrinos, we must write:

NT = o] — egal (M2 + m3) " MY,V LIH, (B2)

before electroweak symmetry breaking, where we have used NI = 171{2*. Note that when H32
is replaced by its vacuum expectation value vy/ V2, we recover eq. (@) after using mp =
12Y,,/v/2. In addition, we have used L ~ 17!77 + O(vM~1) and have worked consistently to
leading order in vM L.

Consider the contribution of |[dW/dN”|? to the scalar potential, where W is given by

eq. (B-1). Then,
aw

AN’
After squaring, and including the soft-SUSY-breaking term N *m?\,]v (where m% is hermi-

= M7ENK 4 ;YTHILE (B.3)

tian), we find:

il + (o) () = ot W2 2 AT,

+ [eij(YVM)KINI*HEZf +He| + (M2 +m2)E/NE*NT . (B.4)

To obtain the relevant operator that survives in the low-energy effective theory, we insert

eq. (B2) for NT in eq. (B-4), and then take the limit as ||M]|| — oo, In addition, we set
Uy, = 0. The end result is:

epneiy Y2V — Yy M(M? +mb) MYV LI a2 H? (B.5)
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Note that this is a dimension-4 (hard) SUSY-violating operator [p§ which vanishes if
m3% = 0 [as m3; is the only SUSY-breaking source in eq. (B.5)]. If m3 < M?2, one can

expand (M2 +m3%)~! in eq. (B.§), which yields:
ern€ii (Yo M mA MY, + O(mi M~/ KLI* LK HE*HE. (B.6)

We now replace H? — v2/v/2. If m%; ~ O(v?), then the hard SUSY-breaking operator is of
O(v?M~2), which is the expected result. Such corrections are extremely small, assuming
that v < ||M]|, and can be be dropped from the low-energy effective field theory of the
light O(v) degrees of freedom. On the other hand, if x = ||m3||/||M?|| is held fixed to a
finite positive value as M — oo, then the hard SUSY-breaking operator is of O(x), which
must be kept in the low-energy effective theory if x is not too small.

In the latter case, we see the presence of a non-decoupling effect in the low-energy
effective field theory of the O(v) degrees of freedom as M — oo. We identify this as
a hard SUSY-breaking effect described by the dimension-4 operator given by eq. (B.§).
Ultimately, this non-decoupling effect can be traced to the fact that although v, [vf] and
vr, [Uf] are superpartners, it is not quite true that vy [vp,] and 7, [7,] are superpartners.

Explicitly [cf. egs. (5.3) and (f.4)], whereas
vE v + M tmBup (B.7)
to leading order in vM !, we have:
U~ U+ (M? +m%) ' Mmby, . (B.8)

Clearly, with m?v # 0, there is a slight discrepancy between 7, and the superpartner of v,.
If we replace HZ with its vacuum expectation value v5/v/2 in eq. (B.J) and again make
use of L{ ~ &/ + O(vM~1), we obtain a contribution to M?.: Then eq. (B-5) becomes:

[mpmD —mpM(M? +m3) " Mmp] " 55t (B.9)

which correctly reproduces the last two terms of Mgc given in eq. (B:39). Of course, the
non-seesaw MSSM result of M%C derives from the soft-SUSY-breaking term, Z;‘ m%zz, and
the D-term contribution, %M% cos 23. As expected, in the M — oo limit (with  — 0), the
low-energy effective theory reproduces the non-seesaw MSSM result. In this appendix, we
have explained the origin of the non-decoupling correction to the non-seesaw MSSM result
in the M — oo limit with = held fixed to a finite positive value.

Finally, we address the question of the allowed size of the matrix parameter m?v Does
it make sense to have z close to O(1)? In [Bg], it is shown that for values of z ~ 1,
there is a very large negative shift in the mass of the lightest CP-even Higgs boson due
to radiative corrections from the heavy neutrino/sneutrino sector of the seesaw-extended
MSSM. If we demand that there should be no unusually large radiative correction to a
physical observable generated as a result of my # 0, we can apply the results of [BY| for
the radiatively-corrected physical Higgs masses to conclude that = < 0.1. Note that this
upper bound is less severe than the bound of 2 < 0.01 given in eq. (f.1§). The latter was
obtained in section [f. from the bounds on rare charged lepton radiative decay rates, which
imply that the matrix M%C should be close in form to a diagonal matrix.
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B.2 Naturalness constraints on the magnitude of m%\,

It seems that phenomenological constraints allow for the possibility that ||m% | is signifi-
cantly larger than O(v?), in which case the non-decoupling contribution to M%C may be
significant (perhaps as large as a few percent of the non-seesaw MSSM result). However, if
one imposes the usual fine-tuning (or naturalness) requirements for the stability of the elec-
troweak scale, one can show that ||m%|| cannot be significantly larger than O(v?). This can
be verified by computing the one-loop correction to the H2 self-energy. The computation
in the supersymmetric limit is performed explicitly in appendix E, section 7 of ref. [E] for
the Wess-Zumino model. This computation is easily adapted to the present case of interest
(in which the Higgs boson couples the the neutrino/sneutrino system). We then modify the
supersymmetric computation in the case of the one-generation seesaw model by setting the
boson (heavy sneutrino) squared-mass to M? +m%; and the fermion (heavy neutrino) mass
to M. [Here, we are dropping terms of O(v?).] If m%; # 0 (which softly breaks the super-
symmetry), the quadratic divergence does not cancel exactly. The surviving contribution
to the sqaured-mass term of H2 is of the form

m Y, [PT(M?, miy) | HS |, (B.10)

where 7 is a logarithmically divergent integral (that can be regularized by dimensional
reduction [59)).
We now add this one-loop result to the corresponding tree-level contribution to the
scalar potential:
(3, + [P H? (B.11)

In order to achieve successful electroweak symmetry breaking with v = 246 GeV, the com-
plete coefficient multiplying |H3|?> must be of O(v?). By assumption, we take p ~ O(v)
[cf. eq. (BID)]. If m% > v?, the correct scale of electroweak symmetry breaking can
be achieved only by an unnatural fine-tuning of the parameter m%b. Thus, naturalness
requires that m3, ~ v?. We have not distinguished between O(v?) and O(MZ3yqy) in the
above discussion. It is likely that there is a slight separation of scales with Mgsysy <1 TeV.
By imposing the naturalness condition on the dynamics of electroweak symmetry breaking
(which ultimately is the motivation for TeV-scale supersymmetry in the first place), we

conclude that the expected natural order of magnitude for ||m%|| is:
[mi ]l ~ O(Msusy) , (B.12)

as indicated by eq. (R.15).

For completeness, we note that the same conclusion can be drawn by considering the
one-loop effective scalar potential, V1) (¢). In particular, if we introduce a hard momentum
cutoff A, one obtains a one-loop contribution of [0

A? 1 M? 1
V() = == Z Str M (9) + o — Str {Mf(@ [m # - 5} } : (B.13)

where MZQ(QS) are the contributing squared-mass matrices of particles whose masses origi-
nate from their couplings to the Higgs boson, with the vacuum expectation values replaced
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by the corresponding Higgs fields, ¢, and

Str {---} = Z D27, +1)C; {---}. (B.14)

In eq. (B.14)), C; counts the electric charge and color degrees of freedom of particle i (e.g.,
C = 2 for the W¥ gauge boson and C' = 6 for a colored quark, since we count both particle
and antiparticle). It is convenient to absorb the factor of 1/2 in the last term on the right
hand side of eq. (B.13J), by defining u such that:

Mg) 1
A2 2 2

In (B.15)
Using the results of eqs. (B.19), (B.69) and (B.70), we focus on the contributions to the

supertraces from the heavy neutrinos and sneutrinos. Indeed,

> Str MP(¢) = 2Tr my + O(v%), (B.16)

although m%v is field independent and thus contributes only to the vacuum energy. Here,
we are interested in the implications of naturalness associated with electroweak symmetry
breaking (and not the cosmological constant). Thus we focus on the field-dependent part
of the scalar potential that is quadratic in the Higgs fields. To do this, we simply replace
mp with H22YV. For simplicity, we shall examine the one generation seesaw model. In this
case, we obtain the following scalar field-dependent squared-masses:

my, ~ M? 42|, P|H3?, (B.17)

M2
~ M2
m~ M? +m3 + |V, 2| H3)? [1+M2+m?\,}' (B.18)
Inserting these results into the last term on the right hand side of eq. (B-IJ), and using
eq. (B:I7) to replace A with p, we end up with the following terms in V(1 () that contribute
to the coefficient of |HZ|?

2M2+ 2
M2l + 1Y, P32 ()

2{(M? + m¥)? +22M? + m%,)|Y, |>|H3|* } In 2

(B.19)

M? + 2|V, 2| H3?
_2{(M4+4M2‘YV’2‘H22’2}1I1|: + | 1/| | 2| :| ’

112
where we have dropped terms of O(v?|H2|?). Expanding out the logarithms, the above
expression reduces to

M? + m? 2M? + m?2
2{(00° + ) + 2202 + s Pl {in | S| P S |

(M2 + m%)?

(B.20)

M2 2|Y |2|H2|2
“2 (M 4 MY, P !H%F}{ M DY
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If we keep only terms proportional to |H2|?, we end up with:

my; M? + m? 1
2 212 2 N 2

One can check that the coefficient of |Y, |?|H3|? is precisely m3,Z(M?, m%;), where Z is the
integral appearing in eq. (B.1() after DR subtraction [59].

C. Feynman rules

We exhibit here the relevant Feynman rules for the calculation of £ — £’y presented in
section .3 These rules are based on four-component fermion notation (see [i]) and employ
the conventions of ref. [[f] for sfermion, chargino and neutralino masses and mixing matrices.

I

The neutrinos v/ are (self-conjugate) Majorana fermions [cf. eq. (A.9)]. In the basis defined

in section ] we obtain:
i % (128 — g223) (22 — izl ™M Uilvs P
+ (2§~ pZ¥)E + iz U s Prl |
Sk—=--- X{ (C.1)
vt —i (228" 2% — v, 2N 2 Uil P

k
o % (I+3)k /3
\/_CWZ (ZNSW‘FZ]\}CW) }/g Z Z]\} PL
[ X0 + (~ov2 2z -y 214 23 Pl

(C.3)

v QQZ_}_i(ng _ Z-Zépr?’)k) Py

Yz \/5
—v/ 22 (2lk —iz{"%) Py
} 2(zlk iz,
Skp——--- el

(C.4)
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Figure 5: One-loop corrections to light neutrino masses. The x marks the location of the AL = 2
transition. (a) The loop consisting of light sneutrinos and gauginos. The x indicates the location of
light sneutrino-antisneutrino mixing, and the solid dot indicates a factor of the gaugino Majorana
mass in the numerator of the fermion-number-violating gaugino propagator. (b) The loop consisting

of the neutral Higgs field H5 and a heavy neutrino. The x indicates the lepton-number-violating

heavy neutrino propagator, which is proportional to Md§* %, and the solid dot indicates a mass

)

insertion of the form (H3*)2. The contributions of the corresponding graphs (not shown) in which
the gauginos in (a) are replaced by the Higgsino ﬁ%, the light sneutrinos in (a) are replaced by
heavy sneutrinos, and the heavy neutrinos in (b) are replaced by light neutrinos are all suppressed
by an additional powers of O(vM ~1!) as explained in the text.

D. Order of magnitude estimates for contributions to one-loop neutrino
masses

In this appendix, we estimate the order of magnitude of the one-loop contributions to the
neutrino masses due to the graphs of figure fJ(a) and (b), and the corresponding graphs
(not shown) in which the light sneutrinos [heavy neutrinos| in graph (a) [(b)] are replaced
by heavy sneutrinos [light neutrinos].

In the case of graph (a), the dominant contribution involves the light sneutrino-
neutrino-gaugino interaction term?® of eq. (f.§). We can estimate the leading contribution
of this graph by replacing the internal lines by the interaction eigenstate fields that appear
in eq. (F.9), as depicted in figure fl. That is, we first replace the Sy with the ﬁt{ , which
must point away from both external vertices, as shown in figure E(a). The latter is possible
only in the presence of light sneutrino-antisneutrino mixing, which is indicated by the x in
figure f(a). Using the expected magnitudes of the model parameters given by egs. (R.11)
and (R.14), the x in figure f(a) produces a factor Am%@ ~ O(v3M~1). The neutralino line
can be treated perturbatively. In the lowest order approximation, we take the neutralino
to be a gaugino (either B or W?’, with Majorana masses M; and My, respectively), and
we treat the mixing of the gauginos with the neutral higgsino states (flll and ]_722) as a
perturbation. The corresponding gaugino propagators (with internal four-momentum gq)
shown in figure [f(a) are fermion-number-violating propagators (indicated by the clashing
arrows), and are given by iMy,/(¢> — M}?) for k = 1,2. We denote the presence of the gaug-

260f the three light sneutrino-neutrino-neutralino interactions of eq. (@), the two sneutrino-neutrino-
higgsino interaction terms are suppressed by a factor of O(mpM ') relative to the sneutrino-neutrino-
gaugino interaction, and can be neglected.
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ino mass [which is of O(v)] in the numerator by the solid dot in figure fj(a). Not including
this explicit factor of the gaugino mass, the loop in graph (a) then consists of two mas-
sive scalar propagators [with mass of O(v)] and one fermion-number-violating propagator;
hence the loop integral has a mass dimension of —2. Thus, the corresponding loop integral
is of O(v=2). Combining the above results, the order of magnitude of the contribution of
graph (a) is:

w31 v?

R (D)
which is indeed of order the tree-level neutrino mass multiplied by the product of the
relevant vertex coupling constants and a typical loop factor of 1/1672 (denoted by Cp,
above).

Suppose we replace the light sneutrinos of graph (a) with heavy sneutrinos. In this
case, the effect of heavy sneutrino-antisneutrino mixing is Aml%h ~ O(m%) ~ O(vM). From
eq. (b-§), we see that there are potentially two contributions — one involving the gauginos
and one involving the higgsino f[% In the case of the gaugino loop graph, each vertex
introduces a O(vM ') suppression. Thus, following the analysis above, we conclude that
the order of magnitude of the heavy-sneutrino loop is suppressed by a factor of O(v2M ~2)
as compared with the light-sneutrino loop. In the case of the loop graph involving ﬁl%,
we note that there is no diagonal Majorana mass term for this higgsino field. Moreover,
H 1 does not couple to the external neutrinos, so we cannot use the off-diagonal Majorana
mass term ,uf[ 111;:[22 for the fermion-number-violating neutralino propagator. Therefore, the
heavy-sneutrino loop can be neglected.

In the case of graph (b), the propagator of the heavy neutrino (with internal four-
momentum ¢) is given by iM&5L/(¢> — M?), due to the presence of the lepton-number
violating mass M (indicated by the x). Since the loop integral is dimensionless, it naively
appears that the resulting loop integral should be of O(M). However, an explicit compu-
tation of the graph of figure f(b) demonstrates that the coefficient of the leading O(M)
term vanishes exactly after summing over the internal neutral Higgs and Goldstone states.
The subleading term does not vanish and is of O(v2M 1), which is the magnitude of the
lrght neutrino mass. This cancellation can be easily understood by noting that the two
vertices of figure f(b) arise from interactions of eq. (F.5) that involve H3. Thus we re-
place the neutral Higgs and Goldstone lines of figure P(b) by the H3 field [cf. eq. (F.8)].
According to the interaction Lagrangian of eq. (F.5), the H3 field must point into both
external vertices, as shown in figure E(b) This requires a mass insertion on the H3 line
of the form (H2)2 + H.c. In fact, such a term exists in the MSSM Higgs potential [Ed]
after shifting the neutral field H2? — H3 4 vo//2, which results in a term of the form

%mQZ sin? 3(H2)? 4+ H.c. Thus, in the mass insertion approximation, graph (b) consists of

the lepton-number-violating heavy neutrino propagator, two massive scalar field lines®”

2TIn the MSSM Higgs sector, after shifting the neutral Higgs fields by their vacuum expectation values and
applying the potential minimum conditions, there is a mass term of the form (%mQZ sin? B4+m? cos® B)|H3 |?,
where m% = —m?,/sin Bcos 3 [and m3, defined in eq. @)] In evaluating graph (b) of figure E, we treat
the |H%|? mass term exactly, and incorporate the (H3)? 4 H.c. and H{ H3 +H.c. mass terms perturbatively

(via the mass insertion approximation).
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and an insertion of O(v?). After extracting the factor of M from the numerator of the
heavy neutrino propagator, the remaining loop integral now has a mass dimension of —2,
which yields a result of O(M~2). Combining these result, the order of magnitude of the
contribution of figure fl(b) is given by:

cii-M-qP:C’f (D.2)
M2 LM’

which is again of order the tree-level neutrino mass multiplied by the product of the relevant
vertex coupling constants and a typical loop factor (denoted above by C]). This result
confirms our previous argument above. A careful evaluation of the leading behavior of the
loop integral (in the limit of M >> v) then reproduces the result obtained in eq. (f.§). Note
that the factor of sin? 3 = v3/v? that arises in the mass insertion on the H2 line cancels
out a similar factor of v3 that appears in C | x Y2,

If the heavy neutrinos in figure fJ(b) are replaced by light neutrinos, the resulting
contribution is suppressed by an additional factor of O(v?M~2) due to the suppression of
the v/ v[X H3 interaction of eq. (5.3).
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